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Abstract This paper contributes a new matrix method for solving systems of high-order linear dif-
ferential-difference equations with variable coefficients under given initial conditions. On the basis

tion; of the presented approach, the matrix forms of the Euler polynomials and their derivatives are con-

Collocation points;
Polynomial solutions

structed, and then by substituting the collocation points into the matrix forms, the fundamental
matrix equation is formed. This matrix equation corresponds to a system of linear algebraic equa-

tions. By solving this system, the unknown Euler coefficients are determined. Some illustrative
examples with comparisons are given. The results demonstrate reliability and efficiency of the pro-

posed method.
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1. Introduction

In the recent years, the systems of differential-difference
equations [1], treated as models of some physical phenomena,
have been received considerable attention. They are usually
difficult to solve analytically; so a numerical method is needed.
Recently, much attention has been given in the literature to the
development, analysis, and implementation of methods for dif-
ferential and differential-difference equations (see [2-14] for
instance). In this research we try to introduce a solution of a
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system of high-order linear differential-difference equations
in the form

ZZF” ux+A) g(x), a<x<b, i=12,...k,
=0 j=

(1)
subject to the initial conditions
m—1
ZO( (@) + by (0) + ) (€) = s,
;gcgb, i=0,1,....m—1, n=1,...,k, (2)
where af,, b",, ¢y, 4 and p,; are real or complex constants,

meanwhile F7,(x), g;(x) are continuous functions defined on
the interval a < x < b.
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2. Basic matrix relations for solution

The classical Euler polynomials E,(x) is usually defined as [15]

n

Z(Z)Ek(x) FE,(x) =2x", neN. (3)

k=0

Let X7(x) be the (N+1)x1 matrix and Py, be the
(N+1) x (N+1) lower triangular matrix defined by

T i—1 .
X'(x) = [1x,...,x"]", [Pyl = (ji 1), P>
If n varies from 0 to N, the property (3) can be represented as
matrix systems of equations

S (P + L) ET(2) = X(x).

Thus, the Euler vector can be given directly from

T

ET(x) = D'X7(x) <= E(x)=X(x)(D")". (4)

A relation between Euler polynomials and their derivatives is
as follows (E,(x) = nE,(x),n=1,2,...)

010..0
002 ...0
(B B9, B = (B B B
E'(x) E(x) 000 .. N
000 ...0
Loo.. ol

M
We recall that, M is the Euler operational matrix of differenti-
ation. Trivially E"(x) = E(x)M" for all positive integers »,
where our purpose from E™(x) is the nth derivative of E(x).
We can write y;(x) in the matrix form as follows;

N
2i(X) = ainE(x) = E(x)4;, i=12,...k
n=0

a<x<b, (6)

where the Euler coefficient vector 4; and the Euler vector E(x)

are given by
T
A= [ai,07ai,17~~ '7ai,N] ,

E(x) = [Eo(x), E\(X), ..., Ex(X)],

then the n#/ derivative of y,(x) can be expressed in the matrix
form by

W(x) = EM(xN)4;, i=1,2,.. 0k,
Making use of (4), (5) and (7) yields

n=0,1,...m. (7

W (x) = E(x)M"4; = X(x)(D") M"4;,
i=12,....k;, n=0,1,...m. (8)

By putting x — ux + A in the relation (8), we obtain the matrix
form

W (x4 2) = E(ux + )M A; = X(ux + 2)(D7) ' M" 4. (9)

To obtain the matrix X(ux + A) in terms of the matrix X(x),
we can use the following relation:

X(x + 7) = X(x)B(u, 2, (10)

where

X +2) = [1 (e + 2), (e + 2%, (e +2)],

for u#0 and 170,
[/o 1 2 N T
040 091 072 0N
(e () (e Qe
0 <l>w° <2>,¢u' (N>,u;;"*1
1 1 1 and for

0 0 0
@00 ... 0
0 0...0

u#0and 1=0,B(u, 1) =
000 ..
By substituting the relation (10) into (9), we get
W (x + 7) = X(x)B(u, 2) (D) M 4,
i=1,2...,k, n=0,1,...m. (11)

Hence, the matrices y"(ux+A), n=0,1,...m can be
expressed as follows

P (px + 2) = X(x)B(u, ) DM" 4, (12)
where
W ux +2)
e e )
YW (px +2) = . ;
) )
Vi (ux+4)
X(x) 0
_ 0 X(x)
X(x) = B
0 0 X(x)
B(u,2) 0
_ 0 Bw4)
B(‘U., ;L) - ’
0 0 B(p, 7)
Do o0 0
_ 0 o' 0
5 (D7) 7
0 0 (o'
M0 0 A,
o 0o M 0 A
M=\ . |, A=
0 0 - M Ax

2.1. Matrix representation for the conditions

We can write Eq. (2) for i =1,2,...,k in the matrix form as
S ay? (a) + by (b) + iy (e)] = [, where
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Kig o o,
iy . a’IJ i bl]’/
= : 4= : ’ bf - : ’
Him—1 1 1 D1 | s b;” 17 4 mx1
cf”.
. €
G = ’
C:"’I:/ mx1
or briefly
m—1 .
2 @+ b0 + ey = (13)
where
I a} 0
H 0 af2
o= , 4= )
Hye 0 0 - a;.‘ fexk
| 1
b, 0 0 ¢ 0
0 b 0 0 ¢ 0
b; = 0 G
k K
0 0 o b 0 0 ],

Substituting the matrices y?(a), y¥(b) and y¥(c), which
depend on the matrix of Euler coefficients 4 into Eq. (13)
and simplifying the result we obtain Z;”Ol[a] X(a) + b;X(b)
+¢;X(c)| DM’ A = [i. Let us define U as

U= 3", [aX(a) + bX(b) + ¢;X(c)] DM, thus the funda-
mental matrix form for the conditions becomes

UA=np, orl|U;g. (14)

3. Description of the numerical method

First, we can write the system (1) in the matrix form

ZF (” Hx +)= g(x)7 (15)
where
FL) Fa() o Pl
Fyi(x)  F5(x) F(x
Fn(X) - . 9
FZ’J(X) Ff,z(x) F;.’k(x)
yﬁ'”(ux +7) /(%)
YO (x + 2) = W (ux + ) gl = & (x)
H x4 2) ()

By placing in Eq. (15) the collocation points defined by

b_
xj.=a+TaS, 5s=0,1,2,...,N, (16)

we obtain
Fn (X()) 0 0
m 0 E1 (Xl) . 0
ZFn Y<n> = G§ F, = . . . . )
n=0 : : . .
0 0 Fn (XN)
Y (uxo + 4) g(x1)
(n)
Y(n) _ y (‘le + j') 7 G — g(xz)
YO (uxy + 2) g(xn)

Using relation (12) and the collocation points (16), we obtain
YO (e, + ) = X(x)B(u, YD(M)' A,

s=0,1,....,N, n=0,1,...m, (17)
which can be written as
X(xo)
X(x1)
Y™ = XB(u,)DM"4; X = S,
X(xn)
Xx) 0 0 (18)
_ 0 X(xy) 0
X(x,) = .
0 0 X(xy)

Substituting relation (18) into Eq. (3), we have the fundamen-
tal matrix equation

{iFnXB(y, /l)D]V[”}A =G (19)

=0
Briefly, the fundamental matrix Eq. (19) corresponding to Eq.
(1) can be written in the form

WA =G, or[W;G]. (20)
To obtain the solution of Eq. (1) under conditions (2), we
replace the row matrices (14) by the last mk rows of the matrix
(20) and obtain the new augmented matrix as follows

w;

Ui &

= — —l=

then 4= (W) G. (21)

4. Study of error

Suppose that H = L2[0,1], Y = span{Ey(x), E\(X), ..., Ex(x)}
and g be an arbitrary element in H. Since Y is a finite dimen-
sional vector space, g has the unique best approximation out of
Ysuchas g€ Y, thatisforally € Y, ||g — g|| < |lg — »||- Since

g € Y, there exists the unique coefficients g;, g, --,gy such
that g(x) ~g(x) = 3 g, E.(x) = E(x)G", where E(x)=
[EO(X)v E, (X), e >EN(X)} and G = [g07g1a cee :gN]'

Theorem 1. Assume that g € H be an arbitrary function and also
is approximated by the truncated Euler series Zf,v:og,,En (x),
then the coefficients g, for all n=0,1,...,N can be calculated

from the following relation

ijo M (x)dx,n=N
N—n—1
_ U (n wy (k+n+1
&= %(fog() dx+2k+2(k+1 Ek+2(0)gn+k+l )
n=N-1, N-2,...,0.
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Proof. Suppose that g is approximated by the truncated Euler
series 3, En(x); in other words

Zgn

By the following familiar expansion [15]

En(x) = i% (Z)Ek+l (O)ank(x)7 (23)

Euler polynomials (E,(x),n=0,1,...N) can be expressed in
terms of the Bernoulli polynomials. Using Eq. (23), and substi-
tuting results into Eq. (22), we get

= &Eo(x) + & Ei(x) + .. gyEn(x). (22)

s=-1({ JoB 08

g @ (i)EZ(O)BO(x) +% ((1)>El (0)B, (x)>
o (3(3)B0mm+3 (] momem -
a (NLH (g)mﬂ (0)By(x) *%@— 1)EN(O)Bl (x)+ -
SN eosom 3 ())aosm)
~(2()am0 -2 (V)anEa) e
N (%((‘)gla (0)7»»-7%@7 1>gNEN(0)>Bl ()4
R T g e

n (% <(])V> E, (O)gN> By(x). (24)

By differentiating the above equation N times, applying the
differentiation means condition property of Bernoulli polyno-
mials (i.e. B,(x) =nB,_i(x), n > 1) and integrating the
obtained equation in the interval [0, 1] and applying the inte-
gral means condition property of Bernoulli polynomials (i.e.
fo (x)dx=0, n>1)

/01 ‘C)dYN/ (;g”

Isince By (x)=1

—_—~
Y)> dr=_2 (g’) NIE, (O)gN/l Bo(x)dx,
Jo
=L hence gy = &

since E;(0) = 5 0 (x)dx. Now, by differen-
tiating Eq. (24) (N—1) times and again integrating the
obtained equation in the interval [0, 1],

/olgmw(x)dx: (_% (i)v_ 1 )gN”El © —% (iv)gNEZ(O))

IsinceBy (x)=1 equals to zero

—_—

(N—l)!/0 Bo(x)dx-i-(N—1)!g,\,/0]B|(x)dx7

| N
fn g(‘\"l)(x)t/er%(l )(N—l)!Ez(O)gN

and hence gy_, = ]

. Repeating this

procedure n times for n=(N-2),(N-23),...

Nty [ KR+
RIS S '%( P Eiia 01
. O
n!

,0  yields

8n =

The above Theorem implies that Euler coefficients are
decayed rapidly with increasing of n. Also we succeed to con-
vert the approximate polynomial of g(x) in terms of Euler
polynomials with the Eq. (23) to the corresponding approxi-
mate polynomial of g(x) in terms of Bernoulli polynomials
[16].

Theorem 2. (/17]). Suppose that g(x) be an enough smooth
Sfunction in the interval [0,1] and Py[g](x) is the approximate
polynomial of g(x) in terms of Bernoulli polynomials and
Ry(g](x) is the remainder term. Then, the associated formulae
are stated for x € [0,1] as g(x) = Pylg](x) + Ry[g](x)

Pyl = [ e dx+2

Rulg](x) = —% / By (x — 08 (1),

where By(x) = By(x — [x]) and [x] denotes the largest integer
not greater than n.

— g 0)),

Theorem 3. Suppose g(x) € C*[0,1] and Pylg](x) is the
approximate polynomial using Bernoulli polynomials. Then the
error bound would be obtained as follows

1
0 \ N!
where By and Gy denote the maximum value of Bj(x) and
g™M(x) in the interval [0, 1] respectively.

[[Error(g(x)) |l < < BvGw;

Proof. By considering Rylg](x) = — 4 [0 By(x — 1)g™(1)dt,

the proof is clear. O

5. Test problems

Example 1. Consider first the system of initial value problems
given by

V=1 +nkx-1)=2x 1(0)=0
Vik=1) —=pix—1)=2x—-1 »(0)=0 -3<x<4,
NWx=D+px-—1)=x-1 »0)=0

(25)

with exact solutions y,(x) = x?, y,(x) = 2x, y;(x) = —x. By
applying the technique descr1bed in Section 3 with N = 3, we
may write the approximate solution in the form

3
X) = Zafﬂ,,En(x), i=1,2,3,
n=0
where
0 00 1 1 0
Fx)=10 0 0|, Fx)=|1 0 —-1],
0 0 1 1 0 0
2x
gx)=12x-1
x—1
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Table 1 Comparison of the absolute errors for N = 8,10 of y,(x) and y,(x) of Eq. (26).

X; Absolute errors of y, (x) Absolute errors of y,(x)
TCM [9] CMEP method CMEP method TCM [9] CMEP method CMEP method
(N =10) (N=28) (N =10) (N =10) (N=28) (N =10)
0 0 0 0 0 0 0
0.1 3.226e—11 4.9552e—11 4.8850e—14 3.1571e—11 2.4766e—11 3.5527e—14
0.2 3.681e—11 4.9312e—11 4.8850e—14 3.139e—11 2.4641e—11 3.5527e—14
0.5 9.215e—11 6.4881e—11 1.1369e—13 7.246e—11 3.2397e—11 1.0747e—13
0.8 1.3808¢—10 9.1289%—11 2.8244e—13 1.0270e—10 4.557%—11 2.2737e—13
1 2.7443e—10 1.1536e—09 1.1253e—12 3.9660e—10 5.7658e—10 4.7373e—13

Table 2 Comparison of the absolute errors for N = 6,10 of y,(x) and y,(x) of Eq. (27).

X; Absolute errors of y;(x) Absolute errors of y,(x)
Transform method [6] CMEP method CMEP method Transform method [6] CMEP method CMEP method
(N=06) (N=16) (N =10) (N=16) (N=16) (N =10)
0 0 0 0 0 0 0
0.2 1.5575¢—02 2.8460e—08 3.1863e—14 2.3262¢—03 2.8460e—08 3.3529¢—14
0.4 5.1209e—02 1.7820e—08 3.3196e—14 1.6867e—02 1.7820e—08 4.8184e—14
0.6 1.0150e—01 1.2668¢—08 4.0967e—14 5.4499e—02 1.2668e—08 9.2815e—14
0.8 1.6630e—01 3.3538e—08 5.3846e—14 1.3194e—01 3.3538e—08 1.7519e—13
1 2.3351e—01 6.8657e—07 1.6325e—12 2.8038e—01 6.8657e—07 1.4025e—12

The augmented matrix for treating Eq. (25) with the colloca-

tion points {xg = —3,x; = —2,x, =3,x3 =4}, is
(o1 -9 60 01 -9 60 0 0 0 0; -6
01 -9 60 00 0 0 0 -1 9 —60; -7
01 -9 60 00 0 0 1 -9/2 20 -351/4 —4
01 —13/3 40/3 0 1 —13/3 40/3 0 0 0 0; —4/3
01 —13/3 40/3 00 0 0 0 —1 13/3 —40/3; -17/3

W)= 01 —13/3 40/3 00 0 0 1 —13/6 40/9 —923/108; —5/3 '
01 1/3 =2/301 1/3 -2/30 0 0 0; 10/3
01 1/3 =2/300 0 0 0 -1 —1/3  2/3; 7/3
01 1/3 =2/300 0 0 1 1/6 -2/9 —13/108; 2/3
01 5 18 01 5 18 0 0 0 0; 8
01 5 18 00 0 0 0 -1 =5 —18; 7
01 s 18 00 0 0 1 52 6 55/4; 3]

and the matrix forms for conditions are

[Up:pm]=1[1 —1/201/400000000; 0],
(U] =[00001 —1/201/40000; 0],

[Uy:pi5) =[000000001 —1/201/4; 0.

Solving the previous system, the unknown Euler coefficients
vectoris A=[1/21101200 —1/2 —100]".

Hence, the solutions of the problem for N =3 become
¥1(x) = x2, y,(x) = 2x and y;(x) = —x which are the exact
solutions. Moreover, if higher values of N be chosen, we obtain
the exact solution again.

Example 2 ([18]). Consider the system of initial value prob-
lems given by

{y’l(X)+4y’z(X)+y1(X):1+2€"" 11(0) =1
NE) +10) +mx) =x—e™  3,0)=0 0<x<1,

(26)

with the exact solutions y(x)=e ™ +3e™* 3, p,(x) =
—1e™ 43¢ 4+ x— 1. Tables | shows the numerical results
obtained by collocation method based on Euler polynomials
(CMEP) and the numerical results of [9] using Taylor colloca-
tion method (TCM).

Example 3 ([19]). Consider the following linear differential
system

»1(0) =

{ V5(X) = 2p1(x) = yo(x) =0
}’2(0) =

21(%) + 0500 +21(x) +12(x) = 1 0<x<1,

(27)

with the exact solutions y,(x) =e¢™* — 1, y,(x) =2 —¢*. In
Table 2 the numerical results for this example with N = 6,10
are displayed together with the results obtained in [6] using
transform method.

6. Conclusion

In this article, we introduced a new collocation method based
on the Euler polynomials and used it for solving systems of
high-order linear differential-difference equations with vari-
able coefficients. One of the advantages of this method is that
the proposed problem is transformed to a system of algebraic
equations. Another considerable advantage of this method is
to obtain the analytical solutions if the system has an exact
solution that is a polynomial function. The numerical results
show that the algorithm converges as the number of N terms
is increased. The method proposed in this work can be
extended to solve the important nonlinear partial differential
equations investigated in [20,21], but some modifications are
required.
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