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Abstract In this paper, the exp(—®(&))-expansion method with the aid of Maple has been used to
obtain the exact solutions of the Kadomtsev—Petviashvili (KP) equation. Each of the obtained solu-
tions, namely hyperbolic function solutions, trigonometric function solutions and rational function
solutions, contain an explicit function of the variables in the considered equation. It has been shown
that the method provides a powerful mathematical tool for solving nonlinear wave equations in
mathematical physics and engineering problems.
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1. Introduction

Nonlinear evolution equations (NLEEs) i.e., partial differen-
tial equations with time ¢ as one of the independent variables
have become a useful tool for describing the natural phenom-
ena of science and engineering. NLEEs arise not only from
many fields of mathematics, but also from other branches of
science such as physics, mechanics and material science. Exact
solutions of NLEEs play an important role in the proper
understanding of qualitative features of many phenomena
and processes in various areas of natural science. Even those
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special exact solutions that do not have a clear physical mean-
ing can be used as test problems to verify the consistency and
estimate errors of various numerical, asymptotic, and approx-
imate analytical methods. Exact solutions can serve as a basis
for perfecting and testing computer algebra software packages
for solving NLEEs. It is significant that many equations of
physics, chemistry, and biology contain empirical parameters
or empirical functions. Exact solutions allow researchers to
design and run experiments, by creating appropriate natural
conditions, to determine these parameters or functions. There-
fore, investigation of exact traveling wave solutions is becom-
ing successively attractive in nonlinear sciences day by day.
However, not all equations posed of these models are solvable.
Hence it becomes increasingly important to be familiar with all
traditional and recently developed methods for solving these
models and the implementation of new methods. As a result,
many new techniques have been successfully developed by
diverse groups of mathematicians and physicists, such as, the
Kudryashov method [1], the Exp-function method [2-5], the
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Homotopy perturbation method [6,7], the modified simple
equation method [8-10], the (G'/G)-expansion method
[11-15], the exp(—®(&))-expansion method [16].

The objective of this article is to apply the exp(—® (&))-
expansion method to construct the exact solutions for
nonlinear evolution equations in mathematical physics via
the KP equation.

The article is prepared as follows: In Section 2, the
exp(—®(&))-expansion method is discussed; In Section 3, we
apply this method to the nonlinear evolution equation pointed
out above and in Section 4 conclusions are given.

2. Algorithm of the exp(—®(&))-expansion method

In this section we will describe the algorithm of the
exp(—®(&))-expansion method for finding traveling wave
solutions of nonlinear evolution equations. Suppose that a
nonlinear equation, say in two independent variables x and ¢
is given by

Py Uy Uy Uy Uiy Uiy e eeeeeeen ) =0, (2.1)

where u(&) = u(x,t) is an unknown function, P is a polynomial
of u(x,t) and its partial derivatives in which the highest order
derivatives and nonlinear terms are involved. In the following,
we give the main steps of this method [16]:

Step 1. Combining the independent variables x and ¢ into
one variable ¢ = x + wt, we suppose that

u(x, 1) =u(g), <=x=xot (2.2)

The traveling wave transformation Eq. (2.2) permits us to
reduce Eq. (2.1) to the following ordinary differential equation
(ODE):

Ou,u u"y ..o oo )=0. (2.3)

where Q is a polynomial in u(¢) and its derivatives, whereas
b
W' (&) =9, u"(€) =% and so on.

Step 2. We suppose that Eq. (2.3) has the formal solution

u(@) = wi(exp(—®())), (2.4)
=0

where o; (0 < i < n) are constants to be determined, such that

o, #0, and ® = ®(¢) satisfies the following ODE:

(&) = exp(=9(&)) + pexp(P(¢)) + 4, (25)

Eq. (2.5) gives the
When 22 —4u > 0, u#0,

—\/mmnh (—V(Z“‘” &+ k)) -4

following solutions:

®(&) =1In o» , (2:6)
—\/(> = 4u) coth (—W;“) (E+ k)) Y
®(&) =In > . @27)
When 22 —4u < 0, u#0,
/(4 7%) tan (@ &+ k)) )
o(&) = In L8

2u

(&) =In % ; (2.9)
When A2 —4u >0, u =0, 1#0,
T N
6 == (oo =) 210
When A2 —4u =0, u#0, L0,
2(2E+K) + 2))
o) =In (-T2 2.11
(6 =t (L), @)
When A2 —4u=0,u=0,.=0,
®(¢) =In(E + k), (2.12)

where k is an arbitrary constant and o,, ... ... , W, A, [l are con-
stants to be determined later, o, # 0, the positive integer » can
be determined by considering the homogeneous balance
between the highest order derivatives and the nonlinear terms
appearing in Eq. (2.3).
Step 3. We substitute Eq. (2.4) into (2.3) and then we
account the function exp(—®(¢)). As a result of this substi-
tution, we get a polynomial of exp(—®(¢)). We equate all
the coefficients of same power of exp(—®(¢)) to zero. This
procedure yields a system of algebraic equations whichever
can be solved to find o, ... ... , @, A, p. Substituting the
values of o, ...... , o, A, uinto Eq. (2.4) along with gen-
eral solutions of Eq. (2.5) completes the determination of
the solution of Eq. (2.1).

3. Application

The Kadomtsev—Petviashvili (KP) equation
6(14)” + thyns + 3071, = 0, (3.1)

Uy — OUll —

or (u; — 6uuty + Uyyy), + 35214;,;\) =0,

is a two-dimensional generalization of the KdV equation.
Kadomtsev and Petviashivili (1970) first introduced this equa-
tion to describe slowly varying nonlinear waves in a dispersive
medium [17.18]. Eq. (3.1) with > = +1 arises in the study of
weakly nonlinear dispersive waves in plasmas and also in the
modulation of weakly nonlinear long water waves [19] which
travel nearly in one dimension (that is, nearly in a vertical
plane). The equation with 6 = —1 arises in acoustics and
admits unstable soliton solutions, whereas for 6> = +1 the
solitons are stable.
The traveling wave transformation equation is

u(x,p,1) = u(§).
(3.2)

“:“(x7y7f)7 {=x+y—of u:u(é)v

Using traveling wave Eq. (3.2), Eq. (3.1) reduces into the fol-
lowing ODE

(—ou — 6ud +u") 4 38" = 0. (3.3)

Integrating Eq. (3.3) twice with respect to ¢ setting constant of
integration to zero, we obtain the following ODE

W'+ (36* — o)u—3u* = 0. (3.4)
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Now balancing the highest order derivative u* and non-linear
term u°, we getn = 2.
Now for n = 2,

u(é) = oy + o exp(—@(&)) + zxz(exp(—tb(é)))z, (3.5)

where o, o, and o, are constants to be determined such that
o, # 0, while A, u are arbitrary constants.

Substituting Eq. (3.5) into Eq. (3.4) and then equating the
coefficients of exp(—®(¢)Y to zero, where j > 0, we get

6002 ) — ety + oy A 4 20 1 — 6oy + 3020 = 0. (3.6)
— 6oty + 36700 + 3o A + don A% — 30(% + 8ot — woy = 0. (3.7)
1004 — 601060 + 20 = 0. (3.8)
— 305 + 60, = 0. (3.9)
20017 + o ud + 3620y — wory — 3055 =0. (3.10)

Solving Egs. (3.6)—(3.10) by using Maple 13, we find that solu-
tion of Eq. (3.1) exists only in the following two cases:

Set I: w = 36> —4u + 22, g = 2u, o = 24, op = 2.
Set 2:w = 4,ufk2 + 3% o =%,u+%/'t2, o =24, oy =2.

where u and /4 are arbitrary constants.

Case 1: Solution of Eq. (3.1) which corresponds to Set 1 is
given by

u(&) = 2p+ 2hexp(—P(&)) + 2(exp(—P(£))). (3.11)

where & = x +y — (36> — 4u + %)t

Now substituting Egs. (2.6)-(2.12) into Eq. (3.11) respec-
tively, we get the following seven traveling wave solutions of
KP equation.

When A2 —4u > 0, u#0,

42u
(2* — 4u) tanh (; (22 —4p)(E+ k)) +

2

u (&) =2u—

+ Su
( (2% — 4u) tanh (% (% —4p) (& + k)) + A)

27

42u
u (&) =2 —
g \/ (> — 4u) coth (5 V(2 —4p) (& + k)> +

2

8u

: (MCoth (% EEE +k)) + z)p

where ¢ = x — (36> — 4u + )¢, k is an arbitrary constant.
When A2 —4u < 0, u#0,

Ly
(4u — /%) tan (% (4 —22)(E+ k)) -

2

8

: ( (4 — 27) tan (% (4p—22)(E+ k)) - A)z ’

4u
(4 — ) cot (Ly/(4u— ) E+Kk) ) =2
( )

2

us(&) =2+

B

+< (4ﬂ—iz)cot(% (4ﬂ_22)(5+k))—1>2’

where ¢ = x — (36> — 4u + A)t, k is an arbitrary constant.
When 22 —4pu > 0, 0 =0, 1 #0,

2/2exp(A(E +k))
(exp(A(& +K)) — 1)*

us(Cf) =

where & = x — (30> + A1, k is an arbitrary constant.
When A2 —4u =0, u#0, 1#0,

22
uﬁ(é) = - 2
(AME+K)+2)

where & = x — (30> — 4u + A, k is an arbitrary constant.
When 22 —4u=0,u=0,.=0,

2
(E+k)?

u7(Cf) =

where & = x — 36%, k is an arbitrary constant.

Case 2: Solution of Eq. (3.1) which corresponds to Set 2 is
given by

(&) = 2ot 377+ 2 exp(~(8)) + 2Aexp(~B(2)

3 (3.12)

where & = x + y — (4u — 2> + 3091
Now substituting Egs. (2.6)—(2.12) into Eq. (3.12) respectively,
we get the following seven traveling wave solutions of KP
equation.

When 22 —4u > 0, u#0,

2 1, 47
us() =Zutz 4~ =

3 «/(A2f4u)tanh<% (/1274u)(5+k))+i

2

B

+( (22 —4p) tanh (% (12_4#)(cf+k)) _;L)p

U (€) 2ﬂ+liz b
@ =2us Lo
33 P —awcoth (5,/(;2-4;1)(“/{)) +2

81

(Vo mmon( ) )

where ¢ = x + y — (4u — 4> + 309, k is an arbitrary con-
stant.
When 2> —4pu < 0, u#0,
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2 1 42
ulo(é)zng'*iz‘*' £

3 \/ (4p—27)tan (%./(4;1—12)(5%)) —

+ w v
<\/(4/4—/12)tan (%\/(411—;&2)(54'1‘)) _)‘)
) 1, 45u
un (&) == 24
R (= ycot (16200 -
812

i (\/(4/1—/12)cot (%\/(4u—iz)(§+k)) —A)y

where é=x+ y—(4u— A+ 389, k is an arbitrary
constant.
When 4> —4u > 0, u =0, 2#0,
, 27 N 2)7
) (exp(A(&+k) — 1))
where & = x + y — (30> — 291, k is an arbitrary constant.
When 22 —4pu =0, u#0, %0,
27
(AE+h) +2)"
where & = x + y — (4u— 2> + 36%)¢, k is an arbitrary con-

stant.
When 22 —4pu=0,u=0,4=0,

2
(E+k)°

where & = x + y — 3%, k is an arbitrary constant.

1
ua(8) =34+ T =

ul}(f) =

1414(5) =

Remark. With the aid of Maple 13, we have assured the
correctness of the obtained solutions by putting them back
into the original equation.

4. Conclusions

This study shows that the exp(—®(&))-expansion method is
quite efficient and practically well suited for use in finding
new traveling wave solutions for the Kadomtsev—Petviashvili
equation. The reliability of the method and the reduction in
the size of computational domain give this method a wider
applicability. We obtain some new traveling wave solutions
including hyperbolic function solutions, trigonometric func-
tion solutions and rational solutions. The results show that
the method is reliable and effective and gives more solutions.
We hope that the obtained results will be useful for further
studies in mathematical physics and engineering.
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