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ović), sa

y of Egyp

d hostin

and host

s.2013.0
Abstract The purpose of this paper is to obtain the fixed point results for F-type contractions

which satisfies a weaker condition than the monotonicity of self-mapping of a partially ordered met-

ric-like space. A fixed point result for F-expansive mapping is also proved. Therefore, several well

known results are generalized. Some examples are included which illustrate the results.

MATHEMATICS SUBJECT CLASSIFICATION 2000: 54H25; 47H10; 06A99

ª 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

Open access under CC BY-NC-ND license.
1. Introduction and preliminaries

Ran and Reurings [1] and Nieto and Lopez [2,3] obtained the

existence of fixed points of a self-mapping of a metric space
equipped with a partial order. The fixed point results in spaces
equipped with a partial order can be applied in proving exis-

tence and uniqueness of solutions for matrix equations as well
as for boundary value problems of ordinary differential equa-
tions, integral equations, fuzzy equations, of problems in L-
ail.com (S.K. Malhotra),
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spaces, etc. (see [1–11]). The results of Ran and Reurings [1]
and Nieto and Lopez [2,3] were generalized by several authors

(see, e.g., [4,5,8,12–17]).
In all these papers, the condition of monotonicity with re-

spect to the partial order defined on space is required. Follow-

ing is a typical result among these.

Theorem 1 ([1,2]). Let (X,v) be a partially ordered set which
is directed (upward or downward) and let d be a metric on X
such that (X,d) is a complete metric space. Let f:X fi X be a

mapping such that the following conditions hold:

(i) f is monotone (nondecreasing or nonincreasing) on X with

respect to ‘‘v’’;
(ii) there exists x0 2 X such that x0 v fx0 or fx0 v x0;
(iii) there exists k 2 (0,1) such that d(fx, fy) 6 kd(x,y) for

all x, y 2 X with y v x;

(iv) (a) f is continuous, or
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(b) if a nondecreasing sequence {xn} converges to

x 2 X, then xn v x for all n.
Then, f has a fixed point x* 2 X.

Recently, the fixed point results on partially ordered sets
are investigated via a weaker property than the monotonicity
of f (see [8,13,18,19]). We state following facts from these

papers.
Let (X,v) be a partially ordered set and x, y 2 X. If x, y are

comparable (i.e., x v y or y v x holds), then we will write x � y.

Lemma 2 [18]. Consider the following properties for a self-map

f on a partially ordered set (X,v):

1. f is monotone (nondecreasing or nonincreasing), i.e.,

x v y) fx v fy for all x, y 2 X or y v x) fx v fy for all
x, y 2 X;

2. x � y) fx � fy for x, y 2 X;
3. x � fx) fx � ffx for x 2 X.

Then 1) 2) 3. The reverse implications do not hold in
general.

On the other hand, Matthews [20] introduced the notion of
partial metric space as a part of the study of denotational

semantics of data flow network. In this space, the usual metric
is replaced by partial metric with an interesting property that
the self-distance of any point of space may not be zero. Fur-

ther, Matthews showed that the Banach contraction principle
is valid in partial metric space and can be applied in program
verification.

Very recently, Amini-Harandi [21] generalized the partial
metric spaces by introducing the metric-like spaces and proved
some fixed point theorems in such spaces. In [22], Wardowski
introduced a new concept of an F-contraction and proved a

fixed point theorem which generalizes Banach contraction
principle in a different way than in the known results from
the literature in complete metric spaces. In this paper, we con-

sider a more generalized type of F-contractions and prove
some common fixed point theorems for such type of mappings
in metric-like spaces. We generalize the result of Wardowski

[22], Matthews [20], Ran and Reurings [1], Nieto and Lopez
[2], and the recent result of –Dorić et al. [18] by proving the fixed
point results for F � g � weak contractions in metric-like

spaces equipped with a partial order. Results of this paper
are new not only in the setting of metric-like spaces but also
in the setting of metric and partial metric spaces.

First, we recall some definitions and facts about partial

metric and metric-like spaces.

Definition 1 [20]. A partial metric on a nonempty set X is a
function p : X� X! Rþ (Rþ stands for nonnegative reals)

such that, for all x, y, z 2 X:

(p1) x= y if and only if p(x,x) = p(x,y) = p(y,y);
(p2) p(x,x) 6 p(x,y);

(p3) p(x,y) = p(y,x);
(p4) p(x,y) 6 p(x,z) + p(z,y) � p(z,z).

A partial metric space is a pair (X,p) such that X is a
nonempty set and p is a partial metric on X. A sequence {xn} in
(X,p) converges to a point x 2 X if and only if

p(x,x) = limnfi1p(xn,x). A sequence {xn} in (X,p) is called
p-Cauchy sequence if there exists limn,mfi1p(xn,xm) and is
finite. (X,p) is said to be complete if every p-Cauchy sequence

{xn} in X converges to a point x 2 X such that
p(x,x) = limn,mfi1p(xn,xm).

Definition 2 [21]. A metric-like on a nonempty set X is a func-
tion r : X� X! Rþ such that, for all x, y, z 2 X:

(r1) r(x,y) = 0 implies x = y;
(r2) r(x,y) = r(y,x);
(r3) r(x,y) 6 r(x,z) + r(z,y).

A metric-like space is a pair (X,r) such that X is a
nonempty set and r is a metric-like on X. Note that, a metric-

like satisfies all the conditions of metric except that r(x,x) may
be positive for x 2 X. Each metric-like r on X generates a
topology sr on X whose base is the family of open r-balls

Brðx; �Þ ¼ fy 2 X : jrðx; yÞ � rðx; xÞj < �g;
for all x 2 X and � > 0:

A sequence {xn} in X converges to a point x 2 X if and only if
limnfi1r(xn,x) = r(x,x). Sequence {xn} is said to be r-Cauchy
if limn,mfi1r(xn,xm) exists and is finite. The metric-like space
(X,r) is called r-complete if for each r-Cauchy sequence
{xn}, there exists x 2 X such that

lim
n!1

rðxn; xÞ ¼ rðx; xÞ ¼ lim
m;n!1

rðxn; xmÞ:

Note that every partial metric space is a metric-like space,
but the converse may not be true.

Example 1 [21]. Let X= {0,1} and r : X� X! Rþ be

defined by

rðx; yÞ ¼
2; if x ¼ y ¼ 0;

1; otherwise:

�

Then (X,r) is a metric-like space, but it is not a partial metric
space, as r(0,0) £ r(0,1).

Example 2. Let X ¼ R; k P 0 and r : X� X! Rþ be defined

by

rðx; yÞ ¼
2k; if x ¼ y ¼ 0;

k; otherwise:

�

Then (X,r) is a metric-like space, but for k > 0, it is not a par-
tial metric space, as r(0,0) ¥ r(0,1).

Example 3. Let X ¼ Rþ and r : X� X! Rþ be defined by

rðx; yÞ ¼
2x; if x ¼ y;

maxfx; yg; otherwise:

�

Then (X,r) is a metric-like space, it is not a partial metric
space, as r(1,1) = 2 £ r(0,1) = 1.

Definition 3. If a nonempty set X is equipped with a partial
order ‘‘v’’ such that (X,r) is a metric-like space, then the
(X,r,v) is called a partially ordered metric-like space. A subset
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A of X is called well ordered if all the elements of A are com-

parable, i.e., for all x; y 2 A, we have x � y. A is called g-well
ordered if all the elements of A are g-comparable, i.e., for all
x; y 2 A, we have gx � gy.

In the trivial case, i.e., for g= IX (the identity mapping of
X), the g-well orderedness reduces into well orderedness. But,

for nontrivial cases, i.e., when g „ IX the concepts of g-well
orderedness and well orderedness are independent.

Example 4. Let X= {0,1,2,3,4}, ‘‘v’’ a partial order relation
on X defined by v= {(0,0), (1,1), (2,2), (3,3), (4,4), (1,2),

(2,3), (1,3), (1,4)}. Let A ¼ f0; 1; 3g;B ¼ f1; 4g and g:X fi X
be defined by g0 = 1, g1 = 2, g2 = 3, g3 = 3, g4 = 0. Then it
is clear that A is not well ordered but it is g-well ordered, while

B is not g-well ordered but it is well ordered.

The proof of following lemma is similar as for the metric

case, and for the sake of completeness, we give the proof.

Lemma 3. Let (X,r) be a metric-like space and {xn} be a
sequence in X. If the sequence {xn} converges to some x 2 X with
r(x,x) = 0 then limnfi1r(xn,y) = r(x,y) for all y 2 X.

Proof. Let limnfi1r(xn,x) = r(x,x) = 0, i.e., for every e > 0
there exists n0 2 N such that

rðxn; xÞ < e for all n > n0:

Now by (r3) we have r(xn,y) 6 r(xn,x) + r(x,y) and

r(x,y) 6 r(x,xn) + r(xn,y), i.e.,

rðxn; yÞ � rðx; yÞ 6 rðxn; xÞ and rðx; yÞ � rðxn; yÞ 6 rðx; xnÞ:

Therefore Œr(xn,y) � r(x,y)Œ 6 r(xn,x) and so Œr(xn,y) �
r(x,y)Œ < e for all n> n0 and the result follows. h

Analogous to [22], we have following definitions.

Definition 4. Let F : Rþ ! R be a mapping satisfying:

(F1) F is strictly increasing, that is, for a; b 2 Rþ such that
a < b implies F(a) < F(b);

(F2) for each sequence {an} of positive numbers,

limnfi1an = 0 if and only if limnfi1F(an) = �1;
(F3) there exists k 2 (0,1) such that lima!0þa

kF ðaÞ ¼ 0.

For examples of functions F, we refer to [22]. We denote the
set of all functions satisfying properties (F1)–(F3), by F .

Wardowski in [22], defined the F-contraction as follows.

Definition 5. Let (X,q) be a metric space. A mapping T:X fi X
is said to be an F-contraction if there exists F 2 F and s > 0
such that, for all x, y 2 X, q(Tx,Ty) > 0 we have

sþ FðqðTx;TyÞÞ 6 Fðqðx; yÞÞ:

Definition 6. Let (X,r,v) be a partially ordered metric-like
space, f, g:X fi X be mappings. Suppose s > 0 and F 2 F
are such that:

rðfx; fyÞ > 0) sþ Fðrðfx; fyÞÞ
6 Fðmaxfrðgx; gyÞ; rðgx; fxÞ; rðgy; fyÞgÞ ð1Þ
for all x, y 2 X with gx � gy. Then mapping f is called an or-

dered F–g-weak contraction. For g= IX the F–g-weak con-
traction reduces in to an ordered F-weak contraction. It is
clear that the concept of an ordered F–g-weak contraction

and ordered F-weak contraction are more general than the
F-contraction.

Definition 7 [23]. Let f and g be self-mappings of a nonempty
set X and C(f,g) = {x 2 X:fx = gx}. The pair (f,g) is called

weakly compatible if fgx= gfx for all x 2 C(f,g). If
w = fx = gx for some x in X, then x is called a coincidence
point of f and g, and w is called a point of coincidence of f

and g.

The following lemma will be useful in proving our main

result.

Lemma 4. Let (X,r,v) be a partially ordered metric-like space,
f,g:X fi X be mappings such that f is an ordered F–g-weak
contraction. If v 2 X be a point of coincidence of f and g, then

r(v, v) = 0.

Proof. Let v 2 X be a point of coincidence of f and g, then
there exists u 2 X such that fu= gu = v. If r(v,v) > 0, then
from (1) it follows that

sþ Fðrðv; vÞÞ ¼ sþ Fðrðfu; fuÞÞ
6 Fðmaxfrðgu; guÞ; rðgu; fuÞ; rðgu; fuÞgÞ
6 Fðmaxfrðv; vÞ; rðv; vÞ; rðv; vÞgÞ
¼ Fðrðv; vÞÞ:

This is a contradiction. Therefore, we must have
r(v,v) = 0. h
2. Main results

The following theorem is the fixed point result for an ordered

F–g-weak contraction in partially ordered metric-like spaces.

Theorem 5. Let (X,r,v) be a partially ordered metric-like
space and let f, g:X fi X be mappings such that f(X) � g(X)
and g(X) is r-complete. Suppose that the following hold:

(i) if x, y 2 X such that gx � fx = gy, then fx � fy;
(ii) there exists x0 2 X such that gx0 � fx0;

(iii) there exist F 2 F and s > 0 such that for all x, y 2 X sat-
isfying gx � gy, we have

rðfx; fyÞ > 0) sþ Fðrðfx; fyÞÞ
6 Fðmaxfrðgx; gyÞ; rðgx; fxÞ; rðgy; fyÞgÞ ð2Þ

(iv) if {xn} is sequence in (X,r) converging to x 2 X and
fxn : n 2 Ng is well ordered, then xn � x for sufficiently
large n.

Suppose F is continuous, then the pair (f,g) have a point of
coincidence v 2 X and r(v, v) = 0. Furthermore, if the set of

coincidence points of the pair (f,g) is g-well ordered then the
pair (f,g) have a unique point of coincidence. If in addition, the
pair (f,g) is weakly compatible, then there exists a unique

common fixed point of the pair (f,g).
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Proof. Starting with given x0 2 X and using the fact that

f(X) � g(X) we define a sequence {yn} = {gxn} by

yn ¼ gxn ¼ fxn�1 for all n 2 N:

As, gx0 � fx0 = gx1 and (i) holds, we have fx0 � fx1, i.e.,

gx1 � fx1 = gx2 and so fx1 � fx2. On repeating this process,
we obtain gxn � gxn+1, i.e., yn � yn+1 for all n 2 N.

We shall show that the pair (f,g) has a point of coincidence.

If r(yn,yn+1) = 0 for any n 2 N, then yn = yn+1, i.e.,
gxn = fxn�1 = gxn+1 = fxn and so xn is a coincidence point
and gxn = fxn is point of coincidence of pair (f,g).

Suppose r(yn,yn+1) > 0 for all n 2 N. As, gxn � gxn+1 for
all n 2 N, we obtain from (2) that

sþ Fðrðyn; ynþ1ÞÞ ¼ sþ Fðrðfxn�1; fxnÞÞ
6 Fðmaxfrðgxn�1; gxnÞ; rðgxn�1; fxn�1Þ; rðgxn; fxnÞgÞ
¼ Fðmaxfrðyn�1; ynÞ; rðyn�1; ynÞ; rðyn; ynþ1ÞgÞ
¼ Fðmaxfrðyn�1; ynÞ; rðyn; ynþ1ÞgÞ: ð3Þ

If there exists n 2 N such that max{r(yn�1,yn),r(yn,yn+1)}

= r(yn, yn+1) then it follows from (3) that

sþ Fðrðyn; ynþ1ÞÞ < Fðrðyn; ynþ1ÞÞ ðas s > 0Þ:

As, F 2 F , by (F1) we have r(yn,yn+1) < r(yn,yn+1). This is a
contradiction. Therefore we must have max{r(yn�1,yn),
r(yn,yn+1)} = r(yn�1,yn) for all n 2 N, and then, we obtain
from (3) that

Fðrðyn; ynþ1ÞÞ 6 Fðrðyn�1; ynÞÞ � s: ð4Þ

On repeating this process, we obtain

Fðrðyn; ynþ1ÞÞ 6 Fðrðyn�1; ynÞÞ � s 6 Fðrðyn�2; yn�1ÞÞ � 2s

6 � � � 6 Fðrðy0; y1ÞÞ � ns: ð5Þ

Letting n fi1 in above inequality, we obtain

limnfi1F(r(yn,yn+1)) = �1 and as F 2 F , by (F2) we have

lim
n!1

rðyn; ynþ1Þ ¼ 0: ð6Þ

Again, by (F3) there exists k 2 (0,1) such that

lim
n!1
½rðyn; ynþ1Þ�

k
Fðrðyn; ynþ1ÞÞ ¼ 0: ð7Þ

From (5), we obtain

½rðyn; ynþ1Þ�
k½Fðrðyn; ynþ1ÞÞ � Fðrðy0; y1ÞÞ� 6 �n½rðyn; ynþ1Þ�

ks

6 0:

As, s > 0, using (6) and (7) in above inequality we have

lim
n!1

n½rðyn; ynþ1Þ�
k ¼ 0;

therefore there exists n0 2 N such that n[r(yn,yn+1)]
k < 1 for

all n > n0, i.e.,

rðyn; ynþ1Þ <
1

n1=k
for all n > n0: ð8Þ

For m; n 2 N with m> n, it follows from (8) that

rðyn; ymÞ 6 rðyn; ynþ1Þ þ rðynþ1; ynþ2Þ þ � � � þ rðym�1; ymÞ

6
1

n1=k
þ 1

ðnþ 1Þ1=k
þ � � � þ 1

ðm� 1Þ1=k
6

X1
i¼n

1

i1=k
:

As, k 2 (0,1) it follows that the series
P1

i¼n
1

i1=k
converges and so

by above inequality we have

lim
n;m!1

rðyn; ymÞ ¼ 0:

Therefore the sequence {yn} = {gxn} is a r-Cauchy sequence in
g(X). By r-completeness of g(X), there exist u,v 2 X such that
v= gu and

lim
n!1

rðyn; vÞ ¼ lim
n!1

rðgxn; guÞ ¼ lim
n;m!1

rðyn; ymÞ ¼ rðv; vÞ ¼ 0:

ð9Þ

We shall show that v is point of coincidence of f and g. If
r(fu,v) = 0 then fu= v = gu and v is a point of coincidence
of f and g. Suppose r(fu,v) > 0 then without loss of generality
we can assume that there exists n1 2 N such that r(fxn, fu) > 0

for all n > n1. From the assumption (iv), there exists n2 2 N

such that yn � v, i.e. gxn � gu, for all n > n2, therefore using
(2), we obtain

sþ Fðrðynþ1; fuÞÞ ¼ sþ Fðrðfxn; fuÞÞ
6 Fðmaxfrðgxn; guÞ; rðgxn; fxnÞ; rðgu; fuÞgÞ
¼ Fðmaxfrðyn; guÞ; rðyn; ynþ1Þ; rðv; fuÞgÞ;

for all n > n2. As, r(fu,v) > 0, in view of (9), there exists
n3 2 N such that

maxfrðyn; guÞ; rðyn; ynþ1Þ; rðv; fuÞg ¼ rðv; fuÞ for all n > n3:

Therefore, for all n >max{n1,n2,n3} we have

sþ Fðrðynþ1; fuÞÞ 6 Fðrðv; fuÞÞ:

Using continuity of F, (9) and Lemma 3, we obtain from above
inequality that

sþ Fðrðv; fuÞÞ 6 Fðrðv; fuÞÞ:

This is a contradiction. Therefore we must have r(fu,v) = 0,
i.e., fu= gu= v. Thus, v is a point of coincidence of f and g.

Suppose, the set of coincidence points of f and g, i.e., C(f,g)

is g-well ordered and v0 is another point of coincidence of f and
g, then there exists u0 2 X such that fu0 = gu0 = v0. By Lemma
4 we have r(v0,v0) = 0, also as C(f,g) is g-well ordered we have

gu � gu0. So, if r(v,v0) > 0, it follows from (2) that

sþ Fðrðv; v0ÞÞ ¼ sþ Fðrðfu; fu0ÞÞ
6 Fðmaxfrðgu; gu0Þ; rðgu; fuÞ; rðgu0; fu0ÞgÞ
6 Fðmaxfrðv; v0Þ; rðv; vÞ; rðv0; v0ÞgÞ ¼ Fðrðv; v0ÞÞ

This is a contradiction. Therefore we must have r(v,v0) = 0,
i.e., v= v0. Thus, point of coincidence is unique.

In addition, if the pair (f,g) is weakly compatible, then there

exists w 2 X such that fu = fgu = � � �= w. So, w is another
point of coincidence of pair (f,g) and by uniqueness w = v, i.e.,
fv= gv= v. Thus, the pair (f,g) have a unique common fixed

point v and r(v,v) = 0. h

Taking g = IX in above inequality, we obtain the following

fixed point result for an F-weak contraction in ordered metric-
like spaces.

Corollary 6. Let (X,r,v) be a partially ordered r-complete
metric-like space and let f:X fi X be a mapping such that the

following hold:
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(i) if x, y 2 X such that x � fx, then fx � ffx;

(ii) there exists x0 2 X such that x0 � fx0;
(iii) there exist F 2 F and s > 0 such that for all x, y 2 X sat-

isfying x � y, we have

rðfx; fyÞ > 0) sþ Fðrðfx; fyÞÞ
6 Fðmaxfrðx; yÞ; rðx; fxÞ; rðy; fyÞgÞ; ð10Þ

(iv) if {xn} is sequence in (X,r) converging to x 2 X and
fxn : n 2 Ng is well ordered, then xn � x for sufficiently

large n.

Then f has a fixed point v 2 X and r(v, v) = 0. Furthermore,

the set of fixed points of f is well ordered if and only if f has a
unique fixed point.

Corollary 7. Let (X,r,v) be a partially ordered metric-like
space and let f, g:X fi X be mappings such that f(X) � g(X)

and g(X) is r-complete. Suppose that the following hold:

(i) if x, y 2 X such that gx � fx = gy, then fx � fy;

(ii) there exists x0 2 X such that gx0 � fx0;
(iii) there exist F 2 F and s > 0 such that for all x, y 2 X sat-

isfying gx � gy, we have

rðfx; fyÞ > 0) sþ Fðrðfx; fyÞÞ 6 Fðrðgx; gyÞÞ; ð11Þ

(iv) if {xn} is sequence in (X,r) converging to x 2 X and
fxn : n 2 Ng is well ordered, then xn � x for sufficiently
large n.

Suppose F is continuous, then the pair (f,g) have a point of
coincidence v 2 X and r(v, v) = 0. Furthermore, if the set of
coincidence points of the pair (f,g) is g-well ordered then the

pair (f,g) have a unique point of coincidence. If in addition, the
pair (f,g) is weakly compatible, then there exists a unique
common fixed point of the pair (f,g).

Following example illustrates the case when usual metric
version of Corollary 7 as well as the main result of [18] is

not applicable, while our Corollary 7 is applicable.

Example 5. Let X = [0,2] and define r : X� X! Rþ by

rðx; yÞ ¼
0; if x ¼ y ¼ 2;

2x; if x ¼ y;

maxfx; yg; otherwise:

8><
>:

Then (X,r) is a r-complete metric-like space. Define a partial

order relation ‘‘v’’ on X and f, g: X fi X by

v¼ fðx; yÞ : x; y 2 ½0; 1�withx P yg [ fðx; yÞ : x; y

2 ð1; 2�withx 6 yg;

fx ¼

x
3
; if x 2 ½0; 1Þ;

0; if x ¼ 1;

2; if x 2 ð1; 2�:

8><
>: and gx ¼

2x
3
; if x 2 ½0; 1�;

2; if x 2 ð1; 2�:

�

Then, the set C(f,g) is not g-well ordered and all other condi-

tions of Corollary 7 are satisfied with s 2 (0, log2] and
F(a) = log a, and 0, 2 are two points of coincidence as well
as common fixed points of pair (f,g). Note that

C(f,g) = {0} ¨ (1,2] and (g0,gx), (gx,g0) R v for all
x 2 (1,2], therefore C(f,g) is not g-well ordered and the point

of coincidence is not unique.
Note that, if d the usual metric on X then at point

ðx; yÞ ¼ 1; 7
10

� �
we have, dðfx; fyÞ ¼ d f1; f 7

10

� �
¼ 7

30, and

dðgx; gyÞ ¼ d g1; g 7
10

� �
¼ 1

5. Therefore, there is no s > 0 and

F 2 F such that s + F(d(fx, fy)) 6 F(d(gx,gy)) for all x, y 2 X
with x � y. Thus, the metric version of Corollary 7 is not
applicable. Also, with same point we conclude that there is no
k 2 [0,1) such that d(fx, fy) 6 kd(gx,gy) for all x, y 2 X with

x � y, so the results of [18] are not applicable.

The following example shows that the class of ordered F-
weak contractions in metric-like spaces is more general than
that in usual metric spaces, and also it provides an example
of an ordered F-weak contraction in metric-like spaces which

satisfies all the conditions of our Corollary 6 but does not have
the monotone property.

Example 6. Let X= {0, 1, 2, 3} and define r : X� X! Rþ by

rðx; yÞ ¼
2x; if x ¼ y;

maxfx; yg; otherwise:

�

Then (X,r) is a r-complete metric-like space. Define a partial

order relation ‘‘v’’ on X and f, g: X fi X by

v¼ fð0; 0Þ; ð1; 1Þ; ð2; 2Þ; ð3; 3Þ; ð0; 2Þ; ð2; 1Þ; ð0; 1Þg;

f ¼
0 1 2 3

0 0 1 2

 !
:

Now, it is easy to verify that the condition (10) is satisfied for

s 2 ð0; log 3
2
� and F(a) = log a. All other conditions of Corol-

lary 6 are satisfied and 0 is the unique fixed point of f. On
the other hand, if d is the usual metric on X, then at point

(x,y) = (1,2) we have d(f1, f2) = 1 and d(x,y) = d(1,2) = 1,
d(x, fx) = d(1, f1) = 1, d(y, fy) = d(2, f2) = 1, therefore, there
exists no s > 0 and F 2 F such that

sþ Fðdðfx; fyÞÞ 6 Fðmaxfdðx; yÞ; dðx; fxÞ; dðy; fyÞgÞ:

So, f is not an F-weak contraction in the usual metric space
(X,d). Note that f is neither monotonic increasing nor mono-
tonic decreasing with respect to ‘‘v’’.

Definition 8. Let (X,r,v) be a partially ordered metric-like

space, f:X fi X be a mapping, s > 0 and F 2 F are such that

rðx; yÞ > 0) Fðrðfx; fyÞÞP Fðrðx; yÞÞ þ s ð12Þ

for all x, y 2 X with x � y, then f is called an ordered F-expan-

sive mapping.

In the next theorem we prove a fixed point result for F-
expansive type mappings in r-complete metric-like spaces.

Theorem 8. Let (X,r,v) be a partially ordered metric-like
space and let f, g:X fi X be mappings such that f(X) � g(X)

and g(X) is r-complete. Suppose that the following hold:

(I) if x, y 2 X such that fx � gx= fy, then gx � gy;

(II) there exists x0 2 X such that fx0 � gx0;
(III) there exist F 2 F and s > 0 such that for all x, y 2 X sat-

isfying gx � gy, we have
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rðgx; gyÞ > 0) Fðrðfx; fyÞÞP Fðrðgx; gyÞÞ þ s; ð13Þ

(IV) if {xn} is sequence in (X,r) converging to x 2 X and
fxn : n 2 Ng is well ordered, then xn � x for sufficiently

large n.

Suppose F is continuous, then the pair (f,g) have a point of
coincidence v 2 X and r(v, v) = 0. Furthermore, if the set of

coincidence points of the pair (f,g) is g-well ordered then the
pair (f,g) have a unique point of coincidence. If in addition, the
pair (f,g) is weakly compatible, then there exists a unique

common fixed point of the pair (f,g).

Proof. Starting with given x0 2 X and using the fact that
f(X) � g(X) we define a sequence {yn} = {fxn} by

yn�1 ¼ gxn�1 ¼ fxn for all n 2 N:

As, fx0 � gx0 = fx1 and (I) holds, we have gx0 � gx1, i.e.,
fx1 � gx1 = fx2 and so gx1 � gx2. On repeating this process,

we obtain gxn�1 � gxn, i.e, yn�1 � yn for all n 2 N.
We shall show that the pair (f,g) has a point of coincidence.

If r(yn,yn+1) = 0 for any n, then yn = yn+1 and so
gxn = fxn+1 = gxn+1 = fxn+2 and so xn+1 is a coincidence

point and gxn+1 is a point of coincidence of the pair (f,g).
Suppose, r(yn,yn+1) > 0 for all n, then as, gxn�1 � gxn, for all
n 2 N it follows from (13) that

rðyn�1; ynÞ ¼ rðfxn; fxnþ1ÞP Fðrðgxn; gxnþ1ÞÞ þ s

¼ Fðrðyn; ynþ1ÞÞ þ s;

i.e.,

Fðrðyn; ynþ1ÞÞ 6 rðyn�1; ynÞ � s:

Now since g(X) is r-complete and f(X) � g(X), following a sim-
ilar process as in Theorem 5, we obtain that there exist u, v 2 X

such that v= fu and

lim
n!1

rðyn; vÞ ¼ lim
n!1

rðfxn; fuÞ ¼ lim
n;m!1

rðyn; ymÞ ¼ rðv; vÞ ¼ 0:

ð14Þ

We shall show that v is a point of coincidence of f and g. If
r(gu,v) = 0 then fu= v= gu and v is a point of coincidence

of f and g. Suppose r(gu,v) > 0 then without loss of generality
we can assume that there exists n0 2 N such that r(yn,gu) > 0
for all n> n0. From assumption (IV), there exists n1 2 N such

that yn � v, i.e. gxn � gu, for all n > n1, and so using (13), we
obtain

Fðrðyn�1; fuÞÞ ¼ Fðrðfxn; fuÞÞP Fðrðgxn; guÞÞ þ s

¼ Fðrðyn; guÞÞ þ s

i.e.,

Fðrðyn; guÞÞ þ s 6 Fðrðyn�1; fuÞÞ for all n > maxfn0; n1g:

In view of (14) and Lemma 3, for e = r(gu,v) > 0 there exists
n2 2 N such that r(yn�1,fu) < e = r(gu,v) for all n> n2.

Therefore, for all n> max{n0,n1,n2} we have

Fðrðyn; guÞÞ þ s < Fðrðgu; vÞÞ:

Using the continuity of F, (14) and Lemma 3, we obtain from
above inequality that

Fðrðv; guÞÞ þ s < Fðrðgu; vÞÞ:
This is a contradiction. Therefore we must have r(v,gu) = 0,

i.e., gu= fu= v. Thus, v is a point of coincidence of the pair
(f,g).

Suppose, the set of coincidence points of f and g, i.e., C(f,g)

is g-well ordered and v0 is another point of coincidence of f and
g, i.e., there exists u0 2 X such that fu0 = gu0 = v0. By a similar
process as used in Lemma 4 one can prove easily that
r(v0,v0) = 0, also as C(f,g) is g-well ordered we have gu � gu0.
If r(v,v0) > 0, it follows from (13) that

Fðrðv; v0ÞÞ ¼ Fðrðfu; fu0ÞÞP Fðrðgu; gu0ÞÞ þ s ¼ Fðrðv; v0ÞÞ þ s;

i.e., F(r(v,v0)) + s 6 F(r(v,v0)), a contradiction. Therefore, we
must have r(v,v0) = 0, i.e., v= v0. Thus point of coincidence
of pair (f,g) is unique.

In addition, if the pair (f,g) is weakly compatible, then
fv= fgu= gfu= gv = w (say). So, w is another point of
coincidence of pair (f,g) and by the uniqueness w = v, i.e.,

fv= gv= v. Thus, the pair (f,g) have a unique common fixed
point v and r(v,v) = 0. h

Following is a simple example which illustrates the above
result.

Example 7. Let X= [0,1] and define r : X� X! Rþ by

rðx; yÞ ¼
0; if x ¼ y ¼ 1;

2x; if x ¼ y;

maxfx; yg; otherwise:

8><
>:

Then (X,r) is a r-complete metric-like space. Define a partial
order relation ‘‘v’’ on X and f, g: X fi X by, v= {(x,y):x,
y 2 [0,1) with x P y} [ {(1,1)},

fx ¼
x
3
; if x 2 ½0; 1Þ;

1; if x ¼ 1;

�
and gx ¼

x
7
; if x 2 ½0; 1Þ;

1; if x ¼ 1:

�

Then, the set C(f,g) is not g-well ordered and all other condi-
tions of Theorem 8 are satisfied with s 2 0; log 7

3

� �
and

F(a) = loga and 0, 1 are two points of coincidence as well as
common fixed points of pair (f,g). Note that C(f,g) = {0,1}
and (g0,g1), (g1,g0) R v, therefore C(f,g) is not g-well ordered
and the point of coincidence is not unique.

For g= IX, we obtain the following fixed point result for F-

expansive mappings in metric-like spaces.

Corollary 9. Let (X,r,v) be a r-complete partially ordered
metric-like space and let f:X fi X be a surjection. Suppose that
the following hold:

(I) if x, y 2 X such that fx � fy, then x � y;
(II) there exists x0 2 X such that fx0 � x0;

(III) there exist F 2 F and s > 0 such that for all x, y 2 X sat-
isfying x � y, we have

rðx; yÞ > 0) Fðrðfx; fyÞÞP Fðrðx; yÞÞ þ s;

(IV) if {xn} is a sequence in X converging to x 2 X and

fxn : n 2 Ng is well ordered, then xn � x for sufficiently
large n.

Suppose F is continuous, then the mapping f has a fixed point

v 2 X and r(v, v) = 0. Furthermore, the set of fixed points of the
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mapping f is well ordered if and only if the mapping f has a

unique fixed point.
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