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The inverse spectral problem is investigated for some singular version of one-dimensional
Schrédinger operator with explosive factor on finite interval [0, 7). In the present paper the explosive
factor subdivides the problem into two parts, with different characteristic, which causes a lot of ana-
lytical difficulties. We define the spectral data of the problem, derive the main integral equation and
show that the potential is uniquely recovered for both parts of the problem.
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1. Introduction and formulation of the inverse problem

Inverse problems of spectral analysis consist in recovering
operators from their spectral characteristics. Such problems
often appear in mathematics, mechanics, physics, electronics,
geophysics, meteorology and other branches of natural sci-
ences. Inverse problems also play an important role in solving
nonlinear evolution equations in mathematical physics. Inter-
est in this subject has been increasing permanently because
of the appearance of new important applications, and nowa-
days the inverse problem theory develops intensively all over

*

Tel.: +20 1004613144.
E-mail address: zaki55@ Alex-Sci.edu.eg
Peer review under responsibility of Egyptian Mathematical Society.

&

FLSEVIER Production and hosting by Elsevier

the world. The greatest success in spectral theory in general,
and in particular in inverse spectral problems has been
achieved for the Sturm-Liouville operator Ly := )" + g(x)y;
which also is called the one-dimensional Schrédinger operator.
The main results on inverse spectral problems appear in the
second half of the XX-th century. We mention here the works
by R. Beals, G. Borg, L.D. Faddeev, M.G. Gasymov, [.M.
Gelfand, B.M. Levitan, I.G. Khachatryan, M.G. Krein, N.
Levinson, Z.L. Leibenson, V.A. Marchenko, L.A. Sakhnovich,
E. Trubowitz, V.A. Yurko and others. In recent years there
appeared new areas for applications of inverse spectral prob-
lems. We mention a remarkable method for solving some non-
linear evolution equations of mathematical physics connected
with the use of inverse spectral problems (see Ablowitz M.J.
and Zakharov V.E.). Another important class of inverse prob-
lems, which often appear in applications, is the inverse prob-
lem of recovering differential equations from incomplete
spectral information when only a part of the spectral informa-
tion is available for measurement [1]. Many applications are
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connected with inverse problems for differential equations
having singularities and turning points, for higher-order differ-
ential operators, for differential operators with delay or other
types of “aftereffect”, see [2] and the references that stated
there by in. The first one who tackled the problems with turn-
ing point was M.G. Gasymov see [3]. It should be noted that,
the author is one of Gasymov disciples [4-6]. Turning points
appear in elasticity, optics, geophysics and other branches of
natural sciences. Moreover, a wide class of differential equa-
tions with Bessel-type singularities and their perturbations
can be reduced to differential equations having turning points.
Inverse problems for equations with turning points and singu-
larities help to study blow-up solutions for some nonlinear
integrable evolution equations of mathematical physics see
also [5,7,8,6]. It should be mentioned, here, that one of the first
paper tackled the direct and inverse problem of sturm-Liou-
ville differential operators with explosive factor in the half line
is Gasymov [9]. In the last time grew the interest of investiga-
tion of the boundary value problem by numerical methods e.g
[10] presented an approximate construction of the Jost func-
tion for some Sturm-Liouville boundary value problem in case
p(x) =1 by means of collocation method, in addition, [11] is
an application of spectral analysis of one-dimensional
Schrédinger operators in magnetic field. Also [12,13] are appli-
cations of discontinuous wave speed problem on nonhomo-
geneous medium as in our case.

In the present paper we deal with inverse problem for equa-
tions with turning point. This paper is organized as follows. In
Section 1, we state the basic results that are needed in the sub-
sequent investigation and proof. In Section 2, the fundamental
equation of the inverse problem is obtained for both
0<x<y<a and a<x<y<mn and its uniqueness is
proved. In Section 3 we prove the uniqueness of solution of
the inverse problem by its spectral data {4, a* o Finally,
Section 4, is a conclusion and comments on the results
obtained when it is compared with similar problems.

Consider the boundary value problem

=)' +aq(x)y=Ap(x)y 0<x<m, (1.1)
¥(0)=0, y(m)=0, (1.2)
where the nonnegative real function ¢(x) has a second piecewise
integrable derivatives on [0, 7], 4 is a spectral parameter and the
weight function or the explosive factor p(x) is of the form

p={ ",

—1; a<x<m=

0<x<a<m,

(1.3)

Following [14], we state the basic results that are needed in the
subsequent investigation, where, the authors proved that the
Dirichlet problem (1.1) and (1.2) has a countable number of
eigenvalues /lni,n =0,1,2,... where A7 are the nonnegative
eigenvalues and A, are the negative eigenvalues which admit
the asymptotic formulas

2 2
w0 2\ 1, (1
in*az(” 4) + +< P )n+© )

7 N\?* 2k,x  [2hn\ 1 1
Jm—— " (g2 e —+0(=
5 (n—a)’ (n 4) T—a (” - a) ' (”2)7

where k,, ki(x) and /(x) are calculated in terms with the
function ¢(x) and its integration over [0,7] where as the
normalizing numbers {af}’io have the asymptotic formulas

2k,

(1.4)

dl 1 — 2 2ndy —d 1 1
a;:;+o($)a an:7d2€ e ® n7+o ; ’ (15)
where d; = 75 ° and dy =4,

The totality of numbers {15, a af},n=0,1,2,... are called

the spectral data (characteristics) of the problem (1.1) and
(1.2).

The formulation of the inverse problem

The formulation of the inverse problem is stated as follows,
is it possible to reestablish the boundary value problem (1.1)
and (1.2) i.e can we find g(x) by means of the spectral data
Xt n=0,1,2,.... For this we must answer the following

no n

two questions.

1. Is the recovering of the boundary value problem (1.1) and
(1.2) by its spectral data is unique.

2. What is the effective method of recovering of the boundary
value problem by its spectral data. We begin with the sec-
ond question.

2. The main integral equation

In this section we construct and prove the uniqueness theorem
of the main integral equation, (Gelfand—Levitan) integral
equation [15].

2.1. The construction of the main integral equation of the inverse
problem

The following two lemmas and theorem are devoted to the
construction and introduction of the main integral equation
of the inverse problem

Lemma 2.1. Let

(X, 9) Zq) /) sin y+Z(P ) sinn .

<

(2.6)

If we fix x and denote
interval (0, x), then

a(y) the smooth finite function on the

X

lim [ Y,(x,y)x(y)dy =0, (2.7)
n—oo 0
or
o(x, A ,
Zp((frk)/ (y)Slni’I,ydy-FZq) k)
k=0 k 0 = %
/ a(y) sinn ydy = 0. (2.8)
0

From which, the series in the left hand side of (2.8) is absolutely
convergent.

JE ) = dR(“’ and I', be the contour defined by

e O R

(2.9)

Proof. let r(x

m 1
=< |Ren|<=(n—=
{iren <Z(n-1) +

Following [14] the function r(x,0, 1), on the contour I, takes
the form

T
a0 Im <
5 |l



The inverse spectral problem of some singular version

273

B
r(x,0,2) < ’1|e Iy er,,vn, (2.10)
where B is a constant and = o + it.

Since o(y) = 0 in some neighborhood of x, then there exists
0 > 0 such that a(y) =0,y = x — J. So that, arguing as in [5]

we get the inequality

elrlx=9)

/. a(y)sin ny dy| < B
0 In|

From [14] Lemma 2.3 we have for arbitrary zero 4, of the
function ¥(1) we have

(2.11)

—1 AT
P04 = o) | ), (2.12)
B X -1 o(x, 4
r(x,0,4) = - %qtrl (x,4), (2.13)

where 7 (x,4) is regular in the neighborhood of 1= Ai',
ri(x,4) is regular in the neighborhood of AZ=4, and

=[5 p(&)@*(x, 4, )dx. Let L, be the image of the upper half
of the contour F under the mapping 4 = 5. From residue for-
mula we have

] X
i Lﬂ{r(x,O,/ln)/O a(y) cosny dy}di,

" o(x, ) [ .
= *Z#/ a(y) sin gl y dy
= % 0

n X, )L— X ) -
—ZLJ) / a(y) sin iy dy.
0 % 0

We prove by using (2.10), (2.11) that the left hand side of (2.14)
tends to zero as n — oo
1
<gf 0l

ﬁ% {r(x,O,i,,)/O'\ o(y) sinny dy}

x oIl plel(e—5)
/ o(y) sin i »dy‘\di\<— e

Jry; [n]
233.{ =

Toa e |t|(a+d—x)
F=P+E; p—lel(a+o-x) 2BB;
+/ do y < ;
0 Il a

(01 45| (a+0-x)
l—e [n u( 4)*@ u)} T 1 z1 - [ﬁ(”’%)*z@u)] (at+d—x)
{ el T s

which tends to zero as n — oo.
By the help of asymptotic formulas of ¢(x, %), a [16.

(2.15) and (3.29)] and the inequality (2.11), the absolute
convergence is followed, which completes the proof. O

(2.14)

dn

Lemma 2.2. The sequence of functions

n

1. . 1
T,(x,y) = Z (a—+ sin 77 x sin ;’/D'—(JT+

k=0 k

1 1
+Z(a— sin 17, x sin nkyf

k=0 k k

sin #7; " x sin r]Z*y),

sin #;”x sin iy y)
(2.16)

converges in metric Ly(0,a) to some function T(x,y) as a
Sunction of y (x < a is fixed) where a}* and n* are the spectral
characters of problem (1.1)-(1.2) when q(x)=0

N.B: It should be noted here that, the statement of this
lemma still true with respect to x while y is fixed y because
T,(x,y) = T,(y,x) and consequently 7(x,y) = T(y, x)

Proof. Let

/1 . . . .
TH(x,y)= E (—i sin Ex sin 7y —— sin 77 x sin gty ).
a

k=0 k

For simplicity we introduce the notations &X(¢), T,"(x,),

T, (x,y) such that T, (x,y)=1[®}(x—y)—®;(x+y)],
where T,(x,y) = T, (x,») + T, (x,») and
/1 . |
(1) = Z(—i sin it —— sin n;*z), (2.17)
=0 \% e
so that, the convergence of ®*(¢) implies the convergence of
T (1)
From [16], a; = S ) ”_> emal+0O@%)] and n, ==

(n—5+O(), from Wthh and a similar formula for a)~
and #9~, we have
sinn_t

siny;~ ¢ < sinh ;¢

S

sinhn{"t

- po =
ay i a

< Cle 1720 4 gl (72407, (2.18)
where C is some constant. From inequality (2.18) and (2.17) we

see that @, converges as n — oo, € [0,2a — ¢,& > 0.
We prove now the convergence of

0—
4y

/1 1
o = Z(T sin 7t —— sin n,‘f’t). (2.19)
k=0 ak ak
Again, from [16], we have
by b 1
“=pti +O<k“) — +O< ) where &
b1 1 613
k2+O(E)7bl =3
and
n f;1++Q wheren‘”:z(n—l)—i-o I
k ’ kg 4 k)’
so that
v T, 1\ &
ne =" +k’ and n;, 7a(n 4>+k’
where Sup|e| < oo, Suple,| < oo,
and hence we write
sin (i) _sin (") tex 1
al  ay ka* cos (1) + O )’ (2.20)

From (2.19) and (2.20) we have

u ter 1 7 1
(1) = A I, nr==(k—=).
n ( ) ;[ kaz+ (nk ) + O (kQ):| nk a ( 4)
(2.21)
- ”oﬁ sin (ny"¢) can be written as
s (npt1) = % cos femt tcos (n—t) %
kal* e kal* a da/  ka"
. (kmt\ . /mt
X sin (T)zsm <E) O (2.22)
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From (2.21) and (2.22) together with the orthogonality of

{ [ sin %} and { /== cos @} we deduce that @ (7) is con-
k L

vergent for n — oo in the metric L,(0, ), which completes the

proof. The function 7(x,y) can be, then, written in the form
N 1 1 : o+ 3 o+
T(x,y)= — sin WAYSIH'T;(J/—FSIH ny X sin n"y
— a(

k k

/1 .1
+;(E sin 7, X sin ”ky*E sin 7, X sSIn 77, y).

0

(2.23)

It is well known from [17] that the solution ¢(x, 4) of problem

(1.1) subject to the initial conditions ¢(0,1) =0,¢'(0,4) =1
has the representation, for 0 < x < a,
sin v/ 2x o sin VAt
o(x,A) = - +/ A(x, t) ——=—dt, (2.24
7 | (x,1) T )
where, OA(;’ 70/15[\»,:) ,(0 <t < x < a) are local integrable and

A(x,x) = /0 g(0)dr, ‘9/’;’;’ )

=0(0< x<a).
=0

In the following theorem we introduce, by the help of Lemma
2.1 and Lemma 2.2, the main integral equation of the inverse
problem.

Theorem 2.1. The function T(x,y) which is defined by (2.22)
satisfies the integral equation

T(x,y) + A(x,y) + /OXA()C7 HT(t,y)dy =0,(0 <y < x<a),
(2.25)

where A(x,t), as in (2.24), is the kernel of the representation of

o(x,A) This equation is called the Gelfand-Levitan integral
equation.

Proof. By substituting from (2.24) into (1.4), for
0 <y < x<awehave

nooor + ., X
Y (x,y) = sz"y {sin n,for/ A(x,f)sin i tdt}

= % 0

ZM {sm X+ / A(x,1)sin n; tdt]
0

=0 %

fzk 0( sin 7} x sin oy —

— sin ;" x sin y>

. 1
+Z<— sin 1, x sin nAy—— sin 7y x sin 1, y>

k=0 A

+Z — sin 77 x sin g }+Z

=0 %k

sin ;" x sin "y

+ '/O.YA(x, ol

n
. . Lo o
Z<—+ sin n;¢ sin W;X*aﬁ sin -yt sin g}ty ) |dt

k

X I n 1 1
+ A(x,t — sin 7, ¢ sin 5, x ——— sin y, ¢ sin 1, y | |dt
/0 (x.1) /Z( - Mk (e Mk Ti >}

| k=0 ak k
+/' A(x, 1)
0 Lk

o 1 . .
(aD—+ sin ;"¢ sin n,‘i*y)}dt
—o \Y

x " /1
+/ A(x,1) [Z(o sin 1yt sin niy)}dt,
Jo

k=0 \"k

= Ty(x)+ [ A 0T (05)
0
+Z — sin 77 x sin o) }+Z

=0 %

X n 1
+/ A(x,1) Z( — sin 5"t sin g )) dt
0 =0 \%
x "/
+ / A(x,1) [Z (F sin 72~ ¢ sin ;ﬁ,yﬂdt.
0 k

k=0

sin #;”x sin "y

(2.26)

Multiplying both sides of (2.26) by a(y), where o(y) is an arbi-
trary function satisfying the condition of lemma (2.1), and
integrating with respect to y on the interval (0, x) we get

/ Y, (e p)aly) dy = / T, p)aly) dy
0 0

+ [ao| [ e 0 @] a

n 1 . R X . R
+ZaT+ sin n,fx/o a(y) sinn;*ydy
+>

kOk

Y n 1 "X
+/ A(x, 1) {Z(F sin ;"¢ / a(y)sin n;ty dy)]dt
0 Jo

k=0 \"'k
X n 1

s [Cawn Y (4
0 ; a

Passing, here, to the limit as » — oo and using lemma (2.1),
lemma (2.2) and the eigenfunction expansion formula [14]
for ¢ = 0 and keeping in mind that «(x) = 0, we obtain

0= [ T+ [Cacn| [ 1epaoin]a
+ /OXA(x, Ha(t)dt.

From here and by virtue of arbitrariness of «(y), Eq. (2.25)
followed and the theorem is proved. [

sin 7" x / a(y)sinny dy
Jo

X
sin n; "t / o(y)sin n;"y dy)]dt.
0

(2.27)

2.2. The uniqueness of the solutions of the main integral equation

Now we prove the uniqueness of the solution of the integral
Eq. (2.25) with respect to A(x, 7). Because of the introduction
of the turning point p(x) as in (1.3), the proof of the unique-
ness theorem is carried out in two steps, (i) for x < « (ii) for
X =a

Case (i) for x < a

Theorem 2.2. For every fixed x <
of the integral equation

a the solution a(y) € L,(0, x)

1) o) + [ T )= 0,0 < v < ),
is unique

Proof. We prove that the homogenous integral equation
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X ,) .
a(y) +/ (1) T(t, y)di = 0,(0 < y < x < a), (2.28) From (2.40), (2.41) and by virtue of (2.38) we have
0 ~ a
T(x,y) =T(x,»), 0<y<x< <. (2.42
has only the zero solution in the space L,(0, x). In addition to ) ( 2 )
the boundary value problem (1.1)-(1.2) we consider the From (2.37), for y =% we have
boundary value problem
— ' +q(x)y=2y, 0<x<m, (2.29) T(x,g) - T(x,%) + /ZA(x, ) [T(r,%) - T(r,g)]dz
¥(0)=0, y(rn)=0, (2.30) 0
. . . X a . a
with the same function ¢(x) as in (1.1)~(1.2), we denote by +/ A(x, t)[T<Z’§) - T(I,E)]dt =0, (2.43)

@(x, A) the solution of the Eq. (2.29) satisfying

?(0,4) =0, ¢'(0,7) =1, (2.31)
¢(x, 2) has the representation

~ sin v/Ax T~ sin v/

@(x,A) = +/ A (x,1)——— dt. 2.32
p(x,4) 7 i (x, 1) 7 (2.32)

Since the two Egs. (I1.1) and (2.29) are identical for
0 < x < a and the solutions ¢(x, 1), ¢(x, ) satisfy the same
initial condition, it follows that

o(x,2) = o(x,4), 0<x<a. (2.33)
From which and by virtue of (2.32) it follows that
A(x,1) = A(x,1), 0<1<x<a (2.34)

Let % and a; be the eigen values and the normalization
numbers  of  the  problem  (2.29)-(2.30),  where
ax = [y @*(x,7«)dx, and 5 and & be the eigen values and
the normalization numbers of the same problem with
g(x) = 0. So that the following Gelfand-Levitan integral equa-
tion takes place

7~"(x,y) + Z()@y) + /Ox Z(x7 1) f(z,y)dt =0,

0<y<x<m, (2.35)

where

~ /1 . _ . | S L
T(x,y) = Z(T sin 77,x sin ey == sin 7, x sin ’72)’)-

=0 \%k k
(2.36)

From (2.35), (2.28) and (2.34) we get
M) = Texp) + [ AGOIT() = Tlop)

=0, 0<y<x<«<aq, (2.37)
from which, in particular, for y = 0 we have
T(x,0) — T(x,0) + / A(x, O[T(1,0) — T(1,0)]dr

0
=0,0<x<a (2.38)

The integral Eq. (2.38) is a homogenous integral equation of

Volterra type with respect to 7(x,0) — 7(¢,0) so that,

T(x,0) = T(x,0), 0 < x < a. (2.39)
It is clear that

1
T(x7y):E[T(x+y70)_T(x_y70)]7 0<y<x<a> (240)
T(r) =3 [T(c+2,0) = T(x 1,0, 0<y< v < (241)

o

§<x<a By the aid of (2.42), the last integral equation
becomes

T(x,g) - T(x,%) +/%XA(x, t)[T(t,g) - f(z,g)]dz =0,

-<x<a. (2.44)

2

From which and by virtue of the uniqueness of the solution of
Volterra integral equation, we get

~/ a\ a
T(x, 2 :T(,,—) Y<x<a

(x,=) ¥,5) 3S¥<a
By putting y = § into (2.40) and (2.41), we have from (2.39),
(2.43)

(2.45)

3a

T(x,0) = T(x,0) 0 < x < 5 (2.46)
From (2.40), (2.41), keeping in mind (2.46) we get
T(x,y) = T(x,») 0< y<x < %a- (247)
From (2.37), for y =3, we have
3a ~ 3a
(=) -7(=%)
¥ 3a ~( 3a
Ax, )T\ t,— ) =T\ t,—)|dt
< [ ao[r(:3) - 7(- %))
X 3a ~( 3a
+é A(x, 1) T(Z7T) - T([’Tﬂ’h
3a
=0, ngga (2.48)

The first integral is zero by (2.47) and hence as we did before
we have T(x,%)= f(x,%), U< x<a, T(x,0) = T(x,0),
0 < x <% and

=~ 7
T(x,y):T(x,y)0<y<x<§a. (2.49)
Continuing this process k-times we reach to

. 2k71 -1
T(x,y) = T(xy) 0<y < x <= a. (2.50)
Passing to the limit as k' — oo in (2.50) we obtain
T(x,y) = T(x,») 0<y<x<a (2.51)

Eq. (2.28), By the aid of (2.51), can be written in the form

a(y) + /0 o) T(1,)dt = 0, (0 <y < x < a). (2.52)

From which as in [18, p. 27] a(¢) = 0 and the theorem is proved
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Case (ii) for x > a
The solution ¥(x,1) of the Eq. (1.1) subject to the
conditions (n, ) = 0,y/(r, ) = 1 has the representation

Y(x,4) = Simhi(; - + /n B(x, 1) Simhi(/{ ) dt, (a

<x <), (2.53)

where the kernel B(x,7) has integrable first derivative
98 98 (a < x <t < m) and has the properties

[ 0B
B(x,x) = 3 / q(t)dt, B(m,m) =0, E":O =0.

= Ux )0 < x < 7 by the help
of which the formulas (2.12) and (2.13) can be written in the

form

(2.54)

From [14, p. 12], we have ¢

—1 o(x4) o

rH(x,m,A) = X, A), 2.55

(omd) = R e (2.59)

. N =o)L

r(x,mA) = ————=+r(x,4), (2.56)
L= () ey

where 17 (x,4) is regular in the neighborhood of

2= A ,r7 (x,A) is regular in the neighborhood of A= 2, and
a: = [ p(&)@*(x, /7 )dx. Let g(y),y € (x,m) be a smooth
function tending to zero in some neighborhood of the point
x. By using (2.55), (2.56) and arguing as in the proof of Lemma
2.1, we obtain the equation

SUED ) 1 - 2

></ g(y) sinh 4, (y—mn)dy=0,a<x<m

From (2.57) and the representation (2.53) and By using the
same proof technique of Theorem 2.1 we get the integral
equation

Ty(x.) + Bx.) +/ B(x,)Ty(1,y)d =0, 0 < x <y <,

(2.57)

(2.58)
where
>N [sinhygf (x—7 smh;7A (y—m) sinhpg" (x —m)sinhigy* (v —m)
Ty () = T)sih
=0 (ch) ak (") ay

sinhn (x —n)sinhy (v —n)  sinhpp” (x—

(CA )Zak

+3
=0

n)sinhny™ (y— n)}
(ci)a ’

(2.59)
where 0;%, ¢¢*, and a}* are the numbers u77, ¢if, and af of the
problem (1.1)—(1.2) for g(x) = 0 Using the same way and tech-
nique used in the proof of Theorem 2.1, it can be proved that
the integral Eq. (2.58) has only the zero solution with respect
to B(x,t). The Egs. (2.25) and (2.58) are called the main inte-
gral equation of the inverse problem of the problem (1.1)-
(12) O

3. The uniqueness theorem of the inverse problem

Now we come to the last of our goals of this paper which is the

uniqueness theorem of the inverse problem by spectral data

(o {arh e

Theorem 3.3. The spectral data {Ai}n o @i}, of the
boundary define the
coefficients q(x) and p(x) of the Egs. (1.1) and (1.3)

value problem (1.1)-(1.2) uniquely

Proof. We introduce, from (1.4) and (1.5), the spectral data
{/lni}:io, {af}™,. of the boundary value problem (I.1)-
(1.2). By virtue of (1.4) the number « is uniquely defined by
the formula

.7k
a= lim ,
k—o0 /AZ

and consequently the function p(x), which is defined by (1.3),
is uniquely defined. By virtue of Theorem 2.2 the solution
A(x,y) of the integral Eq. (2.25) is uniquely defined for
(0 < x < a), so that g(x) = 2% is uniquely defined for.
The uniqueness of the potential ¢(x),a < x < 7 is followed
from the uniqueness of the solution B(x,y) of the integral
Eq. (2.58) because according to (2.54) ¢(x) = 2‘13(;‘) is
unique, which complete the proof. [J

(3.60)

4. Conclusion and comments

1— This problem is one of the suggested inverse problems in
[19, page 6];

2— The author had studied, in Ph.D., the inverse problem of
the boundary value problem (1.1) subject to

V'(0) + y(0) = 0,y () + Hy(n) = 0,

3— The present problem, with y(0) =0,y(n) =0 cannot
considered as a spacial case of (4.61)

4— Due to the absence of the numbers Hand / the inverse prob-
lem by two specters cannot be studied in the present work

5— Besides the direct spectral investigation of the of the
present problem as in [14,16], the author had studied
the eigenfunction expansion, equiconvergence of the
eigenfunction expansion, and the regularized trace for-
mula, [20,21]

(4.61)
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