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Abstract This paper is a continuation of [1]. That is, it considers fuzzifying topologies, a special

case of I-fuzzy topologies (bifuzzy topologies), introduced by Ying [2]. It investigates topological

notions defined by means of a-open sets when these are planted into the framework of Ying’s fuzz-

ifying topological spaces (by Łukasiewicz logic in [0,1]). Other characterizations of fuzzifying a-
compactness are given, including characterizations in terms of nets and a-subbases. Several charac-
terizations of locally a-compactness in the framework of fuzzifying topology are introduced and the

mapping theorems are obtained.
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1. Introduction and preliminaries

In the last few years fuzzy topology, as an important research
field in fuzzy set theory, has been developed into a quite ma-
ture discipline [3–8]. In contrast to classical topology, fuzzy

topology is endowed with richer structure, to a certain extent,
which is manifested with different ways to generalize certain
classical concepts. So far, according to Ref. [4], the kind of

topologies defined by Chang [9] and Goguen [10] is called
the topologies of fuzzy subsets, and further is naturally called
L -topological spaces if a lattice L of membership values has
been chosen. Loosely speaking, a topology of fuzzy subsets

(resp. an L -topological space) is a family s of fuzzy subsets
o_r_sayed@yahoo.com.
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(resp. L -fuzzy subsets) of nonempty set X, and s satisfies the

basic conditions of classical topologies [11]. On the other hand,
Höhle in [12] proposed the terminology L-fuzzy topology to be
an L-valued mapping on the traditional powerset P(X) of X.
The authors in [6,7,13,14] defined an L-fuzzy topology to be

an L-valued mapping on the L-powerset LX of X.
In 1952, Rosser and Turquette [15] proposed emphatically

the following problem: If there are many-valued theories be-

yond the level of predicates calculus, then what are the detail
of such theories ? As an attempt to give a partial answer to this
problem in the case of point set topology, Ying in 1991-1993

[2,16,17] used a semantical method of continuous-valued logic
to develop systematically fuzzifying topology. Briefly speaking,
a fuzzifying topology on a set X assigns each crisp subset of X

to a certain degree of being open, other than being definitely
open or not. Roughly speaking, the semantical analysis ap-
proach transforms formal statements of interest, which are
usually expressed as implication formulas in logical language,

into some inequalities in the truth value set by truth valuation
rules, and then these inequalities are demonstrated in an alge-
braic way and the semantic validity of conclusions is thus
gyptian Mathematical Society. Open access under CC BY-NC-ND license.
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established. There are already more than 100 papers in fuzzify-
ing topology published in the last two decades, I guess. But
only a few papers can properly use the semantic method intro-

duced in the original papers of Ying, which I strongly believe,
can provide more delicate characterization of fuzzifying topo-
logical structure. So far, there has been significant research on

fuzzifying topologies [18–24]. For example, Ying [22] intro-
duced the concepts of compactness and established a general-
ization of Tychonoff’s theorem in the framework of fuzzifying

topology. In [24] the concept of local compactness in fuzzifying
topology is introduced and some of its properties are estab-
lished. In [18] the concepts of fuzzifying a-open set and fuzzify-
ing a-continuity were introduced and studied. Also, Sayed [21]

introduced some concepts of fuzzifying a-separation axioms
and clarified the relations of these axioms with each other as
well as the relations with other fuzzifying separation axioms.

Quite recently, Sayed in [1] used the finite intersection property
to give a characterization of fuzzifying a-compact spaces. In
classical topology , a-compact spaces and locally a-compact

spaces have been studied in [25,26]. In this paper, the concepts
of a-base and a-subbase of fuzzifying a-topology are intro-
duced. Other characterizations of fuzzifying a-compactness

are given, including characterizations in terms of nets and a-
subbase. Several characterizations of locally a-compactness
in the framework of fuzzifying topology are introduced and
the mapping theorems are obtained. Thus we fill a gap in the

existing literature on fuzzifying topology. We use the terminol-
ogies and notations in [1,2,16–18,21,22,24] without any expla-
nation. We note that the set of truth values is the unit interval

and we do often not distinguish the connectives and their truth
value functions and state strictly our results on formalization
as Ying does. We will use the symbol � instead of the second

‘‘AND’’ operation
�̂
as dot is hardly visible. This mean that

[a] 6 [u fi w] () [a] � [u] 6 [w]. All of the contributions in
general topology in this paper which are not referenced may

be original.
We now give some definitions and results which are useful

in the rest of the present paper. The family of all fuzzifying a-
open sets [18], denoted by sa 2 IðPðXÞÞ, is defined as

A 2 sa :¼ 8xðx 2 A! x 2 IntðClðIntðAÞÞÞÞ; i: e:; saðAÞ

¼
^
x2A

IntðClðIntðAÞÞÞðxÞ:

The family of all fuzzifying a-closed sets [18], denoted by
Fa 2 IðPðXÞÞ, is defined as A 2 Fa :¼ X� A 2 sa. The fuzzify-
ing a-neighborhood system of a point x 2 X [18] is denoted by

NaX

x or Na
x

� �
2 IðPðXÞÞ and defined as Na

xðAÞ ¼
W

x2B#A

saðBÞ.

The fuzzifying a-closure of a set A ˝ X [18], denoted by
Cla 2 IðXÞ, is defined as ClaðAÞðxÞ ¼ 1�Na

xðX� AÞ. If (X,s)
is a fuzzifying topological space and N(X) is the class of all nets
in X, then the binary fuzzy predicates .a;/a 2 IðNðXÞ � XÞ
[23] are defined as

S.ax :¼8A A2NaX

x !S ~�A
� �

;S/ax :¼8A A2NaX

x !S~@A
� �

;

where ‘‘S.ax’’, ’’S � ax’’ stand for ‘‘S a-converges to x’’ , ‘‘x is
an a-accumulation point of S’’, respectively; and ‘‘ ~�’’, ‘‘~@’’ are
the binary crisp predicates ‘‘almost in ‘‘,’’often in’’, respec-
tively. The degree to which x is an a-adherence point of S is
adhaS(x) = [S � ax]. If (X,s) and (Y,r) are two fuzzifying

topological spaces and f 2 YX, the unary fuzzy predicates
Ca; Ia 2 IðYXÞ; called fuzzifying a-continuity [18], fuzzifying

a-irresoluteness [1], are given as Ca(f) :¼ "B(B 2 r fi
f�1(B) 2 sa), Ia(f):¼"B(B 2 ra fi f�1(B) 2 sa), respectively.
Let X be the class of all fuzzifying topological spaces. A unary

fuzzy predicate Ta
2 2 IðXÞ, called fuzzifying a-Hausdorffness

[21], is given as follows:

Ta
2ðX; sÞ ¼ 8x8yððx 2 X ^ y 2 X ^ x–yÞ ! 9B9CðB 2 Na

x ^ C

2 Na
y ^ B \ C � /ÞÞ:

A unary fuzzy predicate C 2 IðXÞ, called fuzzifying compact-

ness [22], is given as follows:

CðX; sÞ :¼ ð8RÞðK�ðR;XÞ ! ð9}Þðð} 6 RÞ ^ Kð};AÞ � FFð}ÞÞÞ

and if A ˝ X, then C(A):¼C(A,s/A). For K, K� (resp. 6 and

FF) see [16, Definition 4.4] (resp. [16, Theorem 4.3] and [22,
Definition 1.1 and Lemma 1.1]). A unary fuzzy predicate
fI 2 IðIðPðXÞÞÞ, called fuzzy finite intersection property [22],
is given as

fIðRÞ :¼ 8}ðð} 6 RÞ ^ FFð}Þ ! 9x8BðB 2 }! x 2 BÞÞ:

A fuzzifying topological space (X,s) is said to be fuzzifying a-
topological space [1] if sa(A \ B) P sa(A) � sa(B). A unary fuz-
zy predicate LC 2 IðXÞ, called fuzzifying locally compactness

[24], is given as follows: (X,s) 2 LC:¼("x)($B)((x 2
Int(B) � C(B,s/B)).

2. Fuzzifying a-base and a-subbase

Definition 2.1. Let (X,s) be a fuzzifying topological space and
ba ˝ sa. Then ba is called an a-base of sa if ba fulfils the
condition:

	 A 2 NaX

x ! 9BððB 2 baÞ ^ ðx 2 B#AÞÞ:

Theorem 2.1. bais an a-base of sa if and only if sa ¼ bð[Þa , where

bð[Þa ðAÞ ¼
_

S
k2K

Bk¼A

^
k2K

baðBkÞ:

Proof. Suppose that ba is an a-base of sa. If[
k2K

Bk ¼ A;

then from Theorem 3.1 (1) (b) in [18],

saðAÞ ¼ sa

[
k2K

Bk

 !
P
^
k2K

saðBkÞP
^
k2K

baðBkÞ:

Consequently,

saðAÞP
_

[
k2K

Bk¼A

^
k2K

baðBkÞ:

To prove that

saðAÞ 6
_

S
k2K

Bk¼A

^
k2K

baðBkÞ;

we first prove

saðAÞ ¼
^
x2A

_
x2B#A

saðBÞ:
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(Indeed, assume cx = {B:x 2 B ˝ A}. Then for any

f 2
Y

x2A
cx;

[
x2A

fðxÞ ¼ A;

and furthermore

saðAÞ ¼ sa

[
x2A

fðxÞ
 !

P
^
x2A

saðfðxÞÞP
_

f2
Q

x2A
cx

^
x2A

saðfðxÞÞ

¼
^
x2A

_
x2B#A

saðBÞ:

Also

saðAÞ 6
^
x2A

_
x2B#A

saðBÞ:

Therefore

saðAÞ ¼
^
x2A

_
x2B#A

saðBÞÞ:

Now, since

NaX

x ðAÞ 6
_

x2B#A

baðBÞ; saðAÞ ¼
^
x2A

_
x2B#A

saðBÞ ¼
^
x2A

NaX

x ðAÞ

6

^
x2A

_
x2B#A

baðBÞ ¼
_

f2
Q

x2A
cx

^
x2A

baðfðxÞÞ:

Then

saðAÞ 6
_

[
k2K

Bk¼A

^
k2K

baðBkÞ:

Therefore

saðAÞ ¼
_

[
k2K

Bk¼A

^
k2K

baðBkÞ

In the other side, we assume

saðAÞ ¼
_

[
k2K

Bk¼A

^
k2K

baðBkÞ

and we will show that ba is an a-base of sa, i.e., for any

A#X; NaX

x ðAÞ 6
_

x2B#A

baðBÞ:

Indeed, if

x 2 B#A;
[
k2K

Bk ¼ B;

then there exists k� 2 K such that x 2 Bk� and^
k2K

baðBkÞ 6 baðBk� Þ 6
_

x2B#A

baðBÞ:

Therefore

NaX

x ðAÞ ¼
_

x2B#A

saðBÞ ¼
_

x2B#A

_
[
k2K

Bk¼B

^
k2K

baðBkÞ

6

_
x2B#A

baðBÞ: �
Theorem 2.2. Let ba 2 IðPðXÞÞ. Then ba is an a-base for some

fuzzifying a-topology sa if and only if it has the following
properties:

(1) bð[Þa ðX Þ ¼ 1;
(2) 	 ðA 2 baÞ ^ ðB 2 baÞ ^ ðx 2 A \ BÞ ! 9CððC
2 baÞ ^ ðx 2 C#A \ BÞ:
Proof. If ba is an a-base for some fuzzifying a-topology sa,

then saðXÞ ¼ bð[Þa ðXÞ. Clearly, bð[Þa ðXÞ ¼ 1. In addition, if
x 2 A \ B, then

baðAÞ ^ baðBÞ 6 saðAÞ ^ saðBÞ 6 saðA \ BÞ 6 NaX

x ðA \ BÞ

6

_
x2C#A\B

baðCÞ:

Conversely, if ba satisfies (1) and (2), then we have sa is a fuzz-
ifying a-topology. In fact, sa(X) = 1. For any
{Ak:k 2 K} ˝ P(X), we set

ck ¼ fBdk
: dk 2 Kkg :

[
dk2Kk

Bdk
¼ Ak

( )
:

Then for any

f 2
Y

k2K
ck;

[
k2K

[
Bdk
2fðkÞ

Bdk
¼
[
k2K

Ak:

Therefore

sa

[
k2K

Ak

 !
¼

_
[
d2K

Bd ¼
[
k2K

Ak

^
d2K

baðBdÞ

P
_

f2
Q

k2K
ck

^
k2K

^
Bdk
2fðkÞ

baðBdk
Þ

P
^
k2K

_
fBdk

:dk2Kkg2ck

^
dk2Kk

baðBdk
Þ ¼

^
k2K

saðAkÞ:

Finally, we need to prove that sa(A \ B) P sa(A) � sa(B).
If sa(A) > t, sa(B) > t, then there exists fBk1 :
k1 2 K1g; fBk2 : k2 2 K2g such that

[
k12K1

Bk1 ¼ A;
[

k22K2

Bk2 ¼ B

and for any k1 2 K1; baðBk1Þ > t, for any k2 2 K2; baðBk2Þ > t.
Now, for any x 2 A \ B, there exists k1x 2 K1, k2x 2 K2 such

that x 2 Bk1x \ Bk2x . From the assumption, we know that

t < baðBk1xÞ ^ baðBk2xÞ 6
_

x2C#Bk1x
\Bk2x

baðCÞ

and furthermore, there exists Cx such that

x 2 Cx #Bk1x \ Bk2x #A \ B; baðCxÞ > t:

Since
S

x2A\B
Cx ¼ A \ B, we have

t 6
^

x2A\B
baðCxÞ 6

_
[
k2K

Bk¼A\B

^
k2K

baðBkÞ ¼ saðA \ BÞ:

Now, let sa(A) � sa(B) = k. For any natural number n, we

have saðAÞ > k� 1
n
; saðBÞ > k� 1

n
and so saðA \ BÞP k� 1

n
.

Therefore sa(A \ B) P k= sa(A) � sa(B). h
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Recall that if (X,s) is a topological space and sa is the col-
lection of all a-open sets in X, then an a-subbase of sa is a col-
lection S of a-open sets such that every a-open set is the union

of sets that are finite intersections of elements from S. There-
fore we have the following definition.

Definition 2.2. ua 2 IðPðXÞÞ is called an a-subbase of sa if uea
is an a-base of sa, where

uea
\
k2K

Bk

 !
¼

_
T

k2K
Bk¼A

^
k2K

uaðBkÞ; fBk : k 2 KgbPðXÞ;

with ‘‘b’’ standing for ‘‘a finite subset of’’.

Theorem 2.3. ua 2 IðPðXÞÞ is an a-subbase of some fuzzifying
a-topology if and only if uð[Þa ðXÞ ¼ 1.

Proof. We only demonstrate that uea satisfies the second con-
dition of Theorem 2.2, and others are obvious. In fact

uea ðAÞ ^ uea ðBÞ ¼
_

T
k12K1

Bk1
¼A

^
k12K1

uaðBk1 Þ

0
B@

1
CA ^ _

T
k22K2

Bk2
¼B

^
k22K2

uaðBk2 Þ

0
B@

1
CA

¼
_

T
k12K1

Bk1
¼A

_
T

k22K2
Bk2
¼B

^
k12K1

uaðBk1 Þ
 !

^
^

k22K2

uaðBk2 Þ
 !

6

_
T

k2K
Bk¼A\B

^
k2K

uaðBkÞ
 !

¼ uea ðA \ BÞ:

Therefore if x 2 A \ B, then

uea ðAÞ ^ uea ðBÞ 6 uea ðA \ BÞ 6
_

x2C#A\B
uea ðCÞ: �
3. Fuzzifying a-compact spaces
Definition 3.1. A binary fuzzy predicate Ka 2 IðIðPðXÞÞ�
PðXÞÞ, called fuzzifying a-open covering [1], is given as
KaðR;AÞ :¼ KðR;AÞ � ðR # saÞ. A unary fuzzy predicate

Ca 2 IðXÞ, called fuzzifying a-compactness [1], is given as
follows:

ðX; sÞ 2 Ca :¼ ð8RÞðKaðR;XÞ�!ð9}Þðð}
6 RÞ ^ Kð};XÞ � FFð}ÞÞÞ

and if A ˝ X, then Ca(A):¼Ca(A,s/A). It is obvious that

Ca(X,s):¼C(X,sa) and 	 K�ðR;AÞ�!KaðR;AÞ.

Theorem 3.1. Let (X,s) be a fuzzifying topological space, ua be
an a-subbase of sa, and

b1 :¼ ð8RÞðKua
ðR;XÞ ! 9}ðð} 6 RÞ ^ Kð};XÞ � FFð}ÞÞÞ;

where Kua
ðR;XÞ :¼ KðR;XÞ � ðR # uaÞ;

b2 :¼ ð8SÞððS is a universal net inXÞ!9xððx2XÞ^ðS.axÞÞ;

b3 :¼ ð8SÞððS2NðXÞ! ð9TÞð9xÞððT<SÞ^ðx2XÞ^ðT.axÞÞ;

where ‘‘T < S’’ stands for ‘‘T is a subnet of S’’;

b4 :¼ ð8SÞððS 2 NðXÞ ! :ðadhaS � /ÞÞ;
b5 :¼ ð8RÞðR 2 IðPðXÞÞ ^R # Fa � fIðRÞ ! 9x8AðA 2 R

! x 2 AÞÞ:

Then `(X,s) 2 Ca M bi i = 1, 2, . . . , 5.

Proof.

(1) Since ua # sa; ½R # ua
 6 ½R # sa
 for any R 2 IðPðX ÞÞ.
Then ½Kua

ðR;X Þ
 6 ½KaðR;X Þ
. Therefore Ca(X,s) 6
[b1].

(2) ½b2
 ¼
^ _

x2X
½S.ax
 : S is a universal net in X

( )
:

(2.1) Assume X is finite. We set X= {x1, . . . ,xm}. For any uni-

versal net S in X, there exists i� 2 {1, . . . ,m} with S ~�fxi� g. In
fact, if not, then for any i 2 f1; . . . ;mg; S ~å fxig;
S ~�X� fxig and S ~�

Tm
i¼1ðX� fxigÞ ¼ /, a contradiction.

Therefore xi� R A and Na
xi�
ðAÞ ¼ 0 (see[18], Theorem 4.2 (1))

provided S ~åA, and furthermore ½S.axi� 
 ¼
V

S ~åA

1�Na
xi�
ðAÞ

� �
¼ 1. Therefore [b2] = 1 P [b1].

(2.2) In general, to prove that [b1] 6 [b2] we prove that for any
k 2 [0,1], if [b2] < k, then [b1] < k. Assume for any k 2 [0,1],

[b2] < k. Then there exists a universal net S in X such thatW
x2X
½S.ax
 < k and for any x 2 X; ½S.ax
 ¼

V
S ~åA

1�Na
xðAÞ

� �
< k, i.e., there exists A ˝ X with S ~åA and

Na
xðAÞ > 1� k. Since ua is an a-subbase of sa;uea is an a-base

of sa and from Definition 2.1, we haveW
x2B#A

uea ðBÞP Na
xðAÞ > 1� k, i.e., there exists B ˝ A such

that x 2 B ˝ A and

_
mink2KuaðBkÞ :

\
k2K

Bk ¼ B;Bk #X; k 2 K

( )
¼ uea ðBÞ

> 1� k;

where K is finite. Therefore there exists a finite set K and
Bk ˝ X(k 2 K) such that

T
k2K

Bk ¼ B and for any

k 2 K,ua(Bk) > 1 � k. Since S ~åA and K is finite, there exists

k(x) 2 K such that S ~åBkðxÞ.We set R�ðBkðxÞÞ ¼
W
x2X

uaðBkðxÞÞ. If

} 6 R�, then for any d > 0,}d ˝ {Bk(x):x 2 X}. Consequently,

for any B 2 }d;S
~åB and S ~�Bc because S is a universal net. If

[FF(})] = 1 � inf{d 2 [0,1]:F(}d)} = t, then for any n 2 w (the

non-negative integer), inffd 2 ½0; 1
 : Fð}dÞg < 1� tþ 1
n
, and

there exists d� < 1� tþ 1
n
such that F(}d�). If d�= 0, then

P(X) = }d� is finite and it is proved in (2.1). If d�> 0, then

for any B 2 }d�;S ~�Bc. Since F(}d�), we have

S ~�
T
fBc : B 2 }d�g–/. i.e., ¨}d� „ Xand there exist x� 2 X

such that for any B 2 }d�,x� R B. Therefore, if x� 2 B, then
B R }d�, i.e.,

}ðBÞ < d�;Kð};XÞ ¼
^
x2X

_
x2B
}ðBÞ 6

_
x�2B

}ðBÞ 6 d� < 1� tþ 1

n
:

Let n fi1. We obtain K(},X) 6 1 � t and [K(},X) �
FF(})] = 0. In addition, ½Kua

ðR�;XÞ
P 1� k. In fact,
½R�# ua
 ¼ 1 and
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½KðR�;XÞ
 ¼
^
x2X

_
x2B

R�ðBÞP
^
x2X

R�ðBkðxÞÞP
^
x2X

uaðBkðxÞÞ

P 1� k

because x 2 Bk(x). Now, we have

½b1
 ¼ ð8RÞðKua
ðR;XÞ ! 9}ðð} 6 RÞ ^ Kð};XÞ � FFð}ÞÞÞ

6 Kua
ðR�;XÞ ! 9}ðð} 6 R�Þ ^ Kð};XÞ � FFð}ÞÞ

¼ minð1; 1� Kua
ðR�;XÞ þ

_
}6R�

½Kð};XÞ � FFð}ÞÞ
 6 k:

By noticing that k is arbitrary, we have [b1] 6 [b2].
(3) It is immediate that [b2] 6 [b3].
(4) To prove that [b3] 6 [b4], first we prove that

[$T ((T < S) � (T.ax))] 6 [S � ax], where ½9T ððT < SÞ
^ðT.axÞÞ
 ¼

W
T<S

V
T ~å A

1� N a
xðAÞ

� �
and ½S/ax
 ¼

V
S ~6@A

1� N a
xðAÞ

� �
. Indeed, for any T < S one can deduce

fA : S ~6@Ag# fA : T ~å Ag as follows. Suppose T = S�
K. If S ~6@A, then there exists m 2 D such that S(n) R A

when n P m, where P directs the domain D of S.

Now, we will show that T ~å A. If not, then there exists
p 2 E such that T(q) 2 A when q P p, where P directs
the domain E of T. Moreover, there exists n1 2 E such

that K(n1) P m because T< S, and there exists n2 2 E
such that n2 P n1,p because (E,P) is directed. So,
K(n2) P K(n1) P m,S�K(n2) R A and S�K(n2) =
T(n2) 2 A. They are contrary. Hence fA : S ~6@Ag#

fA : T ~å Ag. Therefore

½9TððT < SÞ ^ ðT.axÞÞ
 ¼
_
T<S

^
T ~åA

1�Na
xðAÞ

� �
¼
_
T<S

^
fA:T ~åAg

1�Na
xðAÞ

� �
6

^
fA:S~6@Ag

1�Na
xðAÞ

� �
¼
^
S~6@A

1�Na
xðAÞ

� �
¼ ½S/ax
:

Therefore for any x 2 X and S 2 N(X) we have

½b3
 ¼
^

S2NðXÞ

_
x2X
½9TððT < SÞ ^ ðT.axÞÞ
 6

^
S2NðXÞ

_
x2X
½S/ax


¼
^

S2NðXÞ
:
^
x2X
ð1� ½S/ax
Þ

 !
¼

^
S2NðXÞ

½:ðadhaS � /Þ


¼ ½b4
:

(5) We want to show that [b4] 6 [b5]. For any R 2 IðP ðX ÞÞ,
assume ½fIðRÞ
 ¼ k. Then for any d > 1 � k, if

A1; . . . ; An 2 Rd; A1 \ A2 \ . . . \ An–/. In fact, we set
}ðAiÞ ¼

Wn
i¼1RðAiÞ. Then } 6 R and FF(}) = 1. By

putting e = k + d � 1 > 0, we obtain

k� e < k 6 ½FFð}Þ ! ð9xÞð8BÞðB 2 }! x 2 BÞ


¼
_
x2X

^
xRB

ð1� }ðBÞÞ:

There exists x� 2 X such that k� e <
V
x�RB
ð1� }ðBÞÞ; x� R B im-

plies }(B) < 1 � k + e = d and x� 2 \ }d = A1 \ A2 \ . . .
\ An. Now, we set #d ¼ fA1 \ A2 \ . . . \ An : n 2 N;A1; . . . ;
An 2 Rdg and S:#d fi X,B ´ xB 2 B,B 2 #d and know that
(#d,˝) is a directed set and S is a net in X. Therefore
½b4
 6 ½:ðadhaS � /Þ
 ¼
_
x2X

^
S6@� A

ð1�Na
xðAÞÞ:

Assume ½R #Fa
 ¼ l. Then for any B 2 PðXÞ; RðBÞ 6
1þ FaðBÞ � l, and

½R #Fa � fIðRÞ ! ð9xÞð8AÞððA 2 RÞ ! x 2 AÞ


¼ minð1; 2� l� kþ
_
x2X

^
xRA

ð1�RðAÞÞÞ:

Therefore, it suffices to show that for any
x 2 X;
^
S~6@A

1�Na
xðAÞ

� �
6 2� l� kþ

^
xRA

ð1�RðAÞÞ;

i.e.,

_
xRA

RðAÞ 6 2� l� kþ
_
S~6@A

Na
xðAÞ

for some d > 1 � k.For any t 2 [0,1], if
W
xRA

RðAÞ > t, then

there exists A� such that x� R A� and RðA�Þ > t.W

Case 1. t 6 1 � k, then t 6 2� l� kþ

S 6@
�

A

N a
xðAÞ.

Case 2. t > 1 � k. Here we set d ¼ 1
2
ðt þ 1� kÞ and have

A� 2 Rd;A� 2 #d. In addition,
t < RðA�Þ 6 1þ FaðA�Þ � l; tþ l� 1 6 FaðA�Þ ¼ sa Ac
�

� �
:

Since A� 2 #d, we know that SB 2 A�, i.e., SB R Ac
� when

B ˝ A� and S 6@
�
Ac
�. Therefore,

2� l� kþ
_
S~6@A

Na
xðAÞP 2� l� kþNa

x Ac
�

� �
P 2� l� k

þ sa Ac
�

� �
P tþ ð1� kÞP t:

By noticing that t is arbitrary, we have completed the proof.
(6) To prove that [b5] = [(X,s) 2 Ca] see [1] Theorem 3.3. h

The above theorem is a generalization of the following

corollary.

Corollary 3.1. The following are equivalent for a topological
space (X,s).

(a) X is an a-compact space.
(b) Every cover of X by members of an a-subbase of sa has a

finite subcover.

(c) Every universal net in X a-converges to a point in X.
(d) Each net in X has a subnet that a-converges to some point

in X.

(e) Each net in X has an a-adherent point.
(f) Each family of a-closed sets in X that has the finite inter-

section property has a non-void intersection.

Definition 3.2. Let {(Xs,ss):s 2 S} be a family of fuzzifying
topological spaces,

Q
s2SXs be the cartesian product of

{Xs:s 2 S} and u ¼ p�1s ðUsÞ : s 2 S;Us 2 PðXsÞ
� �

, where

pt :
Q

s2SXs ! Xtðt 2 SÞ is a projection. For U ˝ u, S(U)
stands for the set of indices of elements in U. The a-base
ba 2 I

Q
s2SXs

� �
of
Q

s2SðsaÞs is defined as



(1)

p

ð
(2)

(i) I
T

(ii) I
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V 2 ba :¼ ð9UÞ Ubu ^
\

U ¼ V
� �� �

! 8sðs 2 SðUÞ ! Vs 2 ðsaÞsÞ; i:e:;

baðVÞ ¼
_

Ubu;
T

U¼V

^
s2SðUÞ

ðsaÞsðVsÞ:

Definition 3.3. Let (X,s) and (Y,r) be two fuzzifying
topological space. A unary fuzzy predicate Oa 2 I(YX), is
called fuzzifying a-openness, is given as follows:
Oa(f) :¼ "U(U 2 sa fi f(U) 2 ra). Intuitively, the degree to

which f is a-open is ½OaðfÞ
 ¼
V

U#X

minð1; 1� saðUÞþ
raðfðUÞÞÞ.

Lemma 3.1. Let (X,s) and (Y,r) be two fuzzifying topological

space. For any f 2 YX, OaðfÞ :¼ 8BðB 2 bX
a ! fðBÞ 2 raÞ, where

bX
a is an a-base of sa.

Proof. Clearly, ½OaðfÞ
 6 8U U 2 bX
a ! fðUÞ 2 ra

� �� 	
. Con-

versely, for any U ˝ X, we are going to prove

minð1; 1� saðUÞ þ raðfðUÞÞÞP 8V V 2 bX
a ! fðVÞ 2 ra

� �� 	
:

If sa(U) 6 ra(f(U)), it is hold clearly. Now assume sa(U) >
ra(f(U)). If R #PðXÞ with

S
R ¼ U, then

S
V2RfðVÞ ¼

f
S

Rð Þ ¼ fðUÞ. Therefore

saðUÞ � raðfðUÞÞ ¼
_

R #PðXÞ;
S

R¼U

^
V2R

bX
a ðVÞ

�
_

}#PðYÞ;
S

}¼fðUÞ

^
W2}

raðWÞ

6

_
R #PðXÞ;

S
R¼U

^
V2R

bX
a ðVÞ

�
_

R #PðXÞ;
S

R¼U

^
V2R

raðfðVÞÞ

6

_
R #PðXÞ;

S
R¼U

^
V2R

bX
a ðVÞ � raðfðVÞÞ

� �
;

minð1; 1� saðUÞ þ raðfðUÞÞÞP
_

R #PðXÞ;
S

R¼U

^
V2R

min 1; 1� bX
a ðVÞ

�

þraðfðVÞÞÞP 8V V 2 bX
a ! fðVÞ 2 ra

� �� 	
: �

Lemma 3.2. For any family {(Xs,ss) : s 2 S} of fuzzifying topo-
logical spaces. (1) `("s)(s 2 S fi ps 2 Oa); and (2)
`("s)(s 2 S fi ps 2 Ca).

Proof.

(1) For any t 2 S, we have

OaðptÞ ¼
^

U2P
Q

s2S
Xs

� �min 1; 1�
Y

s2S
ðsaÞs

� �
ðUÞ þ ðsaÞtðptðUÞÞ

� �
:

Then it suffices to show that for any U 2 P
Q

s2SXs

� �
, we have

ðsaÞtðptðUÞÞP
Y

s2S
ðsaÞs

� �
ðUÞ:

AssumeY
s2S
ðsaÞs

� �
ðUÞ ¼

_
[k2KBk¼U

^
k2K

_
Ukbu;\Uk¼Bk

^
s2SðUkÞ

ðsaÞsðVsÞ > l;
where Uk ¼ p�1s ðVsÞ : s 2 SðUkÞ
� �

ðk 2 KÞ.Hence there exists

fBk : k 2 Kg#P
Q

s2SXs

� �
such that

S
k2K

Bk ¼ U and further-

more, for any k 2 K, there exists Uk b u such that \Uk = Bk

and
T

s2SðUkÞ
p�1s ðVsÞ ¼ Bk, where for any s 2 S(Uk) we have

(sa)s(Vs) > l. Thus ptðUÞ ¼ pt
S
k2K

T
s2SðUkÞ

p�1s ðVsÞ
 !

.T

If for any k 2 K;

s2SðUkÞ
p�1s ðV sÞ ¼ /, then U = /,

t(U) = / and (sa)t(pt(U)) = 1. Therefore

saÞtðptðUÞÞP
Q

s2SðsaÞs
� �

ðUÞ.
If there exists k� 2 K, such that /–

T
s2SðUkÞ

p�1s ðV sÞ ¼ Bk� ,
f t R SðUk� Þ, i.e., t 2 S � SðUk� Þ; ptðBk� Þ ¼ X t.
herefore ðsaÞtðptðBk� ÞÞ ¼ ðsaÞtðX tÞ ¼ 1.

f t 2 SðUk� Þ, then ptðBk� Þ ¼ V t # X t. Thus
ptðUÞ ¼ pt
[

t2SðUk� Þ
Bk�

0
@

1
A [ [

tRSðUk� Þ
Bk�

0
@

1
A

0
@

1
A

¼
[

t2SðUk� Þ
ptðBk� Þ

0
@

1
A [ [

tRSðUk� Þ
ptðBk� Þ

0
@

1
A ¼ Vt [ Xt ¼ Xt:

Hence (sa)t(pt(U)) = (sa)t(Xt) = 1 or (sa)t(pt(U)) =
(sa)t(Vt) > l.
Therefore ðsaÞtðptðUÞÞP

Q
s2SðsaÞs

� �
ðUÞ. Thus Oa(pt) = 1.
From Lemma 3.1 in [17] we have `("s)(s 2 S fi
p s 2 C). Furthermore, for any two fuzzifying to-
pological spaces (X, s) and (Y,r) and f 2 YX, we
have C(f) 6 Ca(f) (Theorem 6.3 (3) in [18]). Th-

erefore `("s)(s 2 S fi ps 2 Ca). h
(2)
Theorem 3.2. Let {(Xs,ss):s 2 S} be the family of fuzzifying
topological spaces, then

	 9UðU#
Y
s2S

Xs ^ CaðU; s=UÞ ^ 9xðx 2 IntaðUÞÞ

! 9TðTbS ^ 8tðt 2 S� T ^ CaðXt; stÞÞÞ:

Proof. It suffices to show that

_
U2P

Q
s2S

Xs

� � CaðU; s=UÞ ^
_

x2
Q

s2S
Xs

Na
xðUÞ

0
B@

1
CA

6

_
TbS

^
t2S�T

CaðXt; stÞ:

Indeed, if

_
U2P

Q
s2S

Xs

� � CaðU; s=UÞ ^
_

x2
Q

s2S
Xs

Na
xðUÞ

0
B@

1
CA > l > 0;

then there exists U 2 P
Q

s2SXs

� �
such that Ca(U,s /U) > l andW

x2
Q

s2S
Xs

Na
xðUÞ > l, where Na

xðUÞ ¼
W

x2V#U

Q
s2SðsaÞs

� �
ðVÞ.

Furthermore, there exists V such that x 2 V ˝ U andQ
s2SðsaÞs

� �
ðVÞ > l. Since ba is an a-base of

Q
s2SðsaÞs ;
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Y
s2S
ðsaÞs

� �
ðVÞ ¼

_
[k2KBk¼V

^
k2K

baðBkÞ ¼
_

[k2KBk¼V

^
k2K

_
Ukbu;\Uk¼Bk

^
s2SðUkÞ

ðsaÞsðVsÞ > l;

where

Uk ¼ p�1s ðVsÞ : s 2 SðUkÞ
� �

ðk 2 KÞ:

Hence there exists fBk : k 2 Kg#P
Q

s2SXs

� �
such that

[k2KBk = V. Furthermore, for any k 2 K, there exists Uk b u
such that \Uk = Bk and for any s 2 S(Uk), we have (sa)s(Vs) >
l. Since x 2 V, there existsBkx such that x 2 Bkx #V#U. Hence
there exists Ukxbu such that \Ukx ¼ Bkx and\
s2SðUkÞ

p�1s ðVsÞ ¼ Bkx #
Y

s2S
Xs

and for any s 2 S(Uk), we have (sa)s(Vs) > 1 � l. By\
s2SðUkÞ

p�1s ðVsÞ ¼ Bkx ;

we have PdðBkxÞ ¼ Vd #Xd, if d 2 SðUkxÞ; PdðBkxÞ ¼ Xd, if
d 2 S� SðUkxÞ. Since Bkx #U, for any d 2 S� SðUkx Þ, we have
PdðUÞ � PdðBkxÞ ¼ Xd and Pd(U) = Xd. On the other hand,

since for any s 2 S and

Us 2 PðXsÞ;
Y

t2S
ðsaÞt

� �
p�1s ðUsÞ
� �

P ðsaÞsðUsÞ;

we have, for any

s 2 S; IaðpsÞ ¼
^

Us2PðXsÞ
min 1; 1� ðsaÞsðUsÞ þ

Y
t2S
ðsaÞt p�1s ðUsÞ

� �� �
¼ 1:

Furthermore, since by Theorem 4.4 [1], we have
`Ca(X,s) � Ia(f) fi Ca(f(X)), then Ca(U,s/U) = Ca(U,s/
U) � Ia(pd) 6 Ca(Pd(U),sd) = Ca(Xd,sd) for each d 2 S�
SðUkÞ. Therefore,_
TbS

^
t2S�T

CaðXt; stÞP
^

d2S�SðUkÞ
CaðXd; sdÞP CaðU; s=UÞ > l: �

The above theorem is a generalization of the following

corollary.

Corollary 3.2. If there exists a coordinate a-neighborhood
a-compact subset U of some point x 2 X of the product space,

then all except a finite number of coordinate spaces are
a-compact.

Lemma 3.3. For any fuzzifying topological space
ðX; sÞ; A#X; 	 Ta

2ðX; sÞ ! Ta
2ðA; s=AÞ.

Proof.

Ta
2ðX; sÞ

� 	
¼

^
x;y2X;x–y

_
U;V2PðXÞ;U\V¼/

Na
xðUÞ;Na

yðVÞ
� �

6

^
x;y2X;x–y

_
ðU\AÞ\ðV\AÞ¼/

NaA

x ðU \ AÞ;NaA

y ðV \ AÞ
� �

6

^
x;y2A;x–y

_
U0\V0¼/;U0 ;V02PðAÞ

NaA

x ðU0Þ;NaA

y ðV0Þ
� �

¼ Ta
2ðA; s=AÞ;

where NaA

x ðUÞ ¼
W

x2C#U

sa=AðCÞ and sa=AðBÞ ¼W
B¼V\A

saðVÞ. h
Lemma 3.4. For any fuzzifying a-topological space

ðX; sÞ;	 Ta
2ðX; sÞ � CaðX; sÞ ! Ta

4ðX; sÞ.

For the definition of Ta
4ðX; sÞ see [21].

Proof. If Ta
2ðX; sÞ � CaðX; sÞ

� 	
¼ 0, then the result holds.

Now, suppose that Ta
2ðX; sÞ � CaðX; sÞ

� 	
> k > 0. Then

Ta
2ðX; sÞ þ CaðX; sÞ � 1 > k > 0. Therefore from Theorem 4.6

[1],
Ta
2ðX; sÞ � ðCaðAÞ ^ CaðBÞÞ ^ ðA \ B ¼ /Þ	wsTa

2ðX; sÞ
! ð9UÞð9VÞððU 2 saÞ ^ ðV
2 saÞ ^ ðA#UÞ ^ ðB#VÞ ^ ðA \ B ¼ /ÞÞ:

Then for any A,B ˝ X,A \ B = /,

Ta
2ðX; sÞ � ðCaðAÞ ^ CaðBÞÞ 6

_
U\V¼/;A#U;B#V

minðsaðUÞ; saðVÞÞ

or equivalently

Ta
2ðX; sÞ 6 CaðAÞ ^ CaðBÞ !

_
U\V¼/;A#U;B#V

minðsaðUÞ; saðVÞÞ:

Hence for any

A; B#X; A \ B ¼ /; 1� ½CaðAÞ ^ CaðBÞ

þ

_
U\V¼/;A#U;B#V

minðsaðUÞ; saðVÞÞ þ CaðX; sÞ � 1 > k:

From Theorem 4.1(1) in [1] we have 	 CaðX; sÞ�
A 2 Fa ! CaðAÞ. Then

CaðX; sÞ þ ½saðAcÞ ^ saðBcÞ
 � 1 ¼ ðCaðX; sÞ þ saðAcÞ � 1Þ
^ ðCaðX; sÞ þ saðBcÞ � 1Þ

6 ðCaðX; sÞ � saðAcÞÞ
^ ðCaðX; sÞ � saðBcÞÞ

6 ½CaðAÞ ^ CaðBÞ
:

Thus Ca(X,s) � [Ca(A) � Ca(B)] � 1 6 � [sa(A
c) � sa(B

c)]. So,
1� ½saðAcÞ ^ saðBcÞ
 þ

W
U\V¼/;A#U;B#V

minðsaðUÞ; saðVÞÞ > k,
i.e.,

Ta
4ðX; sÞ ¼

^
A\B¼/

minð1; 1� ½saðAcÞ ^ saðBcÞ


þ
_

U\V¼/;A#U;B#V

minðsaðUÞ; saðVÞÞÞ > k: �

The above lemma is a generalization of the following
corollary.

Corollary 3.3. Every a-compact a-Hausdorff topological space
is a-normal.

Lemma 3.5. For any fuzzifying a-topological space
ðX; sÞ; 	 Ta

2ðX; sÞ � CaðX; sÞ ! Ta
3ðX; sÞ. For the definition of

Ta
3ðX; sÞ see 21, Definition 2.2].

Proof. Immediate, set A= {x} in the above lemma. h

The above lemma is a generalization of the following
corollary.
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Corollary 3.4. Every a-compact a-Hausdorff topological space

is a-regular.

Theorem 3.3. For any fuzzifying topological space (X,s) and
A ˝ X, 	 Ta

2ðX; sÞ � CaðAÞ ! A 2 Fa.

Proof. For any {x} � Ac, we have {x} \ A= / and

Ca({x}) = 1. By Theorem 4.6 [1],

Ta
2ðX;sÞ � ðCaðAÞ ^CaðfxgÞÞ

� 	
6

_
G\Hx¼/; A#G; x2Hx

minðsaðGÞ; saðHxÞÞ
!
:

Assume

bx ¼ fHx : A \Hx ¼ /; x 2 Hxg;
[

x2XnA
fðxÞ � Ac

and[
x2Ac

fðxÞ \ A ¼
[
x2Ac

ðfðxÞ \ AÞ ¼ /:

So,
S

x2Ac

fðxÞ ¼ Ac.

Therefore

½Ta
2ðX; sÞ � CaðAÞ
 6

_
G\Hx¼/; A#G; x2Hx

saðHxÞ

6

^
x2Ac

_
A\Hx¼/;x2Hx

saðHxÞ

¼
_

f2
Q

x2Ac
bx

^
x2Ac

saðfðxÞÞ

6

_
f2
Q

x2Ac
bx

sa

[
x2Ac

fðxÞ
 !

¼
_

f2
Q

x2XnA
bx

saðAcÞ

¼ FaðAÞ: �

The above theorem is a generalization of the following
corollary.

Corollary 3.5. a-compact subspace of an a-Hausdorff topolog-

ical space is a-closed.
4. Fuzzifying locally a-compactness

Definition 4.1. Let X be a class of fuzzifying topological
spaces. A unary fuzzy predicate LaC 2 IðXÞ, called fuzzifying
locally a-compactness, is given as follows:

(X,s) 2 LaC:¼("x)($B)((x 2 Inta(B) � Ca(B,s/B)). Since
½x 2 IntaðXÞ
 ¼ Na

xðXÞ ¼ 1, then LaC(X,s) P Ca(X,s). There-
fore, `(X,s) 2 Ca fi (X,s) 2 LaC.

Also, since `(X,s) 2 C fi (X,s) 2 LC [24] and

`(X,s) 2 Ca fi (X,s) 2 C[1], `(X,s) 2 Ca fi (X,s) 2 LC, which
is a generalization of Corollary 4.4 [26].

Theorem 4.1. For any fuzzifying topological space (X,s) and
A ˝ X, `(X,s) 2 LaC � A 2 Fa fi (A,s/A) 2 LaC.

Proof. We have

LaCðX; sÞ ¼
^
x2X

_
B#X

max 0;NaX

x ðBÞ þ CaðB; s=BÞ � 1
� �
and

LaCðA; s=AÞ ¼
^
x2A

_
G#A

max 0;NaA

x ðGÞ þ CaðG; ðs=AÞ=GÞ � 1
� �

:

Now, suppose that [(X,s) 2 LaC � A 2 Fa] > k > 0. Then for
any x 2 A, there exists B ˝ X such that

NaX

x ðBÞ þ CaðB; s=BÞ þ saðX� AÞ � 2 > k: ðÞ

Set E = A \ B 2 P(A). Then

NaA

x ðEÞ ¼
_

E¼C\B
NaX

x ðCÞP NaX

x ðBÞ

and for any U 2 P(E), we have

ðsa=AÞa=EðUÞ ¼
_

U¼C\E
sa=AðCÞ ¼

_
U¼C\E

_
C¼D\A

saðDÞ

¼
_

U¼D\A\E
saðDÞ ¼

_
U¼D\E

saðDÞ:

Similarly,

ðsa=BÞa=EðUÞ ¼
_

U¼D\E
saðDÞ:

Thus, (sa/B)a/E = (sa/A)a/E and Ca(E, (s/A)/E) = Ca(E, (s/B)/
E). Furthermore,

½E 2 Fa=B
 ¼ sa=BðB� EÞ ¼ sa=BðB \ EcÞ ¼
_

B\Ec¼B\D
saðDÞ

P saðX� AÞ ¼ FaðAÞ:

Since `(X,s) 2 Ca � A 2 Fa fi (A,s/A) 2 Ca (see [1], Theo-
rem 4.1 (1)], from (*) we have for any x 2 A that

_
G#A

max 0;NaA

x ðGÞ þ CaðG; ðs=AÞ=GÞ � 1
� �

P NaA

x ðEÞ þ CaðE; ðs=AÞ=EÞ � 1

¼ NaA

x ðEÞ þ CaðE; ðs=BÞ=EÞ � 1

P NaX

x ðBÞ þ ½CaðB; s=BÞ � E 2 Fa=B
 � 1

P NaX

x ðBÞ þ CaðB; s=BÞ þ ½E 2 Fa=B
 � 2

P NaX

x ðBÞ þ CaðB; s=BÞ þ ½A 2 Fa
 � 2 > k:

Therefore

LaCðA; s=AÞ ¼
^
x2A

_
G#A

max 0;NaA

x ðGÞ þ CaðG; ðs=AÞ=GÞ � 1
� �

> k:

Hence [(X,s) 2 LaC � A 2 Fa] 6 LaC(A,s/A). h

As a crisp result of the above theorem we have the follow-
ing corollary.

Corollary 4.1. Let A be an a-closed subset of locally a-compact

space (X,s). Then A with the relative topology s/A is locally a-
compact.

The following theorem is a generalization of the statement
‘‘If X is an a-Hausdorff topological space and A is an a-dense
a-locally compact subspace, then A is a-open’’, where A is an

a-dense in a topological space X if and only if the a-closure
of A is X.
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Theorem 4.2. For any fuzzifying a-topological space (X,s) and

A ˝ X,

	 Ta
2ðX; sÞ � LaCðA; s=AÞ � ðClaðAÞ � XÞ ! A 2 sa:

Proof. Assume

½Ta
2ðX; sÞ � LaCðA; s=AÞ � ðClaðAÞ � XÞ
 > k > 0:

Then

LaCðA; s=AÞ > k� Ta
2ðX; sÞ � ðClaðAÞ � XÞ

� 	
þ 1 ¼ k0 > k;

i.e.,^
x2A

_
B#A

max 0;NaA

x ðBÞ þ CaðB; ðs=AÞ=BÞ � 1
� �

> k0:

Thus for any x 2 A, there exists Bx ˝ A such that

NaA

x ðBxÞ þ CaðBx; ðs=AÞ=BxÞ � 1 > k0:

i.e.,_
H\A¼Bx

_
x2K#H

saðKÞ þ CaðBx; ðs=AÞ=BxÞ � 1 > k0:

Hence there exists Kx such that Kx \ A=
Bx,sa(Kx) + Ca(Bx, (s/A)/Bx) � 1 > k0. Therefore sa(Kx) > k0.

(1) If for any x 2 A there exists Kx such that
x 2 Kx ˝ Bx ˝ A, then

S
x2A

Kx ¼ A and saðAÞ ¼

sa

S
x2A

Kx


 �
P
V
x2A

saðKxÞP k0 > k.

(2) If there exists x� 2 A such that

Kx� \ Bc
x�

� �
–/; saðKx� Þ þ CaðBx� ; ðs=AÞ=Bx� Þ � 1 > k0:

From the hypothesis

Ta
2ðX; sÞ � LaCðA; s=AÞ � ðClaðAÞ � XÞ

� 	
> k > 0;

we have Ta
2ðX; sÞ � ðClaðAÞ � XÞ

� 	
–0. So

saðKx� Þ þ CaðBx� ; ðs=AÞ=Bx� Þ � 1þ ½Ta
2ðX; sÞ � ðClaðAÞ

� XÞ
 � 1 > k:

Therefore

saðKx� Þ þ CaðBx� ; ðs=AÞ=Bx� Þ � 1þ Ta
2ðX; sÞ þ ½ðClaðAÞ

� XÞ
 � 1� 1 > k:

Since

ðsa=AÞa=Bx� ðUÞ ¼
_

U¼C\Bx�

sa=AðCÞ

¼
_

U¼C\Bx�

_
C¼D\A

saðDÞ

¼
_

U¼D\Bx�

saðDÞ ¼ sa=Bx� ðUÞ;

CaðBx� ; ðs=AÞ=Bx� Þ
¼ CaðBx� ; s=Bx� Þ:

From Theorem 3.3 we have

sa Bc
x�

� �
P Ta

2ðX; sÞ � CaðBx� ; s=Bx� Þ
P Ta

2ðX; sÞ þ CaðBx� ; s=Bx� Þ � 1:
Hence

saðKx� Þ þ sa Bc
x�

� �
þ ½ClaðAÞ � X
 � 2 > k:

Now, for any y 2 Ac we have

½ClaðAÞ � X
 ¼
^
x2X

1�NaX

x ðAcÞ
� �

6 1�NaX

y ðAcÞ:

Since (X,s) is a fuzzifying a-topological space,

saðKx� Þ þ sa Bc
x�

� �
� 1 6 saðKx� Þ � sa Bc

x�

� �
6 saðKx� Þ ^ sa Bc

x�

� �
6 sa Kx� \ Bc

x�

� �
6 NaX

y Kx� \ Bc
x�

� �
6 NaX

y ðAcÞ;

where

y 2 Kx� \ Bc
x�

#Hx� \ ðHx� \ AÞc ¼ Hx� \ Hc
x�
[ Ac

� �
¼ Hx� \ Ac #Ac:

Therefore

0 < k < saðKx� Þ þ sa Bc
x�

� �
þ ½ClaðAÞ � X
 � 2

¼ saðKx� Þ þ sa Bc
x�

� �
� 1þ ½ClaðAÞ � X
 � 1

6 NaX

y ðAcÞ þ 1�NaX

y ðAcÞ � 1 ¼ 0;

a contradiction. So, case (2) does not hold. We complete the
proof. h

Theorem 4.3. For any fuzzifying a-topological space (X,s),

	Ta
2ðX;sÞ�ðLaCðX;sÞÞ2!8x8U U2NaX

x

�
!9V V2NaX

x ^ClaðVÞ#U^CaðVÞ
� ��

;

where (LaC(X,s))
2:¼LaC(X,s) � LaC(X,s).

Proof. We need to show that for any x and U, x 2 U,

Ta
2ðX; sÞ � ðLaCðX; sÞÞ2 �NaX

x ðUÞ

6

_
V#X

NaX

x ðVÞ ^
^
y2Uc

NaX

x ðVcÞ ^ CaðV; s=VÞ
 !

:

Assume that Ta
2ðX; sÞ � ðLaCðX; sÞÞ2 �NaX

x ðUÞ > k > 0.
Then for any x 2 X there exists C such that

Ta
2ðX; sÞ þNaX

x ðCÞ þ ðLaCðX; sÞÞ2 þNaX

x ðUÞ � 3 > k: ðÞ

Since (X,s) is fuzzifying a-topological space,

NaX

x ðCÞ þNaX

x ðUÞ � 1 6 NaX

x ðCÞ �NaX

x ðUÞ 6 NaX

x ðCÞ ^NaX

x ðUÞ

6 NaX

x ðC \UÞ ¼
_

x2W#C\U
saðWÞ:

Therefore there exists W such that x 2W ˝ C \ U, and

Ta
2ðX; sÞ þ ðLaCðX; sÞÞ2 þ saðWÞ � 2 > k. By Lemmas 3.3 and

3.5 we have Ta
2ðX; sÞ 6 Ta

2ðC; s=CÞ and

Ta
2ðC; s=CÞ þ CaðC; s=CÞ � 1 6 Ta

2ðC; s=CÞ � CaðC; s=CÞ
6 Ta

3ðC; s=CÞ:

Thus Ta
3ðX; sÞ þ CaðC; s=CÞ þ saðWÞ � 2 > k. Since for any

x 2W ˝ U, we have
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Ta
3ðC; s=CÞ 6 1� sa=CðWÞ

þ
_
G#C

NaC

x ðGÞ ^
^

y2C�W
NaC

y ðC� GÞ
 ! !

;

so there exists G,x 2 G ˝ W such that

NaC

x ðGÞ ^
^

y2C�W
NaC

y ðC� GÞ
 ! !

P Ta
3ðC; s=CÞ þ sa=CðWÞ � 1 P Ta

3ðC; s=CÞ þ saðWÞ � 1

and

NaC

x ðGÞ ^
^

y2C�W
NaC

y ðC� GÞ
 ! !

þ CaðC; s=CÞ � 1 > k:

Thus

NaC

x ðGÞ ¼
_

D\C¼G
NaX

x ðDÞ ¼ NaX

x ðG [ CcÞ > k0

¼ kþ 1� CaðC; s=CÞP k:

Furthermore, for any

y 2 C�W;NaC

y ðC� GÞ ¼
_

D\C¼C\Gc

NaX

y ðGc [ CcÞ ¼ NaX

y ðGcÞ > k0

and

NaX

x ðGÞ ¼ NaX

x ððG [ CcÞ \ CÞP NaX

x ðG [ CcÞ ^NaX

x ðCÞ > k0:

Since NaX

y ðGcÞ ¼
W

x2Bc #Gc

saðBcÞ > k0, for any y 2 C �W, there

exists Bc
y such that y 2 Bc

y #Gc and saðBc
yÞ > k0. Set

Bc ¼
S

y2C�W
Bc

y. Then C �W ˝ Bc ˝ Gc and saðBcÞPV
y2C�W

saðBc
yÞP k0. Again, set V = B \ C, then

V ˝ (C �W)c \ C= (Cc [W) \ C= C \W= W ˝ U \ C

and Vc = Bc [ Cc.Since (X,s) is fuzzifying a-topological space,

NaX

x ðVÞ ¼ NaX

x ðB \ CÞP NaX

x ðBÞ ^NaX

x ðCÞ

P NaX

x ðGÞ ^NaX

x ðCÞ > k: ð1Þ

By ðÞ and Theorem3:3; saðCcÞP Ta
2ðX; sÞ � CaðC; s=CÞ

P Ta
2ðX; sÞ þ CaðC; s=CÞ � 1 P k0: So saðVcÞ

¼ saðBc [ CcÞ P saðBcÞ ^ saðCcÞ
P k0; i:e:; saðVcÞ þ CaðC; s=CÞ � 1

P kand CaðV; s=VÞ ¼ CaðV; ðs=CÞ=VÞ
P sa=CðC � VÞ þ CaðC; s=CÞ � 1

P saðVcÞ þ CaðC; s=CÞ � 1 P k ð2Þ

Finally,

^
y2Uc

NaX

y ðVcÞP
^
y2Vc

NaX

y ðVcÞ ¼ saðVcÞP k ð3Þ

Thus by (1)–(3), for any x 2 U, there exists V ˝ U such that

NaX

x ðVÞ > k;
V

y2Uc

NaX

y ðVcÞP k and Ca(V,s/V) P k. So

W
V#X

NaX

x ðVÞ ^
V

y2Uc

NaX

y ðVcÞ ^ CaðV; s=VÞ
 !

P k. h
Theorem 4.4. For any fuzzifying a-topological space (X,s),
	 Ta

2ðX; sÞ � ðLaCðX; sÞÞ2 ! Ta
3ðX; sÞ

Proof. By Theorem 4.3, for any x 2 U, we have

_
x2V#U

NaX

x ðVÞ ^
^
y2Uc

NaX

y ðVcÞ
 

P Ta
2ðX; sÞ � ðCaðC; s=CÞÞ2 �NaX

x ðUÞ
h i�

:

Thus

1�NaX

x ðUÞ þ
_

x2V#U

NaX

x ðVÞ ^
^
y2Uc

NaX

y ðVcÞP Ta
2ðX; sÞ � ðCaðC; s=CÞÞ2

h i !
;

i.e., Ta
3ðX; sÞ

� 	
P Ta

2ðX; sÞ � ðCaðC; s=CÞÞ2
h i

. h

Theorem 4.5. For any fuzzifying a-topological space (X,s),

	Ta
3ðX;sÞ�LaCðX;sÞ! 8A8U U2NaX

A �CaðA;s=AÞ
�

!9V V#U^U 2NaX

A ^ saðVcÞ^CaðV;s=VÞ
� ��

;

where U 2 NaX

A :¼ ð8xÞ x 2 A ^U 2 NaX

x

� �
.

Proof. We only need to show that for any A, U 2 P(X),

Ta
3ðX; sÞ � LaCðX; sÞ � CaðA; s=AÞ �NaX

A ðUÞ
h i
6

_
V#U

NaX

A ðVÞ ^ saðVcÞ ^ CaðV; s=VÞ
� �

:

Indeed, if

Ta
3ðX; sÞ � LaCðX; sÞ � CaðA; s=AÞ �NaX

A ðUÞ
h i

> k > 0;

then for any x 2 A, there exists C 2 P(X) such that

Ta
3ðX; sÞ �NaX

x ðCÞ � CaðC; s=CÞ � CaðA; s=AÞ �NaX

A ðUÞ
h i

> k:

Since (X,s) is fuzzifying a-topological space,

_
x2W#C\U

saðWÞ ¼ NaX

x ðC \UÞP NaX

x ðCÞ ^NaX

x ðUÞ

P NaX

x ðCÞ ^NaX

A ðUÞP NaX

x ðCÞ �NaX

A ðUÞ:

Then there exists W such that x 2W ˝ C \ U, and

Ta
3ðX; sÞ � saðWÞ � CaðC; s=CÞ � CaðA; s=AÞ

� 	
> k:

Therefore

Ta
3ðX; sÞ

� 	
þ saðWÞ � 1 > kþ 2� CaðC; s=CÞ � CaðA; s=AÞ


¼ k0 P k: ðÞ

Since for any

x 2W; Ta
3ðX; sÞ

� 	
6 1� saðWÞ þ

_
B#W

NaX

x ðBÞ ^
^
y2Wc

NaX

y ðBcÞ
 !

;

we have
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_
B#W

NaX

x ðBÞ ^
^
y2Wc

NaX

y ðBcÞ
 !

> k0:

Thus there exists Bx such that x 2 Bx ˝ W ˝ C \ U and for
any y 2Wc, we have

NaX

y Bc
x

� �
> k0; NaX

x ðBxÞ > k0:

Since

NaX

y Bc
x

� �
¼

_
x2Gc #Bc

x

saðGcÞ > k0;

then for any y 2Wc, there exists Gxy such that x 2 Gc
xy #Bc

x

and sa Gc
xy

� �
> k0. Set Gc

x ¼
S

y2Wc

Gc
xy, then Wc #Gc

xy #Bc
x and

sa Gc
x

� �
P

V
y2Wc

sa Gc
xy

� �
P k0. Since Gx � Bx; N

aX

x ðGxÞP

NaX

x ðBxÞ > k0, i.e.,
W

x2H#Gx

saðHÞ > k0. Thus there exists Hx such

that x 2 Hx ˝ Gx and sa(Hx) > k0. Hence for any x 2 A, there
exists Hx and Gx such that x 2 Hx ˝ Gx ˝ U,sa(Hx) > k0 and
W �

S
x2A

Gx �
S
x2A

Hx � A. We define R 2 IðPðAÞÞ as follows:

RðDÞ ¼

_
Hx\A¼D

saðHxÞ; there exists Hx such that Hx \ A ¼ D;

0; otherwise:

8<
:

Let Ca(A,s/A) = l > l � e(e > 0). Then 1� KaðR;AÞþW
}6R

½Kð};AÞ � FFð}Þ
 > l� �, where

½KðR;AÞ
 ¼
^
x2A

_
x2B

RðBÞ ¼
^
x2A

_
x2D

RðDÞ ¼
^
x2A

_
x2D

_
Hx0 \A¼D

saðHx0 ÞP k0

and

½R # sa=A
 ¼
^
B#X

minð1; 1�RðBÞ þ sa=AðBÞÞ

¼
^
B#X

min 1; 1�
_

Hx\A¼B
saðHxÞ þ

_
H\A¼B

saðHÞ
 !

¼ 1:

So, KaðR;AÞ ¼ ½KðR;AÞ
P k0. By (*),

½Kð};AÞ � FFð}Þ
 > l� �� 1þ KaðR;AÞP l� �� 1þ k0

P k� �:

Thus^
x2A

_
x2E
}ðEÞ þ 1�

^
fd : Fð}dÞg � 1 > k� �; and

^
x2A

_
x2E
}ðEÞ

> k� �þ
^
fd : Fð}dÞg:

Hence there exists b > 0 such that F(}b) and^
x2A

_
x2D
}ðDÞ > k� �þ b:

Therefore for any x 2 A, there exists Dx ˝ A such that
}(Dx) > k � e + b and[
x2A

Dx #A:

Suitably choose e such that k � e > 0, then }(Dx) > b > 0.
Since

RðDxÞP }ðDxÞ > 0; Dx ¼ Hx0 \ A;
i.e., Hx0 \ A 2 }b. By F(}b), so there exists finite

Hx0
1
; Hx0

2
; . . . ; Hx0n such that[n

i¼1
Hx0

i
� A

and

[n
i¼1

Hx0
i
#
[n
i¼1

Gx0
i
:

Set V ¼
Sn

i¼1Gx0
i
, and Vc ¼

Tn
i¼1G

c
x0
i
; A#V#U, and

saðVcÞP
V

16i6n

sa Gc
x0
i

� �
P k0 > k. Since for any

x 2 A,Gx ˝ W ˝ C \ U ˝ C, we have V ¼
Sn

i¼1Gx0
i
#W#C.

Because sa=CðC� VÞ ¼
W

D\C¼C\Vc

saðDÞP saðVcÞP k0. Thus

by (*), sa/C(C � V) + Ca(C,s/C) � 1 > k, and by Theorem 4.1

[1], Ca(V,s/V) = Ca(V,s/C/V) P [Ca(C,s/C) � sa/
C(C � V)] > k.

Finally, we have for any x 2 A,

NaX

x ðVÞ ¼ NaX

x

[n
i¼1

Gx0
i

 !
P NaX

x

[n
i¼1

Hx0
i

 !
P sa

[n
i¼1

Hx0
i

 !

P
^

16i6n

sa Hx0
i

� �
P k0 > k:

So, NaX

A ðVÞ ¼
V
x2A

NaX

x ðVÞP k. Therefore NaX

A ðVÞ ^ saðVcÞ^
CaðV; s=VÞP k.

Thus

_
V#U

NaX

A ðVÞ ^ saðVcÞ ^ CaðV; s=VÞ
� �

P k: �

Theorem 4.6. Let (X,s) and (Y,r) be two fuzzifying topologi-
cal spaces and f 2 YX be surjective. Then ` LaC(X,s) �
Ca(f) � O(f) fi LC(Y,r). For the definition of O(f), see [17].

Proof. If [LaC(X,s) � Ca(f) � O(f)] > k > 0, then for any

x 2 X, there exists U ˝ X, such that ½NaX

x ðUÞ�
CaðU; s=UÞ � CaðfÞ �OðfÞ
 > k. Since NaX

x ðUÞ ¼
W

x2V#U

saðVÞ,

so there exists V0 ˝ X such that x 2 V0 ˝ U and
[sa(V

0) � Ca(U,s/U) � Ca(f) � O(f)] > k. By Theorem 4.3 in
[1], [Ca(U,s/U) � Ca(f)] 6 [C(f(U),r/f(U))] and

½sðV0Þ �OðfÞ
 ¼ maxð0; sðV0Þ þOðfÞ � 1Þ ¼ maxð0; sðV0Þ
þ
^
V#X

minð1; 1� sðV0Þ þ rðfðVÞÞÞ � 1Þ

6 maxð0; sðV0Þ þ 1� sðV0Þ þ rðfðVÞÞ � 1Þ
¼ rðfðVÞÞ 6 NY

fðxÞðfðV0ÞÞ 6 NY
fðxÞðfðUÞÞ:

Since f is surjective,

LCðY; rÞ ¼ LCðfðXÞ; rÞ

¼
^

y2fðxÞ# fðXÞ

_
U0¼fðUÞ# fðXÞ

NY
y ðU0Þ � ½CðU0; r=U0Þ


h i

P
^

y2fðxÞ# fðXÞ
NY

fðxÞðfðUÞÞ � ½CðfðUÞ;r=fðUÞÞ

h i

P
^

y2fðxÞ# fðXÞ
½sðV0Þ �OðfÞ � CaðU; s=UÞ � CaðfÞ
P k: �
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Theorem 4.7. Let (X,s) and (Y,r) be two fuzzifying topologi-

cal spaces and f 2 YX be surjective. Then
`LaC(X,s) � Ia(f) � Oa(f) fi LaC(Y,r).

Proof. By Theorem 4.3 in [1], the proof is similar to the proof
of Theorem 4.6. h

Theorems 4.6 and 4.7 are a generalization of the following
corollary.

Corollary 4.2. Let (X,s) and (Y,r) be two topological spaces
and f:(X,s) fi (Y,r) be surjective mapping. If f is an a-
continuous (resp. a-irresolute), open (resp. a-open) and X is

locally a-compact, then Y is locally compact (resp. locally a-
compact) space.

Theorem 4.8. Let {(Xs,ss):s 2 S} be a family of fuzzifying
topological spaces, then

	 LaC
Y
s2S

Xs;
Y

s2S
ðsaÞs

 !
! 8sðs

2 S ^ LaCðXs; ðsaÞsÞ ^ 9TðTbS ^ 8tðt
2 S� T ^ CaðXt; stÞÞÞ:

Proof. It suffices to show that

LaC
Y

s2S
Xs;
Y

s2S
ðsaÞs

� �
6

^
s2S

LaCðXs; ðsaÞsÞ ^
_
TbS

^
t2S�T

CaðXt; stÞ
" #

:

From Theorem 4.7 and Lemma 3.1 we have for any t 2 S,

LaC
Y

s2S
Xs;

Y
s2S
ðsaÞs

� �
¼ LaC

Y
s2S

Xs;
Y

s2S
ðsaÞs

� �h
�CaðptÞ �OaðptÞ
 6 LaCðXt; stÞ:

So,

^
t2S

LaCðXt; stÞP LaC
Y

s2S
Xs;

Y
s2S
ðsaÞs

� �
:

By Theorem 3.2 we have

_
TbS

^
t2S�T

CaðXt; stÞP
_

U#
Q

s2S
Xs

Ca U;
Y

s2S
ðsaÞs=U

� �
�

_
X#
Q

s2S
Xs

NaX

x ðUÞÞ

2
64

3
75

P
_

U#
Q

s2S
Xs

_
X#
Q

s2S
Xs

Ca U;
Y

s2S
ðsaÞs=U

� �
�NaX

x ðUÞ
�h i
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We can obtain the following corollary in crisp setting.

Corollary 4.3. Let {Xk:k 2 K} be a family of nonempty
topological spaces. If

Q
k2KXk is locally a-compact, then each
Xk is locally a-compact and all but finitely many Xk are

a-compact
5. Conclusion

The present paper investigates topological notions when these
are planted into the framework of Ying’s fuzzifying topological

spaces (in semantic method of continuous valued-logic). It con-
tinue various investigations into fuzzy topology in a legitimate
way and extend some fundamental results in general topology

to fuzzifying topology. An important virtue of our approach
(in which we follow Ying) is that we define topological notions
as fuzzy predicates (by formulae of Łukasiewicz fuzzy logic)

and prove the validity of fuzzy implications (or equivalences).
Unlike the (more wide-spread) style of defining notions in fuzzy
mathematics as crisp predicates of fuzzy sets, fuzzy predicates of
fuzzy sets provide a more genuine fuzzification; furthermore the

theorems in the form of valid fuzzy implications are more gen-
eral than the corresponding theorems on crisp predicates of fuz-
zy sets. The main contributions of the present paper are to give

characterizations of fuzzifying a-compactness. Also, we define
the concept of locally a-compactness of fuzzifying topological
spaces and obtain some basic properties of such spaces. There

are some problems for further study:

(1) One obvious problem is: our results are derived in the
Łukasiewicz continuous logic. It is possible to generalize

them to more general logic setting, like residuated lat-
tice-valued logic considered in [27,28].

(2) What is the justification for fuzzifying locally a-com-

pactness in the setting of (2,L) topologies.
(3) Obviously, fuzzifying topological spaces in [14] form a

fuzzy category. Perhaps, this will become a motivation

for further study of the fuzzy category.
(4) What is the justification for fuzzifying locally a-com-

pactness in (M,L)-topologies etc.
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[13] U. Höhle, A. Ŝostak, Axiomatic foundations of fixed-basis fuzzy
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