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Abstract A Legendre wavelet operational matrix method (LWM) presented for the solution of

nonlinear fractional order Riccati differential equations, having variety of applications in engineer-

ing and applied science. The fractional order Riccati differential equations converted into a system

of algebraic equations using Legendre wavelet operational matrix. Solutions given by the proposed

scheme are more accurate and reliable and they are compared with recently developed numerical,

analytical and stochastic approaches. Comparison shows that the proposed LWM approach has

a greater performance and less computational effort for getting accurate solutions. Further exis-

tence and uniqueness of the proposed problem are given and moreover the condition of convergence

is verified.
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1. Introduction

In recent years use of fractional-order derivative going very
strongly in engineering and life sciences and also in other area
of sciences. One of the best advantages of use of fractional dif-
ferential equation is modeling and control of many dynamic

systems. Fractional-order derivatives are used in fruitful way
to model many remarkable developments in those areas of
science such as quantum chemistry, quantum mechanics,

damping laws, rheology and diffusion processes [1–5]
described through the models of fractional differential equa-
tions (FDEs). Modeling of a physical phenomenon depends

on two parameters such as the time instant and the prior time
history, because of this reason reasonable modeling through
fractional calculus successfully achieved. The above mentioned

advantages and applications of FDEs attracted researchers in
developing efficient methods to solve FDEs in order to get
accurate solutions to such problems and more active research
is still going on in those areas. Most of the FDEs are compli-

cated in its structure, hence finding exact solutions for them
cannot be simple. Therefore one can approach the best
accurate solution of FDEs through analytical and numerical
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methods. Designing accurate or best solution to FDEs, many
methods are developed in recent years; each method has its
own advantages and limitations. This paper aims to solve a

FDE called fractional-order Riccati differential equation, one
of the important equations in the family of FDEs. Solving
fractional order Riccati differential equation, the most signifi-

cant methods are Adomian decomposition method [6], homot-
opy perturbation method [7–10], homotopy analysis method
[11,12], Taylor matrix method [13] and Haar wavelet method

[14], combination of Laplace, Adomian decomposition and
Padé approximation [15] methods, stochastic technique based
on particle swarm optimization and simulated annealing [16],
fractional variational iteration method [17] and a combination

of finite difference and Padé-variational iteration numerical
scheme [18]. However, the above mentioned methods have
some restrictions and disadvantages in their performance.

For example, very complicated and toughest Adomian polyno-
mials are constructed in the Adomian decomposition method.
Similarly we can find disadvantages in other methods. More-

over, the convergence region and implementation of these
results are very small.

In recent years, wavelets theory is one of the growing and

predominantly a new method in the area of mathematical
and engineering research [19,20]. In this work, the nonlinear
Riccati differential equations of fractional-order approached
analytically by using Legendre wavelets method. The opera-

tional matrix of Legendre wavelet is generalized for fractional
calculus in order to solve fractional and classical Riccati differ-
ential equations. The Legendre wavelet method (LWM) is

illustrated by application, and obtained results are compared
with recently proposed method for the fractional-order Riccati
differential equation. We have adopted Legendre wavelet

method to solve Riccati differential equations not only due
to its emerging application of but also due to its greater con-
vergence region.

The rest of the paper is as follows: In Section 2 definitions
and mathematical preliminaries of fractional calculus are pre-
sented. In Section 3 Legendre wavelet, its properties, function
approximations and generalized Legendre wavelet operational

matrix fractional calculus are discussed. Section 4 establishes
application of proposed method in the solution Riccati differ-
ential equations, existence and uniqueness solution of the pro-

posed problem and convergence analyses of the proposed
approach. Section 5 deals with the illustrative examples and
their solutions by the proposed approach. Section 6 ends with

our conclusion.

2. Preliminaries and notations

The notations, definitions and preliminary facts present in this
section will be used in forthcoming sections of this work. As
stated in [21], the Caputo fractional derivative uses initial
and boundary conditions of integer order derivatives having

some physical interpretations. Caputo fractional derivative
Da proposed by Caputo [22] in the theory of viscoelasticity.The
Caputo fractional derivative of order a > 0; ða 2 R;n� 1 <
a 6 n; n 2 NÞ and

h : ð0;1Þ ! R is continuous is defined by

DafðtÞ ¼ In�a dn

dtn
fðtÞ

� �
ð1Þ
where

IafðtÞ ¼ 1

CðaÞ

Z t

0

ðt� sÞa�1fðsÞds; ð2Þ

is the Riemann–Liouville fractional integral operator of order

a > 0 and C is the gamma function.
The fractional integral of tb, b > �1 is given as

Iaðt� aÞb ¼ Cðbþ 1Þ
Cðbþ aþ 1Þ ðt� aÞbþa

; a P 0: ð3Þ

Properties of fractional integrals and derivatives are as follows
[21], for a, b > 0.

The fractional order integral satisfies the semi group
property

IaðIbfðtÞÞ ¼ IbðIafðtÞÞ ¼ IaþbfðtÞ: ð4Þ

The integer order derivative Dn and fractional order derivative
Da commute with each other,

DnðDafðtÞÞ ¼ DaðDnfðtÞÞ ¼ DnþafðtÞ: ð5Þ

The fractional integral operator and fractional derivative oper-

ator do not satisfy the commutative property. In general,

IaðDafðtÞÞ ¼ fðtÞ �
Xn�1
k¼0

fðkÞð0Þ t
k

k!
: ð6Þ

But in the reverse way we have,

DaðIbfðtÞÞ ¼ Da�bfðtÞ: ð7Þ
3. Generalized Legendre wavelet operational matrix to

fractional integration

A family of functions constituted by Wavelets, constructed
from dilation and translation of a single function called

mother wavelet. When the parameters a of dilation and b of
translation vary continuously, following are the family of
continuous wavelets [23]

wa;bðtÞ ¼ jaj
�1=2w

t� b

a

� �
; a; b 2 R; a – 0:

If the parameters a and b are restricted to discrete values as
a ¼ a�k0 ; b ¼ nb0a

�k
0 ; a0 > 1; b0 > 0 and n, and k are positive

integers, following are the family of discrete wavelets:

wk;nðtÞ ¼ ja0j
k=2wðak0t� nb0Þ;

where wk,n(t) form a wavelet basis for L2(R). In particular,
when a0 = 2, and b0 = 1, wk,n(t) forms an orthonormal basis

[23].
Legendre wavelets wn;mðtÞ ¼ wðk; n̂;m; tÞ have four argu-

ments; n̂ ¼ 2n� 1; n ¼ 1; 2; 3; . . . ; 2k�1; k can assume any posi-
tive integer, m is the order for Legendre polynomials and t is

the normalized time. They are defined on the interval [0,1)
as [24,25]

wnmðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

q
2k=2Pmð2kt� n̂Þ; for n̂�1

2k
6 t < n̂þ1

2k

0; otherwise;

(
;

where m = 0, 1, . . . ,M � 1 and n = 1, 2, 3, . . . , 2k�1. The coef-

ficient
ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

q
is for orthonormality, the dilation parameter is

a= 2�k and translation parameter is b ¼ n̂2�k. Pm(t) are the



Legendre wavelet operational matrix 265
well-known Legendre polynomials of order m defined on the

interval [�1,1], and can be determined with the aid of the
following recurrence formulae:

P0ðtÞ ¼ 1; P1ðtÞ ¼ t;

Pmþ1ðtÞ ¼ 2mþ1
mþ1

� �
tPmðtÞ � m

mþ1

� �
Pm�1ðtÞ; m ¼ 1; 2; 3; . . .

The Legendre wavelet series representation of the function f(t)
defined over [0,1) is given by

fðtÞ ¼
X1
n¼1

X1
m¼0

cnmwnmðtÞ; ð8Þ

where cnm = Æf(t), wnm(t)æ, in which Æ.,.æ denotes the inner
product. If the infinite series in Eq. (8) is truncated, then Eq.
(8) can be written as

fðtÞ ffi
X2k�1
n¼1

XM�1
m¼0

cnmwnmðtÞ ¼ CTWðtÞ ¼ f̂ðtÞ: ð9Þ

where C and W(t) are 2k�1M · 1 matrices given by

C ¼ c10; c11; . . . ; c1M�1; c20; c21; . . . ; c2M�1; . . . ; c2k�10;½
c2k�11; . . . ; c2k�1M�1�

T;

WðtÞ ¼ w10ðtÞ;w11ðtÞ; . . . ;w1M�1ðtÞ;w20ðtÞ;w21ðtÞ; . . . ;½
w2M�1ðtÞ; . . . ;w2k�10ðtÞ;w2k�11ðtÞ; . . . ;w2k�1M�1ðtÞ�

T ð10Þ

Taking suitable collocation points as following

ti ¼ cos
ð2iþ 1Þp
2kM

� �
i ¼ 1; 2; . . . ; 2k�1M;

we defined the _m – square Legendre matrix

/ _m� _m¼ W cos
3p

2kM

� �� �
W cos

5p

2kM

� �� �
� � �W cos

ð2kMþ1Þp
2kM

� �� �� �

where _m ¼ 2k�1M, correspondingly we have

f̂ ¼ f̂ cos
3p

2kM

� �� �
f̂ cos

5p

2kM

� �� �
� � � f̂ cos

ð2kMþ 1Þp
2kM

� �� �� �
¼ CT/ _m� _m

The Legendre matrix / _m� _m is an invertible matrix, the coeffi-

cient vector CT is obtained by CT ¼ f̂/�1_m� _m.
The integration of the W(t) defined in Eq. (10) can be

approximated by Legendre wavelet series with Legendre wave-

let coefficient matrix PZ t

0

WðtÞdt ¼ P _m� _mWðtÞ

where the _m – square matrix P is called Legendre wavelet oper-

ational matrix of integration.
Then the Legendre wavelet operational matrix Pa

_m� _m of
fractional integration is given by

Pa
_m� _m ¼ / _m� _mF

a/�1_m� _m

where Fa
m�m is given in [21].

4. Existence, uniqueness and convergence

In this section, we will use the generalized Legendre wavelet

operational matrix to solve nonlinear Riccati differential equa-
tion and we discuss the existence and uniqueness of solutions
with initial conditions and convergence criteria of the pro-
posed LWM approach.

Consider the fractional-order Riccati differential equation

of the form

DayðtÞ ¼ PðtÞy2 þQðtÞyþ RðtÞ; t > 0; 0 < a 6 1: ð11Þ

subject to the initial condition

yð0Þ ¼ k: ð12Þ
Definition 4.1. Let I = [0, l], l<1 and C(I) be the class of all
continuous function defined on I, with the norm

kyk ¼ sup
t2I
je�htyðtÞj; h > 0;

which is equivalent to the sup-norm of y. i.e.,
kyk ¼ sup

t2I
je�htyðtÞj.

Remark. Assume that solution y(t) of fractional-order Riccati

differential Eqs. (11) and (12) belongs to the space
S ¼ fy 2 R : jyj 6 c; c is any constantg, in order to study the
existence and uniqueness of the initial value problem.

Definition 4.2. The space of integrable functions L1[0, l] in the

interval [0, l] is defined as

L1½0; l� ¼ uðtÞ :

Z l

0

juðtÞjdt <1
	 


:

Theorem 4.1. The initial value problem given by Eqs. (11) and

(12) has a unique solution

y 2 CðIÞ; y0 2 X ¼ y 2 L1½0; l�; kyk ¼ ke�htyðtÞkL1

n o
:

Proof. By the Eq. (1), the fractional differential Eq. (11) can
be written as

I1�a dyðtÞ
dt
¼ PðtÞy2 þQðtÞyþ RðtÞ ð13Þ

becomes

yðtÞ ¼ IaðPðtÞy2 þQðtÞyþ RðtÞÞ ð14Þ

Now we define the operator H:C(I) fi C(I) by

HyðtÞ ¼ IaðPðtÞy2 þQðtÞyþ RðtÞÞ ð15Þ

e�htðHy�HwÞ¼ e�htIa ðPy2ðtÞþQyðtÞþRÞ�ðPw2ðtÞþQwðtÞþRÞ
� �

6
1

CðaÞ

Z t

0

ðt� sÞa�1e�hðt�sÞ ðyðsÞ�wðsÞÞðyðsÞ½

þwðsÞÞ�kðyðsÞ�wðsÞÞ�e�hsds

6 ky�wk 1

CðaÞ

Z t

0

sa�1e�hsds

hence, we have

kHy�Hwk < ky� wk;

which implies the operator given by Eq. (15), has a unique
fixed point and consequently the given integral equation has
a unique solution y(t) e C(I). Also we can see that
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IaðPðtÞy2 þQðtÞyþ RðtÞÞjt¼0 ¼ k ð16Þ

Now from Eq. (14), we have

yðtÞ¼ ta

Cðaþ1Þ ðPy
2
0þQy0þRÞþ Iaþ1ðP0y2þ2y0PþQ0yþQy0 þR0Þ

h i
and
dy
dt
¼ ta�1

CðaÞ ðPy
2
0þQy0þRÞþ IaðP0y2þ2y0PþQ0yþQy0 þR0Þ

h i
;

e�hty0ðtÞ¼ e�ht ta�1

CðaÞ ðPy
2
0þQy0þRÞþ IaðP0y2þ2y0PþQ0yþQy0 þR0Þ

h i
;

ð17Þ

from which we can deduce that y
0
(t) e C(I) and y

0
(t) e S.Now

again from Eqs. (14)–(16) we get

dy
dt
¼ d

dt
Ia½Py2ðtÞþQyðtÞþR�;

I1�a dy
dt
¼ I1�a d

dt
Ia½Py2ðtÞþQyðtÞþR� ¼ d

dt
I1�aIa½Py2ðtÞþQyðtÞþR�

DayðtÞ¼ d
dt
I½Py2ðtÞþQyðtÞþR� ¼Py2ðtÞþQyðtÞþR

and

yð0Þ¼ IaðPy2ðtÞþQyðtÞþRÞjt¼0¼ k

which implies that the integral Eq. (16) is equivalent to the ini-
tial value problem (12) and the theorem is proved. h
4.1. Convergence analyses

Let wk;nðtÞ ¼ ja0j
k=2wðak0t� nb0Þ, where wk,n(t) form a wavelet

basis for L2(R). In particular, when a0 = 2, and b0 = 1, wk,n(t)

forms an orthonormal basis [23].

By Eq. (2.22), let yðtÞ ¼
PM�1

i¼1 c1iw1iðtÞ be the solution of the
Eq. (11) where c1i = Æy(t), w1i(t)æ, for k= 1in which Æ.,.æ
denotes the inner product.

yðtÞ ¼
Xn
i¼1
hyðtÞ;w1iðtÞiw1iðtÞ

Let bj = Æy(t), w(t)æ where w(t) = w1i(t)
Let xn ¼

Pn
j¼1bjwðtjÞ be a sequence of partial sums. Then,

hyðtÞ; xni ¼ yðtÞ;
Xn
j¼1

bjwðtjÞ
* +

¼
Xn
j¼1

�bj yðtÞ;wðtjÞ

 �

¼
Xn
j¼1

�bjbj ¼
Xn
j¼1
jbjj

2

Further

xn � xmk k2 ¼
Xn
j¼mþ1

bjwðtjÞ
�����

�����
2

¼
Xn
i¼mþ1

biwðtiÞ;
Xn
j¼mþ1

bjwðtjÞ
* +

¼
Xn
i¼mþ1

Xn
j¼mþ1

bibjhwðtiÞ;wðtjÞi ¼
Xn
j¼mþ1
jbjj

2

As n fi1, from Bessel’s inequality, we have
P1

j¼1jbjj
2
is

convergent.

hx� yðtÞ;wðtjÞi ¼ x;wðtjÞ

 �

� hyðtÞ;wðtjÞi

¼ Lt
n!1

xn;wðtjÞ
� �

� bj ¼ Lt
n!1
hxn;wðtjÞi � bj

¼ Lt
n!1

Xn
j¼1

bjwðtjÞ;wðtjÞ
* +

� bj ¼ bj � bj ¼ 0:

It implies that {xn} is a Cauchy sequence and it converges to x
(say), which is possible only if y(t) = x. i.e. both y(t) and xn
converges to the same value, which indeed give the guarantee

of convergence of LWM.
5. Numerical examples

In order to show the effectiveness of the Legendre wavelets
method (LWM), we implement LWM to the nonlinear frac-
tional Riccati differential equations. All the numerical experi-

ments carried out on a personal computer with some
MATLAB codes. The specification of PC is intel core i5 pro-
cessor and with Turbo boost up to 3.1 GHz and 4 GB of
DDR3 memory. The following problems of nonlinear Riccati

differential equations are solved with real coefficients.

Example 5.1. Consider the following nonlinear fractional
Riccati differential equation

DayðtÞ ¼ 1þ 2yðtÞ � y2ðtÞ; 0 < a 6 1 ð18Þ

with initial condition yð0Þ ¼ 0: ð19Þ

Exact solution for a ¼ 1was found to be yðtÞ

¼ 1þ
ffiffiffi
2
p

tanh
ffiffiffiffi
2t
p
þ 1

2
log

ffiffiffi
2
p
� 1ffiffiffi

2
p
þ 1

 ! !

ð20Þ

The integral representation of the Eqs. (18) and (19) is given by

IaðDayðtÞÞ ¼ Iað1þ 2yðtÞ � y2ðtÞÞ ð21Þ

yðtÞ ¼ yð0Þ þ ta

Cðaþ 1Þ þ 2IayðtÞ � Iay2ðtÞ ð22Þ

Let yðtÞ ¼ CTWðtÞ ð23Þ

then

IayðtÞ ¼ CTIaWðtÞ ¼ CTPa
2k�1M�2k�1MWðtÞ ð24Þ

By substituting Eqs. (23) and (24) in (22), we get the following
system of algebraic equations

CTWðtÞ ¼ ta

Cðaþ 1Þþ 2CTPa
2k�1M�2k�1MWðtÞ�CTP2a

2k�1M�2k�1MWðtÞ

By solving the above system of linear equations, we can find
the vector C. Numerical results are obtained for different val-

ues of k, M and a. Solution obtained by the proposed LWM
approach for a = 1, k = 1 and M = 3 is given in Fig. 1 and
for different values of a = 0.6, 0.7, 0.8 and 0.9 and for

k= 2 andM = 5 are graphically given in Fig. 2. It can be seen
from Fig. 1 that the solution obtained by the proposed LWM
approach is more close to the exact solution.

In order to analyses the effectiveness of the proposed
approach further, the obtained results of example 1 for
a = 0.5, 0.75 and for k= 1 and M = 3 are compared with
reported results of other numerical, analytical and stochastic

solver such as solution by PSO [16] based on swarm intelli-
gence, analytical approximation solution obtained by frac-
tional variational iteration method (FVI) [17] and a finite

difference numerical iteration scheme by Padé-variational
iteration method (PVI) [18] based on Riemann–Liouville
derivative. The compared results are provided in Table 1 and
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Figure 1 Numerical results of example 5.1 by LWM for a = 1.
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Figure 2 Numerical results of example 5.1 by LWM for different

values of a.
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it indicates that the results obtained by proposed LWM
approach has good convergence than the other approaches

in the given applicable domain.
Table 1 Numerical results of example 5.1.

t a = 1/2

LWM PVI PSO FVI

0.1 0.574500 0.356803 0.574648 0.5774

0.2 0.890789 0.922865 0.890890 0.9126

0.3 1.100011 1.634139 1.090716 1.1662

0.4 1.205607 2.204441 1.230069 1.3535

0.5 1.334087 2.400447 1.334181 1.4826

0.6 1.415493 2.041435 1.415512 1.5596

0.7 1.480879 2.414889 1.480918 1.5899

0.8 1.534598 2.414248 1.534604 1.5785

0.9 1.530019 2.414246 1.579396 1.5300

1.0 1.448703 2.414231 1.617332 1.4488
Example 5.2. Consider another fractional order Riccati dif-

ferential equation

DayðtÞ ¼ 1� y2ðtÞ; 0 < a 6 1; ð25Þ

with initial condition yð0Þ ¼ 0: ð26Þ

Exact solution for the above equation was found to be

yðtÞ ¼ e2t � 1

e2t þ 1

The integral representation of Eqs. (25) and (26) is given by

yðtÞ ¼ yð0Þ þ ta

Cðaþ 1Þ � Iay2ðtÞ

Let yðtÞ ¼ CTWðtÞ ð27Þ

then

IayðtÞ ¼ CTIaWðtÞ ¼ CTPa
2k�1M�2k�1MWðtÞ ð28Þ

By substituting Eqs. (27) and (28) in (25), we get the following
system of algebraic equations

CTWðtÞ ¼ ta

Cðaþ 1Þ � CTP2a
2k�1M�2k�1MWðtÞ

By solving the above system of linear equations, we can find

the vector C. Numerical results are obtained for different val-
ues of k, M and a. Results obtained by LWM for a = 1 k = 2
and M = 3 shown in Fig. 3 and it can be seen from the figure
that solution given by the LWMmerely coincide with the exact

solution. Fig. 4 shows that the obtained results of Eqs. (25)
and (26) by LWM for different values of a and for k = 2
and M = 5. Since exact solution for fractional order case is

not available, like example 5.1, for the Eqs. (25) and (26) com-
parisons made with the approximate solution given by the pro-
posed approach and reported approximate results of other

approaches PSO [16], FVI [17], PVI [18]. Obtained results
are provided in Table 2 and from these results we can identify
that guarantee of convergence of the proposed LWM
approach is very high.

Example 5.3. Let us consider another problem of nonlinear
Riccati differential equation

DayðtÞ ¼ t2 þ y2ðtÞ; 0 < a 6 1; t P 0: ð29Þ
a = 3/4

LWM PVI PSO FVI

31 0.244458 0.193401 0.283503 0.244460

54 0.469689 0.454602 0.539352 0.469709

53 0.698700 0.784032 0.768804 0.698718

49 0.924305 1.161986 0.971833 0.924319

33 1.137939 1.543881 1.147939 1.137952

56 1.296302 1.873658 1.296320 1.331462

84 1.416311 2.112944 1.416319 1.497600

59 1.506913 2.260134 1.506936 1.630234

28 1.569221 2.339134 1.569252 1.724439

05 1.605571 2.379356 1.605580 1.776542
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Figure 3 Numerical results of example 5.2 by LWM for a = 1.
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Figure 4 Numerical results of example 5.2 by LWM for different

values of a.

Table 2 Numerical results of example 5.2.

t a = 1/2 a = 3/4

LWM PVI PSO FVI LWM PVI PSO FVI

0.1 0.273600 0.313678 0.289667 0.273875 0.165056 0.187945 0.165087 0.184795

0.2 0.386358 0.468954 0.386489 0.454125 0.276332 0.324567 0.276350 0.313795

0.3 0.441104 0.593005 0.441120 0.573932 0.356115 0.456219 0.356196 0.414562

0.4 0.482304 0.650122 0.482348 0.644422 0.416817 0.667581 0.416916 0.492889

0.5 0.520664 0.898237 0.516379 0.674137 0.465480 0.900321 0.465520 0.462117

0.6 0.533287 1.000943 0.544872 0.671987 0.505894 1.110341 0.506004 0.597393

0.7 0.558743 1.512398 0.568545 0.648003 0.540606 1.516448 0.540629 0.631772

0.8 0.587812 1.816384 0.587895 0.613306 0.569998 1.916004 0.570632 0.660412

0.9 0.596234 2.005632 0.603344 0.579641 0.596600 2.012352 0.596636 0.687960

1.0 0.610642 2.006485 0.615268 0.558557 0.618824 2.034632 0.618873 0.718260
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Figure 5 Numerical results of example 5.3 by LWM for different

values of a.
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Figure 6 Numerical results of example 5.3 by LWM for a = 1.
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Table 3 Numerical results of example 5.3.

t a = 1/2 a = 3/4

LWM PSO FVI PVI LWM PSO FVI PVI

0.1 1.600345 1.671055 1.601055 1.671256 1.209113 1.249863 1.209863 1.249870

0.2 2.289652 2.342131 2.302131 2.342321 1.498342 1.513463 1.503463 1.513500

0.3 3.199986 3.241501 3.201501 3.241521 1.801287 1.852218 1.802218 1.852218

0.4 4.408328 4.468508 4.408508 4.468538 2.306457 2.306699 2.306699 2.306721

0.5 6.103679 6.144389 6.104389 6.144402 2.908663 2.928996 2.908996 2.929012

0.6 8.408745 8.429666 8.409666 8.429696 3.709612 3.789643 3.709643 3.789883

0.7 11.50010 11.54066 11.50066 11.54166 4.905128 4.985354 4.905354 4.985521

0.8 15.70017 15.77047 15.70047 15.77237 6.609123 6.649324 6.609324 6.649661

0.9 21.30823 21.51700 21.50700 21.51780 8.905289 8.965376 8.905376 8.965686

1.0 29.30017 29.32098 29.30098 29.32168 12.10721 12.18753 12.10753 12.18823
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with initial condition yð0Þ ¼ 1: ð30Þ

When a = 1, its exact solution is given by

yðtÞ ¼ tðJ�3=4ðt2=2ÞCð1=4Þ þ 2J3=4ðt2=2ÞCð3=4ÞÞ
J1=4ðt2=2ÞCð1=4Þ � 2J�1=4ðt2=2ÞCð3=4Þ

where Jn(t) is the Bessel function of first kind.
The integral representation of the Eqs. (29) and (30) is given

by

yðtÞ ¼ 1þ 2

Cðaþ 1Þ þ 2CðaÞ t
aþ2 þ Iay2ðtÞ

Let yðtÞ ¼ CTWðtÞ ð31Þ

then

IayðtÞ ¼ CTIaWðtÞ ¼ CTPa
2k�1M�2k�1MWðtÞ ð32Þ

By substituting Eqs. (31) and (32) in (29), we get the following
system of algebraic equations

CTWðtÞ ¼ 1þ 2

Cðaþ 1Þ þ 2CðaÞ ðC
TWðtÞÞaþ2

þ CTP2a
2k�1M�2k�1MWðtÞ

By solving the above system of linear equations, we can find
the vector C. Numerical results are obtained for different val-
ues of k, M and a. Obtained results for Eqs. (29) and (30) are

shown in Figs. 5 and 6 and in Table 3. Fig. 5 shows the solu-
tions obtained by LWM for different values of a and for
k = 2, M = 4. Fig. 6 compares the solution obtained by

LWM with the exact solution of Eqs. (29) and (30) when
a = 1, k = 1,M = 2 and Table 3 provides the obtained results
of LWM and reported results of PSO [16], FVI [17], and PVI
[18] for the values of a = 1/2, 3/4 with k = 3, M = 5 From

these results we can see that the proposed LWM approach
gives the solution which are very close to the exact solution
and outperformed recently developed approaches.

6. Conclusions

In this work, a Legendre’s wavelet operational matrix method

called LWM, proposed for solving nonlinear fractional order
Riccati differential equations. Comparison made for the solu-
tions obtained by the proposed method and with the other

recent approaches developed for same problem; obtained
results show that the proposed LWM yields more accurate
and reliable solutions with less computational effort. Further
we have discussed the convergence criteria of proposed
scheme, which indeed provides the guarantee of consistency
and stability of the proposed LWM scheme for the solutions

of nonlinear fractional Riccati differential equations.
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