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Abstract The concept of M-open sets [1] can be applied in modifications of rough set approxima-

tions [2,3] which is widely applied in many application fields. The aim of this paper is to introduce

and investigate some new classes of topological mappings called M-continuous mappings via

M-open sets. Also,

M-irresolute mappings which are stronger than M-continuous mappings are studied and the rela-

tionships between these mappings are investigated. Several properties of these new notions have

been discussed and the connections between them are studied.
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1. Introduction and preliminaries

Throughout this paper (X, s) and (Y, r) (simply, X and Y) rep-
resent non-empty topological spaces on which no separation

axioms are assumed, unless otherwise mentioned. The closure
of subset A of X, the interior of A and the complement of A is
denoted by cl(A), int(A) and Ac or XnA, respectively.

A subset A of a space (X, s) is called regular open [4] if
A= int(cl(A)). A point x 2 X is said to be a h-interior point
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of A [5] if there exists an open set U containing x such that
U ˝ cl(U) ˝ A. The set of all h-interior points of A is said to
be the h-interior set and a subset A of X is called h-open if
A= inth(A).A subsetA ofX is called d-open [5] if it is the union

of regular open sets. The complement of d-open set is called d-
closed. The d-interior of a subset A of X is the union of all d-
open sets of X contained in A. For a subset A of a space (X,

s), the closure of A, the interior of A, the d-interior of A, the
h-interior of A and the complement of A is denoted by cl(A),
int(A), intd(A), inth(A) and Ac or XnA, respectively. A subset

A of a space (X, s) is called preopen [6] or locally dense [7] (resp.
d-preopen [8], a-open [9], b-open [10], b-open [11] or c-open
[12], semi-open[13], d-semi-open [14], e-open [15], h-semi-open

[16] if A ˝ int(cl(A))) (resp. A ˝ int(cld(A))), A ˝ int(cl(int(A))),
A ˝ cl(int(cl(A))), A ˝ cl(int(A)) [ int(cl(A)), A ˝ cl(int(A)),
A ˝ cl(intd(A)), A ˝ cl(intd(A)) [ int(cld(A)) and A ˝ cl(inth(A)).
The complement of a d-semi-open (resp. d-preopen,
h-semi-open) set is called d-semiclosed (resp. d-preclosed,
h-semiclosed). The family of all h-semi-open (resp. preopen,
d-preopen, e-open, e*-open,h-open, a-open, b-open, c-open) is
gyptian Mathematical Society. Open access under CC BY-NC-ND license.

mailto:amaghrabi@taibahu.edu.sa
mailto:aelmaghrabi@yahoo.com
mailto:aelmaghrabi@yahoo.com
mailto:mhm977@hotmail.com
http://dx.doi.org/10.1016/j.joems.2013.05.007
http://www.sciencedirect.com/science/journal/1110256X
http://dx.doi.org/10.1016/j.joems.2013.05.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


64 A.I. EL-Maghrabi, M.A. AL-Juhani
denoted by h-SO(X) (resp. PO(X), d-PO(X), e-O(X), e*-O(X), h-
O(X), a-O(X), b-O(X), c-O(X)).

The study of rough sets on an approximation space was ini-

tiated by [2,3]. Rough set theory is one of the new methods
that connect information systems and data processing to math-
ematics in general and especially to the theory of topological

structures and spaces. A large number of authors [17–24]
had turned their attention to the generalization of approxima-
tion spaces which is widely applied in many applications fields.

The purpose of this paper is to introduce and investigate
some new classes of topological mappings called M-continu-
ous mappings and M-irresolute via M-open sets. Also, some
properties and characterizations of these notions are discussed.

The following definitions and results were introduced and
studied in [1].

Definition 1.1. Let (X, s) be a topological space. Then a subset

A of X is said to be:

(i) an M-open set, if A ˝ cl(inth(A)) [ int(cld(A)),

(ii) an M-closed set if int(clh(A)) \ cl(intd(A)) ˝ A.

The family of all M-open (resp. M-closed) subsets of a
space (X, s) will be as always denoted by MO(X) (resp.

MC(X)).

This concept can be applied in modifications of rough set

approximations [2,3] which is widely applied in many appli-
cation fields.

Definition 1.2. Let (X, s) be a topological space and A ˝ X.

Then:

(i) the M-interior of A is the union of all M-open sets con-
tained in A and is denoted by M-int(A),

(ii) the M-closure of A is the intersection of all M-closed sets
containing A and is denoted by M-cl(A).
Definition 1.3. For a space (X, s), a point p 2 X is called an M-
limit point of A if for every M-open set G containing p contains
a point of A other than p. The set of all M-limit points of A is

called M-derived set of A and is denoted by M-d(A).

Definition 1.4. A subset N of a space (X, s) is called an M-
neighbourhood (briefly, M-nbd) of a point p 2 X if there exists

an M-open set W such that p 2W ˝ N.

Definition 1.5. A mapping f: (X, s) fi (Y, r) is called:

(i) h-continuous [25] or strongly h-continuous [26] if, for

each V 2 r, f�1(V) 2 h � O(X),
(ii) h-semicontinuous [16] if for each V 2 r,

f�1(V) 2 h � SO(X),

(iii) precontinuous [6] if for each V 2 r, f�1(V) 2 PO(X),
(iv) d-precontinuous (equivalently, d-almost continuous) [8]

if for each V 2 r, f�1(V) 2 d � PO(X),

(v) d-semicontinuous [27] if for each V 2 r, f
�1(V) 2 d � SO(X),

(vi) e-continuous [15] if for each V 2 r, f�1(V) 2 e O(X),
(vii) b-continuous [10] if for each V 2 r, f�1(V) 2 b � O(X),

(viii) b-continuous or c-continuous [12] if for each V 2 r,
f�1(V) 2 c � O(X),
(ix) semicontinuous [13] if for each V 2 r, f�1(V) 2 SO(X),

(x) d-continuous [26] if, f�1(V) is d-open in X for every reg-
ular open set V of Y,

(xi) e*-continuous [28] if for each V 2 r, f�1(V) 2 e* � O(X),

(xii) a-continuous [29] if for each V 2 r, f �1(V) 2 a � O(X).
Lemma 1.1. For a topological space (X, s) and A ˝ X, then the
following statements are hold:

(i) If A ˝ Fi, Fi is an M-closed set of X, then A ˝ M �
cl(A) ˝ Fi,

(ii) If Gi ˝ A, Gi is an M-open set of X, then Gi ˝ M �
int(A) ˝ A.

Proposition 1.1. Let (X, s) be a topological space and A ˝ X.
Then, the following statements are hold:

(i) A is M-closed if and only if it contains each of its M-limit
points,

(ii) M-cl(A) = A [M-d(A),
(iii) M-b(A) = M-cl(A)nM-int(A),
(iv) M-Bd(A) = AnM-int(A).

Where the set of M-boundary (resp. M-border) of A is denoted
by M-b(A) (resp. M-Bd(A)).

Definition 1.6. A mapping f: (X, s) fi (Y, r) is called

(i) irresolute [30] if, f�1(V) is semi-open in X for every semi-
open set V of Y,

(ii) h-irresolute [31] or quasi h-continuous [32] if, f�1(V) is h-
open in X for every h-open set V of Y,

(iii) quasi-irresolute [13] if, f�1(V) is h-semi-open in X for
every h-semi-open set V of Y,

(iv) pre-irresolute [6] if, f�1(V) is preopen in X for every pre-
open set V of Y,

(v) d-pre-irresolute [33] if, f�1(V) is d-preopen in X for every

d-preopen set V of Y,
(vi) e-irresolute [34] if, f�1(V) is e-open in X for every e-open

set V of Y,

(vii) e*-irresolute [34] if, f�1(V) is e*-open in X for every e*-
open set V of Y,

(viii) b-irresolute or c-irresolute [12] if, f�1(V) is b-open in X
for every b-open set V of Y,

(ix) a-irresolute [35] if, f�1(V) is a-open in X for every a-open
set V of Y,

(x) b-irresolute [36] if, f�1(V) is b-open in X for every b-
open set V of Y,

(xi) d-semi-irresolute [37] if, f�1(V) is d-semi-open in X for
every d-semi-open set V of Y.

Definition 1.7. [31] A mapping f: (X, s) fi (Y, r) is called: h-
open if the image of every open set of (X, s) is h-open in (Y, r),

Proposition 1.2. [31] A mapping f: (X, s) fi (Y, r) is

called d-open if and only if f�1(cld(B)) ˝ cld(f
�1(B)), for each

B ˝ Y.

Lemma 1.2. [32]. For a space (X, s), every dense set is preopen.
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2. M-continuous mappings

Definition 2.1. A mapping f: (X, s) fi (Y, r) is called M-
continuous if f�1(V) is M-open in X, for every open set V of Y.

Remark 2.1. The implication between some types of mappings
of Definitions 1.5, 2.1, are given by the following diagram.

θ-continuity      θ-semicontinuity              δ-semicontinuity 

M-continuity           e-continuity            

α-continuity             δ-precontinuity               e*-continuity 

continuity

semicontinuity              precontinuity

γ-continuity                                                     β-continuity 

The converse of these implications is not true, in general by
[28,6,29,7,13,14,10,27,12,25,31,16] and the following examples.

Example 2.1. Let X= Y= {a, b, c} with topologies sx = {X,
/, {a}, {b}, {a, b}} and sy = {Y, /, {a}, {a, b}}. Then a map-

ping f: (X, sx) fi (Y, sy) which defined by f(a) = b, f(b) = a
and f(c) = c is M-continuous but not h-semicontinuous. Since,
f�1({a}) = {b} is not h-semi-open of X.

Example 2.2. In Example 2.1, and (Y, r) is a discrete topology,
where Y= {a, b}, the mapping f: (X, s) fi (Y, r) which defined
by f(a) = b and f(b) = f(c) = a is M-continuous but not d-pre-
continuous. Since, f�1({a}) = {b, c} is not d-preopen of X.

Example 2.3. Let X= {a, b, c, d} and Y= {a, b} with topol-
ogies sx = {X, /, {a}, {b}, {a, b}} and sy = {Y, /, {a}, {b}},
then a mapping f: (X, sx) fi (Y, sy) which defined by
f(a) = f(d) = b and f(b) = f(c) = a is e-continuous but not

M-continuous. Since, f�1({b}) = {a, d} is not M-open of X.

The following example is an application of the concept of

M-open sets in the rough set approximations.

Example 2.4. If we have the following information system.
The objects {x1, x2, x3, x4} represent the ID of students, the

attributes {EL(1), MA, AL(1)} are three salyets studied by
the students, EL(1) is English language (1),MA is Mathematics
and AL(1) is Arabic language(1). The values are the numbers
scored by the students in an exam in the following table.

Object(U) a1 a2 a3
EL(1) MA AL(1)

x1 86 83 77

x2 93 85 81

x3 89 60 78

x4 88 60 82
And consider the relation Ri on the set of objects defined

by:
x Ri y iff Œai(x) � ai(y)Œ 6 2, i = 1, 2, 3. Then we can get the

following classifications corresponding to every subclass of
attributes:

SELð1Þ ¼ ffx4g; fx2; x4g; fx3; x4gg;SMA

¼ ffx1g; fx3g; fx1; x3gg;SALð1Þ

¼ ffx1g; fx2g; fx1; x2g; fx1; x2; x3g; fx1; x2; x4gg

and hence the topologies generated by the above classes are:
sEl(1) = {U, /, {x4}, {x2, x4}, {x3, x4}, {x2, x3, x4}}, sMA = {U,
/, {x1}, {x3}, {x1, x3}} and sAL(1) = {U, /, {x1}, {x2}, {x1, x2},
{x1, x2, x3}, {x1, x2, x4}}. Hence, the identity mapping f: (U,

sEl(1)) fi (U, sMA) is M-continuous.

Proposition 2.1. An M-continuous mapping is d-precontinuous,
if for any subset A of X is nowhere dense.

Proof. Let V 2 r and f be an M-continuous mapping.

Then f�1(V) 2MO(X). If we put f�1(V) = A 2MO(X).
Hence A ˝ cl(inth(A)) [ int(cld(A)). But inth(A) ˝ int(A)
˝ cl(A), then inth(A) ˝ int(cl(A)). Since, A is nowhere dense

and by Lemma 1.2, we have inth(A) ˝ /. Therefore, f is
d-precontinuous.

In the following theorems, we introduce some character-
izations on M-continuous mappings. h

Theorem 2.1. Let f: (X, s) fi (Y, r) be a mapping. Then the

following statements are equivalent:

(i) f is M-continuous,
(ii) For each x 2 X and each neighbourhood W of f(x) in Y,

there exists an M-neighbourhood V of x in X such that
f(V) ˝ W,

(iii) The inverse image of each closed set in Y is M-closed in X,

(iv) int(clh(f
�1(B))) \ cl(intd(f

�1(B))) ˝ f�1(cl(B)), for
each B ˝ Y,

(v) f�1(int(B)) ˝ cl(inth(f
�1(B))) [ int(cld(f

�1(B))), for each

B ˝ Y,
(vi) If f is a bijective, then int(f(A)) ˝ f(-

cl(inth(A))) [ f(int(cld(A))), for each A ˝ X,

(vii) If f is a bijective, then f(int(clh(A))) \ f(cl(int-

d(A))) ˝ cl(f(A)), for each A ˝ X.
Proof.

(i) fi (ii). Let W be a neighbourhood of f(x) in Y. Then

there exists an open set G ˝ Y such that
f(x) 2 G ˝ W. Thus x 2 f�1(G) ˝ f�1(W) for all
x 2 X. If we Put f�1(W) = V. Since f is M-contin-
uous, then f�1(G) is an M-open set. So,

x 2 f�1(G) ˝ V. Hence,V is anM-neighbourhood
of x in X. Since, f�1(W) = V, then f(V) ˝ W.

(ii) fi (i). Let G ˝ Y be open set and for all x 2 f�1(G).

Then f(x) 2 G and there exists an M-neighbour-
hood V of x such that f(V) ˝ G. Hence,
x 2 V ˝ f�1f(V) ˝ f�1(G). Thus f�1(G) is an M-

neighbourhood for all x 2 X, then by Definition
1.4, f�1(G) is M-open in X. Therefore, f is M-
continuous.
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(i) fi (iii). Obvious.

(iii) fi (iv). Since B ˝ cl(B) ˝ Y which is a closed set, then by
hypothesis f�1(cl(B)) is M-closed in X. So, by
Definition 1.1, f�1(cl(B)) ˚ int(clh(f

�1(cl(B)))) \
cl(intd(f

�1(cl(B)))) ˚ int(clh(f
�1(B)))

\ cl(intd(f
�1(B))),

(iv) fi (v). By replacing YnB instead of B in (iv), we have
int(clh(f

�1(YnB))) \ cl(intd(f
�1(YnB))) ˝ f�1(cl

(YnB)), this implies that int(clh(Xnf�1(B))) \
cl(intd(Xnf�1(B))) ˝ Xnf�1(int(B)), then int(Xn
inth(f

�1(B))) \ cl(X ncld(f�1(B))) ˝ Xnf�1(int(B)),
hence Xncl(inth(f�1(B))) \ Xnint(cld(f�1(B))) ˝
Xnf�1(int(B)). Therefore, cl(inth(f

�1(B))) [
int(cld(f

�1(B))) ˚ f�1(int(B)).

(v) fi (vi). Follows directly by replacing f(A) instead of B in
(v) and applying the condition bijective of f,

(vi) fi (vii). We put XnA replacing by A in (vi) and by using
the condition of a bijective of f, we have

intðfðX n AÞÞ# fðclðinthðX n AÞÞÞ [ fðintðcldðX n AÞÞÞ; intðfðXÞ
n fðAÞÞ# fðclðX n clhðAÞÞÞ [ fðintðX n intdðAÞÞÞ;Y
n clðfðAÞÞ# fðX n intðclhðAÞÞÞ [ fðX n clðintdðAÞÞÞ;Y
n clðfðAÞÞ# fðXÞ n fðintðclhðAÞÞÞ [ fðXÞ n fðclðintdðAÞÞÞ;Y
n clðfðAÞÞ#Y n fðintðclhðAÞÞÞ [ Y n fðclðintdðAÞÞÞ;Y
n clðfðAÞÞ#Y n ½fðintðclhðAÞÞÞ \ fðclðintdðAÞÞÞ�; clðfðAÞÞ
� fðintðclhðAÞÞÞ \ fðclðintdðAÞÞÞ

(vii) fi (i). Let V 2 r and we put W= YnV. Then by
hypothesis, f [int(clh(f

�1(W)))] \ f
[cl(intd(f

�1(W)))] ˝ cl(ff�1(W)) ˝ cl(W) = W.

So, int(clh(f
�1(W))) \ cl[intd(f

�1(W))] ˝ f�1(W),
so by Definition 1.1, f�1(W), is M-closed in X.
Therefore, f is M-continuous.
Remark 2.2. The bijective condition in above theorem
in parts (vi), (vii) is necessary as showed by the following

example.

Example 2.4. Let X = Y= {a, b, c, d} with topologies
s = {X, /, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}} and r = {Y,
/, {a}, {b, c}, {a, d}, {a, b, c}}. Then a mapping f: (X,

s) fi (Y, r) which defined by f(a) = b, f(b) = f(c) = a and
f(d) = c, is:

(i) satisfying condition (vi) but not M-continuous. Since,
A= {b, c} is open in Y but f�1(A) = f�1({b, c}) = {a,
d} is not M-open of X,

(ii) satisfying condition (vii) but not M-continuous. Since,
A= {a, d} is closed in Y but f�1(A) = f�1({a,
d}) = {b, c} is not M-closed of X.
Definition 2.2. A mapping f: (X, s) fi (Y, r) is called M-con-
tinuous at point p 2 X if the inverse image of each neighbour-

hood of f(p) is an M-neighbourhood of p in X.

Theorem 2.2. A mapping f: (X, s) fi (Y, r) is M-continuous if
and only if it is M-continuous at every point x 2 X.

Proof. Obvious from Theorem 2.1.
Theorem 2.3. Let f: (X, s) fi (Y, r) be a mapping. Then the

following statements are equivalent:

(i) f is M-continuous,

(ii) M-cl(f�1(B)) ˝ f�1(cl(B)), for each B ˝ Y,
(iii) f(M-cl(A)) ˝ cl(f(A)), for each A ˝ X,
(iv) f�1(int(B)) ˝ M-int(f�1(B)), for each B ˝ Y,
(v) M-Bd(f�1(B)) ˝ f�1(Bd(B)), for each B ˝ Y,

(vi) M-b(f�1(B)) ˝ f�1(b(B)), for each B ˝ Y.
Proof.

(i) fi (ii). Since B ˝ cl(B) ˝ Y which is a closed set. Then by
hypothesis, f�1(cl(B)) is M-closed in X. Hence, by

Lemma 1.1, M-cl(f�1(B)) ˝ f�1(cl(B)) for each
B ˝ Y.

(ii) fi (iii). Let A ˝ X. Then f(A) ˝ Y, hence by hypothesis,

M-cl(A) ˝ M-cl(f�1(f(A))) ˝ f�1(cl(f(A))). There-
fore, f(M-cl(A)) ˝ f f�1(cl(f(A))) ˝ cl(f(A)),

(iii) fi (i). Let V ˝ Y be a closed set. Then, f�1(V) ˝ X.

Hence, by (iii), f(M-cl(f�1(V))) ˝ cl(f(f�1(V)))
˝ cl(V) = V. Thus M-cl(f�1(V)) ˝ f�1(V) and
hence f�1(V) 2MC(X). Hence, f is M-continuous,

(i) fi (iv). Let int(B) ˝ B ˝ Y be open. Then by hypothesis,

f�1(int(B)) is an M-open set in X. Hence, by
Lemma 1.1, f�1(int(B)) ˝ M-int(f�1(B)), for each
B ˝ Y.

(iv) fi (i). Let U ˝ Y be an open set. Then by assumption,
f�1(U) = f�1(int(U)) ˝ M-int(f�1(U)). Hence,
f�1(U) is M-open in X. Therefore, f is M-

continuous.
(iv) fi (v). Let V ˝ Y. Then by hypothesis, f�1(int(V)) ˝ M-

int(f�1(V)) and so f�1(V)nM-int(f�1(V)) ˝ f�1(V)

nf�1(int(V)). By Proposition 1.1, M-Bd
(f�1(V)) ˝ f�1(Bd(V)).

(v) fi (iv). Let V ˝ Y. Then by hypothesis, f�1(V)nM-
int(f�1(V)) ˝ f�1(V)nf�1(int(V)). Therefore, f�1

(int(V)) ˝ M-int(f�1(V)).
(iv) fi (vi). Let B ˝ Y. Then by (iv), f�1(int(B)) ˝ M-

int(f�1(B)). Hence by (ii), M-cl(f�1(B))nM-

int(f�1(B)) ˝ f�1(cl(B))nf�1(int(B)). So, by Propo-
sition 1.1, M-b(f�1(B)) ˝ f�1(b(B)), for each
B ˝ Y.

(vi) fi (iv). Let B ˝ Y. Then by Proposition 1.1, M-
b(f�1(B)) = M-cl(f�1(B)) nM-int(f�1(B)) ˝ f�1(cl
(B))nf�1(int(B)) this implies that f�1(int(B)) ˝ M-
int(f�1(B)), for each B ˝ Y.

Theorem 2.4. If, f: (X, s) fi (Y, r) is a mapping, then the fol-
lowing statements are equivalent:

(i) f is M-continuous,
(ii) f(M-d(A)) ˝ cl(f(A)), for each A ˝ X.

Proof.

(i) fi (ii). Since f isM-continuous, thenByTheorem2.3, f(M-

cl(A)) ˝ cl(f(A)), for each A ˝ X. So, by Proposi-
tion 1.1, f(M-d(A)) ˝ f(M-cl(A)) ˝ cl(f(A)),
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(ii) fi (i). Let U ˝ Y be a closed set. Then, f�1(U) ˝ X.

Hence, by hypothesis, f(M-d(f�1(U))) ˝ cl(f
(f�1(U))) ˝ cl(U) = U. Thus, M-d(f�1(U)) ˝
f�1(U). Then by Proposition 1.1, f�1(U) is M-

closed in X. Therefore, f is M-continuous. h
Definition 2.3. A mapping f: (X, s) fi (Y, r) is called h-bicon-
tinuous if, f is h-open and h-continuous mapping.

Theorem 2.5. The inverse image of each M-open set in (Y, r)
under h-bicontinuous mapping f: (X, s) fi (Y, r) is M-open
in (X, s).

Proof. Let f be a h-bicontinuous mapping and B 2MO(Y).
Then f�1(B) ˝ f�1(cl(inth(B))) [ f�1(int(cld(B))) ˝ cl(f�1

(inth(B))) [ f�1(int(cld(B))). By Definitions 1.5, 1.7, f is d-pre-
continuous and h-semicontinuous, then f�1(B) ˝ cl(inth (f�1

(inth(B)))) [ int(cld (f�1(int(cld(B))))) ˝ cl(inth (f�1(inth(B)))) [
int(cld (f

�1(cld(B)))) ˝ cl(inth (f
�1(B))) [ int(cld(f

�1(B))). There-
fore, f�1(B) 2MO(X).

Remark 2.3. According the above theorem, it is clear that the
inverse image of each d-preopen (resp. h-semi-open) set in (Y,

r) is M-open of (X, s) under h-bicontinuous mapping.

Remark 2.4. The restriction of M-continuous mapping is not
M-continuous.

Example 2.5. Let X= Y= {a, b, c, d} with topologies

s = {X, /, {b, c, d}, {c, d}, {d}, {b, d}} and r = {Y, /, {a},
{b, c}, {a, b, c}} and A= {a, b, c} ˝ X. Hence, the identity
mapping f: (X, s) fi (Y, r) is M-continuous. But, fA: (A,

sA) fi (Y, r) is not M-continuous. Since,{a} 2 r but,
f�1({a}) R MO(A).

The next theorem gives the conditions under which the
restriction of M-continuous mappings is M-continuous.

Theorem 2.6. In a space (X, s), if A 2 h-O(X, s) and
B 2MO(X, s), then A \ B 2MO(X, sA).

Proof. Since A \ B ˝ h-int(A) \ (cl(h-int(B)) [ int(d-cl(B))) =
(h-int(A) \ cl(h-int(B))) [ (h-int(A)) \ int(d-cl(B)) ˝ cl(h-int(A))
\ h-int(B) [ int(h-int(A) \ int(d-cl(B))). Since A\B ˝ A, then
A \ B ˝ (A \ cl(h-int(A) \ h-int(B))) [ (A \ int(h-int(A) \ int(d
-cl(B)))) ˝ clA(h-int(A) \ h-int(B)) [ intA(h-int(A) \ int(d-cl(B)))
˝ clA(h-int(A) \ h-int(B)) [ intA(d-cl(h-int(A) \ d-cl(B))) ˝ clA(h-
int(A) \ h-int(B)) [ intA(d-cl(d-cl(h-int(A) \ B))). Since, h-int(A)
\ h-int(B) ˝ h-int(A) ˝ A which is h-open in A, then A \ B ˝ clA
h-intA (h-int(A) \ h-int(B)) [ intA(A \ d-cl(h-int(A) \ B)) ˝ clA h-
intA (A \ B) [ intA d-clA(h-int(A) \ B) ˝ clA h-intA (A \ B) [ intA
d-clA(A \ B). Therefore, A \ B 2MO(X,sA).

Remark 2.5. The composition of two M-continuous mappings
need not be M-continuous as showed by the following
example.

Example 2.6. Let X = Y= Z= {a, b, c, d, e}, with topologies
sx = {X, /, {a, b}, {c, d}, {a, b, c, d}}, sy is an indiscrete topol-
ogy and sz = {Z, /, {a, e}}. Then the identity mappings f: (X,

sx) fi (Y, sy) and g: (Y, sy) fi (Z, sz) are M-continuous, but
gof is not M-continuous. Since f�1({a, e}) is not M-open of X.
The next theorem gives the conditions under which the

composition of two M-continuous mappings is M-continuous.

Theorem 2.7. If, f: (X, sx) fi (Y, sy) and g: (Y, sy) fi (Z, sz)
are mappings, then

(i) g o f is M-continuous if, f is M-continuous and g is
continuous,

(ii) g o f is M-continuous if, f is h-bicontinuous and g is M-

continuous.
Proof.

(i) Let V 2 sz and g be continuous. Then g�1(V) 2 sy. But f
is M-continuous, then f�1(g�1(V)) = (gof)�1(V)
2MO(X, sx). Hence, gof is M-continuous.

(ii) Let V 2 sz and g be M-continuous, then g�1(V) 2MO

(Y, sy). By Theorem 2.6, then (gof)�1(V) 2MO(X, sx).
Hence, gof is M-continuous.
3. M-Irresolute mappings

Definition 3.1. A mapping f: (X, s) fi (Y, r) is called M-

irresolute, if f�1(U) 2MO(X), for each U 2MO(Y).

Remark 3.1. The implication between some types of mappings
of Definitions 1.6, 3.1, are given by the following diagram.

θ-irresolute       quasi-irresolute              δ-semi-irresolute 

M-irresolute           e-irresolute            

α-irresolute              δ-pre-irresolute               e*-irresolute 

irresolute                      pre-irresolute  

γ-irresolute                                                     β-irresolute   

By using the [31,13,6,33–35,12,30,36,37] and the following

examples, we can showed that the above remark.

Example 3.1. Let X = Y= {a, b, c, d}, with topologies
s = {X, /, {a}, {b, c}, {a, b, c}} and r = {Y, /, {a}, {c}, {a,
c}}. Then a mapping f: (X, s) fi (Y, r) which defined by the
identity mapping is M-irresolute but, not quasi-irresolute
(resp. e-irresolute) mapping. Since, {a, b, d} 2 h-SO(Y) but

f�1({a, b, d}) = {a, b, d} R h-SO(X). Also, {c, d} 2 e-O(Y) but
f�1({c, d}) = {c, d} R e-O(X).

Example 3.2. Let X = Y= {a, b, c, d}, with topologies

s = {X, /, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}} and r = {Y,
/, {b}, {d}, {b, d}, {c, d}, {a, b, d}, {b, c, d}}. Then a mapping
f: (X, s) fi (Y, r) which defined by f(a) = f(c) = a, f(b) = d,

f(d) = b is quasi-irresolute but not M-irresolute. Since,
{b} 2MO(Y) but f�1({b}) = {d} R MO(X).

Example 3.3. Let X= {a, b, c, d} and Y= {a, b, c} with
topologies sx = {X, /, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}}
and sy = {Y, /, {b}, {c}, {b, c}}. Then a mapping f: (X,

s) fi (Y, r) which defined by f(a) = b, f(b) = c, f(c) = a,
f(d) = d is e-irresolute but not M-irresolute. Since, {a,
b} 2MO(Y) but, f�1({a, b}) = {a, c} R MO(X).
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Example 3.4. Let X= Y= {a, b, c, d}, with topologies

s = {X, /, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}} and
r = {Y, /, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}}. Then a mapping
f: (X, s) fi (Y, r) which defined by the identity mapping is M-

irresolute but, not d-pre-irresolute. Since, {a, b, d} 2 d-PO(Y)
but f�1({a, b, d}) = {a, b, d} is not d-preopen of (X, s). In
the following theorems, we introduce some characterizations
on M-irresolute mappings.

Theorem 3.1. Let f: (X, s) fi (Y, r) be a mapping. Then the
following statements are equivalent:

(i) f is M-irresolute,
(ii) The inverse image of each M-closed in (Y, r) is M-closed

in (X, s),
(iii) M-cl(f�1(B)) ˝ f�1(M-cl(B)), for each B ˝ Y,

(iv) f(M-cl(A)) ˝ M-cl(f(A)), for each A ˝ X,
(v) f�1(M-int(B)) ˝ M-int(f�1(B)), for each B ˝ Y,
(vi) M-Bd(f�1(B)) ˝ f�1(M-Bd(B)), for each B ˝ Y,

(vii) M-b(f �1(B)) ˝ f �1(M-b(B)), for each B ˝ Y,
(viii) f(M-b(A)) ˝ M-b(f(A)), for each A ˝ X,

(ix) f(M-d(A)) ˝ M-cl(f(A)), for each A ˝ X,
(x) For each x 2 X and each M-neighbourhood U containing

f(x), there exists an M-neighbourhood V containing x
such that f(V) ˝ U.

Proof.

(i) fi (ii). Obvious.

(ii) fi (iii). Let B ˝ Y and B ˝ M-cl(B) ˝ Y which is
M-closed. Then by (ii), f�1(M-cl(B)) ˝ X is M-
closed. Then by Lemma 1.1, we have M-

cl(f�1(B)) ˝ M-cl(f�1(M-cl(B))) = f�1(M-cl(B)).
(iii) fi (iv). Since A ˝ X, then f(A) ˝ Y. But, f(A) ˝ M-

cl(f(A)) which is M-closed in Y, hence by (ii),

f�1(M-cl(f(A))) ˝ X is M-closed in X. Then
A ˝ f�1(f(A)) ˝ f�1(M-cl(f(A))) and by
Lemma 1.1, we have A ˝ M-cl(A) ˝ f�1(M-
cl(f(A))). Hence f(M-cl(A)) ˝ M-cl(f(A)).

(iv) fi (i). Let W 2MO(Y) and F= YnW. Then by (iv),
f(M-cl(f�1(F))) ˝ M-cl(f(f�1(F))) ˝ M-
cl(F) = F. So, M-cl(f�1(F)) ˝ f�1(F) and

therefore f�1(W) 2MO(X). Hence, f is M-
irresolute.

(v) fi (vi). Let B ˝ Y. Then by hypothesis, f�1(B)nM-

int(f�1(B)) ˝ f�1(B)nf�1(M-int(B)). By Propo-
sition 1.1, M-Bd(f�1(B)) ˝ f�1(M-Bd(B)).

(vi) fi (v). Let B ˝ Y. Then by hypothesis, we have
f�1(B)nM-int(f�1(B)) ˝ f�1(B)nf�1(M-int(B)).

Therefore, f�1(M-int(B)) ˝ M-int(f�1(B)).
(i) fi (v). Since M-int(B) ˝ B which is M-open in Y,

then by (i), f�1(M-int(B)) ˝ X is M-open. By

Lemma 1.1, f�1(M-int(B)) ˝ M-int(f�1(B)).
(v) fi (i). Let B 2MO(Y). Then B = M-int(B). Hence

by (v), we have f�1(B) = f�1(M-int(B)) ˝ M-

int(f�1(B)). Thus, f�1(B) 2MO(X). So, f is
M-irresolute,
(i) fi (vii). Let B ˝ Y. Then by(iii), M-b(f�1(B)) = M-

cl(f�1(B))nM-int(f�1(B)) ˝ f�1(M-cl(B))nM-
int(f�1(B)) ˝ f�1[M-b(B) [M-int(B)]nM-int
(f�1(B)) ˝ [f�1(M-b(B)) [ f�1(M-int(B))]nM-

int(f�1(M-int(B))). Hence by (i), M-b
(f�1(B)) ˝ f�1(M-b(B)) [ f�1(M-int(B))nf�1
(M-int(B)) = f�1(M- b(B)),

(vii) fi (viii). Follows directly by replacing f(A) instead of B

in (vii).
(viii) fi (vii). Let B ˝ Y. Then by hypothesis, f(M-

b(f�1(B))) ˝ M-b(f(f�1(B))) ˝ M-b(B) and

therefore M-b(f�1(B)) ˝ f�1(M-b(B)).
(vii) fi (i). Let B 2MO(Y). Then B = M-int(B), by

hypothesis, M-cl(f�1(B))nM-int(f�1(B)) ˝
f�1(M-cl(B))nf�1(M-int(B)). Then M-cl
(f�1(B))nM-int(f�1(B)) ˝ f�1(M-cl(B))nf�1(B),
by (iii) we have f�1(B) ˝ M-int(f�1(B)), hence,
f�1(B) 2MO(X). So, f is M-irresolute.

(i) fi (ix). Let A ˝ X. Then by(iv), f(M-d(A)) ˝ f(M-
cl(A)) ˝ M-cl(f(A)),

(ix) fi (i). Let F ˝ Y be M-closed. Hence by hypothesis,

f(M-d(f�1(F))) ˝ M-cl(f(f�1(F))) ˝ M-
cl(F) = F, then M-d(f�1(F)) ˝ f�1(F). Then by
Proposition 1.1, f�1(F) is M-closed set in X.

Therefore, f is M-irresolute.
(i) fi (x). Since U is M-neighbourhood of f(x), then

there exists an M-open set G containing f(x)

such that f(x) 2 G ˝ U, hence
x 2 f�1(G) ˝ f�1(U). Put f�1(U) = V. Then
by hypothesis, there exists M-neighbour-
hood V containing x such that f(V) = f

f�1(U) ˝ U.
(x) fi (i). Let U be an M-open set of Y for every

x 2 f�1(U). Then f(x) 2 f f�1(U) ˝ U, hence

U is M-neighbourhood of f(x). By hypothe-
sis, there exists M-neighbourhood V
containing x such that f(V) ˝ U, then

V ˝ f�1f(V) ˝ f�1(U). By Definition 1.4,
f�1(U) is M-neighbourhood of x, for every
x 2 f�1(U) and hence, f�1(U) is M-open in
X. Therefore, f is M-irresolute.

Theorem 3.2. If, f: (X, sx) fi (Y, sy) and g: (Y, sy) fi (Z, sz)
are mappings, then

(i) g o f is M-irresolute, if both f and g are M-irresolute,
(ii) g o f is M-continuous, if f is M-irresolute and g is M-

continuous.

Proof.

(i) Let U 2MO(Z, sz). Since g is M-irresolute, then
g�1(U) 2MO(Y, sy). But f is M-irresolute, then
f�1(g�1(U)) 2MO(X, sx). Hence, g o f is M-irresolute.

(ii) Let U 2 sz. Since, g is M-continuous, then g
�1(U) 2MO(Y, sy). But f is M-irresolute, then
f�1(g�1(U)) 2MO(X, sx). Hence, g o f is M-continuous.
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4. Conclusion

Maps have always been tremendous importance in all branches
of mathematics and the whole science. In the other hand,

topology plays a significant role in quantum physics, high en-
ergy and super string theory [38,39]. Thus we have obtained a
new class of mappings called M-continuous which may have

possible application in quantum physics, high energy and
superstring theory. Also, the new concepts initiated in this pa-
per can be applied in modifications of rough set approxima-
tions [24] which is widely applied in many application fields.
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