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Abstract With influenza as a prototype, we propose a compartmental model for a pandemic by

taking into account of recruitment. The model has a threshold dynamics. Precisely, when the basic

reproduction number R0 6 1, the disease free equilibrium is globally asymptotically stable; when

R0 > 1, the disease free equilibrium is unstable and there is a unique endemic equilibrium which

globally attracts all solutions except the trivial one (the disease free equilibrium). These results

are established by applying the LaSalle’s invariance principle.
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1. Introduction

Influenza is one of the most common contagious respiratory
illnesses caused by viruses related to negative-sense RNA orth-

omyxovirade family [1]. The virus can spread from person to
person through air by coughs, sneezes or from infected
surfaces, and by the direct contact of infected persons. It is also
able to shift from species to species and to change its form

rapidly. This highly spreadable disease causes about three to
five million cases of acute respiratory infections and
250,000–500,000 deaths every year worldwide [2,3]. Even in

the developed countries such as USA, Europe, and Canada,
the morbidity and the mortality are very high. As an example,

in USA more than 200,000 people are hospitalized from flu
complication that results in an average 23,600 (approximately)
annual deaths [4].

Anyone infected by flu may have symptoms of fever, sore
throat, muscle pains, headache, coughing and fatigue. Individ-
uals incubate the virus for nearly 1–3 days before becoming

infectious. The infectious period is generally 3–6 days, and
the duration of the disease is typically 2–7 days [5].

Epidemic models are important to study the transmission

dynamics of infectious diseases and their future risks to human
population, and to seek the optimum prevention and control
strategies. They provide us with useful information, such as
disease transmission, spread of disease agent, epidemiological

trends, and preparedness for the disease outbreak.
Arino et al. [6] argued that ‘‘as a general policy in preparing

for an outbreak of a disease whose parameters are not yet

known, it would be better to use a general compartmental
model involving relatively few parameters and not depending
critically on the particular as yet unknown setting.’’ As a
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Fig. 1 The transmission diagram for an SLIAR model of

influenza.
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result, they proposed a compartmental SLIAR epidemic model
with influenza being a prototype. This model was built on the
assumption that a significant fraction of the infected individu-

als never develop symptoms (called asymptomatic cases). The
people with asymptomatic infection are able to transmit the
disease although they do not have any sign of the disease.

Therefore, infectious population is divided into two compart-
ments according to whether or not they develop the symptoms
after being infected. They calculated the basic reproduction

number and obtained the final size relation. In their study, they
neglected the important factor of recruitment.

The purpose of this paper is to study the effect of recruit-
ment. It turns out that the dynamics is quite different from that

in [6]. The remaining of this paper is organized as follows. First
we formulate the model in Section 2. Then, in Sections 3 and 4,
we study the stability of the disease free equilibrium and the

endemic equilibrium, respectively. The paper concludes with
a brief discussion.

2. Model formulation

The total population NðtÞ is divided into five classes: suscepti-
ble (SðtÞ), latent (LðtÞ), symptomatically infective (IðtÞ),
asymptomatically infective (AðtÞ), and recovered (RðtÞ). It is
assumed that there is an incubation period between infection
and development of disease before an infected person is being

infectious. Thus after being infected the susceptible individuals
first move to latent class, then to infectious class (either IðtÞ or
AðtÞ), and finally progress to recovered class.

To build a concrete model, we make the following

assumptions.

� There is a constant recruitment rate K into the susceptible

class and the natural death rate is l.
� The transmission coefficient of the symptomatic infective is

b, whereas the infectiousness due to asymptomatic individ-

uals is reduced by a factor d.
� The rate of having infectiousness is k while the probability
being symptomatic infective is p.

� The recovered rates for symptomatic and asymptomatic
classes are r1 and r2, respectively, and the death rates due
to symptomatic and asymptomatic infection are d1 and
d2, respectively.

Based on the above assumptions, we can sketch the trans-
mission diagram in Fig. 1. These assumptions lead to the

model

dS

dt
¼ K� ksðtÞS� lS;

dL

dt
¼ ksðtÞS� kL� lL;

dI

dt
¼ kpL� r1I� ðlþ d1ÞI;

dA

dt
¼ kð1� pÞL� r2A� ðlþ d2ÞA;

dR

dt
¼ r1Iþ r2A� lR;

ð2:1Þ

where ksðtÞ ¼ bðIþ dAÞ. Since the fifth equation in (2.1) is
decoupled from the other four equations, we only focus on
the first four equations of (2.1) in the sequel, namely,
dS

dt
¼ K� ksðtÞS� lS;

dL

dt
¼ ksðtÞS� kL� lL;

dI

dt
¼ kpL� r1I� ðlþ d1ÞI;

dA

dt
¼ kð1� pÞL� r2A� ðlþ d2ÞA:

ð2:2Þ

It is not difficult to show that the feasible region of (2.2)

C ¼ ðS;L; I;AÞ 2 R4
þ : Sþ Lþ Iþ A 6

K
l

� �

is a positively invariant and attracting set that attracts all solu-

tions of (2.2) with nonnegative initial conditions. For the long
term behavior of (2.2), we only consider solutions in C. In the
following two sections, we study the stability of the disease free

equilibrium and the endemic equilibrium.

3. The global asymptotic stability of the disease free equilibrium

It is easy to see that (2.2) has a unique disease free equilibrium
E0 ¼ ðS0; 0; 0; 0Þ, where S0 ¼ K=l. We first study the local sta-
bility of E0 by linearization.

Let

R0 ¼
bS0kp

ðkþ lÞðr1 þ lþ d1Þ
þ bdS0kð1� pÞ
ðkþ lÞðr2 þ lþ d2Þ

:

Note that R0 is called the basic reproduction number and it can
be calculated by the next generation matrix method [7].

Theorem 3.1. The disease free equilibrium E0 of (2.2) is locally
exponentially stable if R0 < 1 and is unstable if R0 > 1.

Proof. The Jacobian matrix of (2.2) at E0 is

JðE0Þ ¼

�l 0 �bS0 �bdS0

0 �ðkþ lÞ bS0 bdS0

0 kp �ðr1 þ lþ d1Þ 0

0 kð1� pÞ 0 �ðr2 þ lþ d2Þ

2
6664

3
7775:

Denote

A22 ¼
�ðkþ lÞ bS0 bdS0

kp �ðr1 þ lþ d1Þ 0

kð1� pÞ 0 �ðr2 þ lþ d2Þ

2
64

3
75:
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Clearly, one eigenvalue of JðE0Þ is k1 ¼ �l (which is negative)

and the other three ones are those of A22. Since

detðA22Þ ¼ �ðkþ lÞðr1 þ lþ d1Þðr2 þ lþ d2Þ
þ bS0kpðr2 þ lþ d2Þ þ bdS0kð1� pÞðr1 þ lþ d1Þ
¼ ðkþ lÞðr1 þ lþ d1Þðr2 þ lþ d2ÞðR0 � 1Þ:

If R0 > 1 then detðA22Þ > 0. It follows that A22 and hence
JðE0Þ has a positive eigenvalue. Therefore, E0 is unstable if

R0 > 1. Now, assume that R0 < 1. In this case, detðA22Þ < 0
and obviously traceðA22Þ < 0. Moreover, the second additive
compound matrix [8] of A22 is

A
½2�
22 ¼

�ðlþmÞ 0 �bdS0

0 �ðlþ nÞ bS0

�kð1� pÞ kp �ðmþ nÞ

2
64

3
75;

where l ¼ kþ l;m ¼ r1 þ lþ d1, and n ¼ r2 þ lþ d2. It fol-
lows that

detðA½2�22Þ ¼ ðlþmÞðlþ nÞðmþ nÞ

� bS0kp

ðlþ nÞðmþ nÞ þ
dbS0kð1� pÞ
ðlþmÞðmþ nÞ � 1

� �
< 0

since bS0kp
ðlþnÞðmþnÞ þ

dbS0kð1�pÞ
ðlþmÞðmþnÞ < R0 < 1. By Lemma 3 [9], all eigen-

values of A22 have negative real parts and this is also true for

JðE0Þ. Therefore, E0 is locally exponentially stable if R0 < 1.
This completes the proof. h

In fact, E0 is globally asymptotically stable if R0 6 1.

Theorem 3.2. The disease free equilibrium E0 of (2.2) is
globally asymptotically stable if R0 6 1.
Proof. Note that, for any solution of (2.2), SðtÞ will be eventu-
ally positive and the set

X ¼ ðS;L; I;AÞ 2 R4
þ : S > 0;Sþ Lþ Iþ A 6

K
l

� �

is a positively invariant subset of (2.2). So we only need to show

that E0 is globally asymptotically stable in X. To this purpose,
we consider the Lyapunov function V : X! R defined by

VðS;L; I;AÞ ¼ S� S0 � S0 ln
S

S0

� �
þ Lþ a1Iþ a2A;

where a1 ¼ bS0=ðr1 þ lþ d1Þ and a2 ¼ bdS0=ðr2 þ lþ d2Þ.
Obviously, V is C1;VðE0Þ ¼ 0 and V attains the global mini-
mum 0 in X only at E0.

Now, we calculate the time derivative of V along the
trajectories of (2.2).

dV

dt
¼ 1�S0

S

� �
dS

dt
þdL

dt
þa1

dI

dt
þa2

dA

dt

¼ 1�S0

S

� �
½K�bðIþdAÞS�lS�þ ½bðIþdAÞS�ðkþlÞL�

þa1½kpL�ðr1þlþd1ÞI�þa2½kð1�pÞL�ðr2þlþd2ÞA�

¼ 1�S0

S

� �
½lS0�bðIþdAÞS�lS�þ ½bðIþdAÞS�ðkþlÞL�

þa1½kpL�ðr1þlþd1ÞI�þa2½kð1�pÞL�ðr2þlþd2ÞA�

¼�lS 1�S0

S

� �2

�bðIþdAÞSþbðIþdAÞS0þbðIþdAÞS

�ðkþlÞLþa1½kpL�ðr1þlþd1ÞI�
þa2½kð1�pÞL�ðr2þlþd2ÞA�:
Here, we have used the fact thatK ¼ lS0. With the choices of a1
and a2 (it should be clear whywemade such choices), we see that

dV

dt
¼ �lS 1� S0

S

� �2

� ðkþ lÞ � bS0kp

ðr1 þ lþ d1Þ
þ bdS0kð1� pÞ
ðr2 þ lþ d2Þ

� �� �
L

¼ �lS 1� S0

S

� �2

� ðkþ lÞð1�R0ÞL:

It follows that dV
dt
6 0 when R0 6 1. Observe that

ðS;L; I;AÞ : dV
dt
¼ 0

� 	
# fðS;L; I;AÞ : S ¼ S0g. We claim that

the only complete orbit in fðS;L; I;AÞ : S ¼ S0g is the disease

free equilibrium. In fact, if ðSðtÞ;LðtÞ; IðtÞ;AðtÞÞ is such a solu-
tion, then

0 ¼ dSðtÞ
dt
¼ K� bðIðtÞ þ dAðtÞÞS0 � lS0;

which implies that IðtÞ þ dAðtÞ ¼ 0. As both IðtÞ and AðtÞ are
nonnegative, we get that IðtÞ ¼ AðtÞ ¼ 0. Then 0 ¼ dIðtÞ

dt
¼

kpLðtÞ produces LðtÞ ¼ 0. This proves the claim. The observa-

tion and the claim combined tell us that the only complete

orbit in ðS;L; I;AÞ : dV
dt
¼ 0

� 	
is the disease free equilibrium

E0. Therefore, by LaSalle’s invariance principle [10,pp. 127],

E0 is globally asymptotically stable in X if R0 6 1. This com-
pletes the proof. h
4. The global asymptotic stability of the endemic equilibrium

In this section, we consider the endemic equilibria of (2.2). For
an endemic equilibrium ðS�;L�; I�;A�Þ, we have at least one of
I� and A� is nonzero. Moreover,

K� bðI� þ dA�ÞS� � lS� ¼ 0;

bðI� þ dA�ÞS� � ðkþ lÞL� ¼ 0;

kpL� � ðr1 þ lþ d1ÞI� ¼ 0;

kð1� pÞL� � ðr2 þ lþ d2ÞA� ¼ 0:

ð4:1Þ

From the third and fourth equations of (4.1), we have

I� ¼ kpL�

ðr1 þ lþ d1Þ
and A� ¼ kð1� pÞL�

ðr2 þ lþ d2Þ
:

Substituting these values into the second equation of (4.1) and
noting that L� – 0, we get S� ¼ S0=R0. These, combined with

the first equation of (4.1), give us

L� ¼ lS0ðR0 � 1Þ
ðkþ lÞR0

:

It follows that biologically meaningful endemic equilibrium
exists if and only if R0 > 1. When the endemic equilibria exist,
there is only one, denoted by E� ¼ ðS�;L�; I�;A�Þ, where

S� ¼ S0

R0

;

L� ¼ lS0ðR0 � 1Þ
ðkþ lÞR0

;

I� ¼ kp

r1 þ lþ d1
L�;

A� ¼ kð1� pÞ
r2 þ lþ d2

L�:
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Though with given parameter values we can obtain the
local stability of E� by linearization and the Hurwitz criterion,
it is difficult to discuss its local stability in general. In the fol-

lowing, we use the LaSalle’s invariance principle to establish
the globally asymptotic stability of E�. Before doing it, we need
a result on persistence of (2.2).

It is easy to see that a solution ðSðtÞ;LðtÞ; IðtÞ;AðtÞÞ of (2.2)
with Lð0Þ þ Ið0Þ þ Að0Þ > 0 is eventually (componentwise)
positive. Hence, for the global stability of the endemic equilib-

rium E�, we only need to consider the interior of the feasible
region C,

C
�
¼ fðS;L; I;AÞ 2 C : S > 0;L > 0; I > 0;A > 0g;

since it is also a positively invariant set of (2.2). This is
achieved with an algebraic approach by Li et al. [11] to con-
struct a suitable Lyapunov function. First we need the perma-

nence of the system. With similar arguments as those in [12],
one can easily prove the uniform persistence of system (2.2).

Proposition 4.1. If R0 > 1, then (2.2) is uniformly persistent,

that is, there exists a positive constant c > 0 such that

min lim inf
t!1

SðtÞ; lim inf
t!1

LðtÞ; lim inf
t!1

IðtÞ; lim inf
t!1

AðtÞ
n o

> c:

As C is attractive, it follows that

max lim sup
t!1

SðtÞ; lim sup
t!1

EðtÞ; lim sup
t!1

IðtÞ; lim sup
t!1

AðtÞ
� �

6
K
l
:

This, combined with Proposition 4.1, implies that (2.2) is per-
manent if R0 > 1. Therefore, system (2.2) has a compact
absorbing set K � C

�
(see, for example, [13]).

Theorem 4.1. If R0 > 1, then the unique endemic equilibrium E�

of (2.2) is globally asymptotically stable in C
�
.

Proof. We only need to prove that E� is globally asymptoti-
cally stable in a compact absorbing set of C

�
, which exists as

we have argued above. Let K be such a compact absorbing

set. Define a Lyapunov function V : K! R by

VðS;L; I;AÞ ¼ S� S� � S� ln
S

S�

� �
þ a1 L� L� � L� ln

L

L�

� �

þ a2 I� I� � I� ln
I

I�

� �

þ a3 A� A� � A� ln
A

A�

� �
;

where a1; a2, and a3 are nonnegative constants to be deter-
mined. Clearly, V is C1;VðE�Þ ¼ 0 and V is strictly positive
at other points in K.

The time derivative of V along the solutions of (2.2) is given
by

dV

dt
¼ 1�S�

S

� �
dS

dt
þa1 1�L�

L

� �
dL

dt

þa2 1� I�

I

� �
dI

dt
þa3 1�A�

A

� �
dA

dt

¼ 1�S�

S

� �
½K�bðIþdAÞS�lS�

þa1 1�L�

L

� �
½bðIþdAÞS�ðkþlÞL�
þa2 1� I�

I

� �
½kpL�ðr1þlþd1ÞI�

þa3 1�A�

A

� �
½kð1�pÞL�ðr2þlþd2ÞA�

¼ ½K�bðIþdAÞS�lS�þ �K
S�

S
þbðIþdAÞS� þlS�

� �

þa1½bðIþdAÞS�ðkþlÞL�þa1 �bðIþdAÞL� S
L
þðkþlÞL�

� �

þa2½kpL�ðr1þlþd1ÞI�þa2 �kpI�
L

I
þðr1þlþd1ÞI�

� �

þa3½kð1�pÞL�ðr2þlþd2ÞA�

þa3 �kð1�pÞA�L
A
þðr2þlþd2ÞA�

� �

¼ ½KþlS� þa1ðkþlÞL� þa2ðr1þlþd1ÞI� þa3ðr2þlþd2ÞA��
�lS�ð1�a1ÞbSI�ð1�a1ÞbdSAþ½bS� �a2ðr1þlþd1Þ�I
þ½bdS� �a3ðr2þlþd2Þ�A�½a1ðkþlÞ�a2kp�a3kð1�pÞ�L

�K
S�

S
�a1bL

�SI

L
�a1bdL�

SA

L
�a2kpI

�L

I
�a3kð1�pÞA�L

A
:

For the simplicity of notation, denote w 	 S
S� ; x 	 L

L� ; y 	 I
I�,

and z 	 A
A�. Let C¼KþlS� þa1ðkþlÞL� þa2ðr1þlþd1ÞI�þ

a3ðr2þlþd2ÞA�. Then
dV

dt
¼ C� lS�w� ð1� a1ÞbS�I�wy� ð1� a1ÞbdS�A�wz

� ½a1ðkþ lÞ � a2kp� a3kð1� pÞ�L�x� ½a2ðr1
þ lþ d1Þ � bS��I�y� ½a3ðr2 þ lþ d2Þ

� bdS��A�z� a2kpL
� x

y
� a3kð1� pÞL� x

z
� K

1

w

� a1bS
�I�

wy

x
� a1bdS�A�

wz

x
: ð4:2Þ

As in [11], define a set D of the above terms by

D ¼ w; x; y; z;wy;wz;
1

w
;
x

y
;
x

z
;
wy

x
;
wz

x

� �
:

Then we can consider the arithmetic means and geometric
means of the following three sets to determine a1; a2, and a3,

w;
1

w

� �
;

1

w
;
wy

x
;
x

y

� �
; and

1

w
;
wz

x
;
x

z

� �
;

while the following relationships among S�;L�; I�, and A� are

useful.

K ¼ bðI� þ dA�ÞSþ lS�;

bðI� þ dA�ÞS� ¼ ðkþ lÞL�;
kpL� ¼ ðr1 þ lþ d1ÞI�;
kð1� pÞL� ¼ ðr2 þ lþ d2ÞA�:

ð4:3Þ

Suppose the right hand side of (4.2) can be rewritten as

b1 2� w� 1

w

� �
þ b2 3� 1

w
� wy

x
� x

y

� �

þ b3 3� 1

w
� wz

x
� x

z

� �
;

where the coefficients b1; b2, and b3 are unknown quantities.
Then equating the coefficients of like terms of these two
expressions gives us

2b1 þ 3b2 þ 3b3 ¼ C;

b1 ¼ lS�;

1� a1 ¼ 0;
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a2ðr1 þ lþ d1Þ ¼ bS�;

a3ðr2 þ lþ d2Þ ¼ bdS�;

b1 þ b2 þ b3 ¼ K;

b2 ¼ a2kpL
� ¼ a1bS

�I�;

b3 ¼ a1bdS�A� ¼ a3kð1� pÞL�;
kþ l ¼ a2kpþ a3kð1� pÞ:

With (4.3), the above linear system is consistent and we can
choose

a1 ¼ 1; a2 ¼
bS�

r1 þ lþ d1
¼ bS�I�

kpL�
;

a3 ¼
bdS�

r2 þ lþ d2
¼ bdS�A�

kð1� pÞL� :

By the arithmetic mean-geometric mean inequality, we get

dV

dt
¼ lS� 2� w� 1

w

� �
þ bS�I� 3� 1

w
� wy

x
� x

y

� �

þ bdS�A� 3� 1

w
� wz

x
� x

z

� �
6 0:

Note that ðS;L; I;AÞ 2 K : dV
dt
¼ 0

� 	
¼ ðS;L; I;AÞ 2 K : S ¼f

S�; L
L� ¼ I

I� ¼ A
A�g. We claim that the only complete orbit in

ðS;L; I;AÞ 2 K : dV
dt
¼ 0

� 	
is the endemic equilibrium E�. In

fact, let ðSðtÞ;LðtÞ; IðtÞ;AðtÞÞ be such a solution. Denote
LðtÞ
L� ¼

IðtÞ
I� ¼

AðtÞ
A� ¼ lðtÞ. Then

0 ¼ dSðtÞ
dt
¼ dS�

dt
¼ K� blðtÞðI� þ dA�ÞS� � lS�;

which implies that

lðtÞ ¼ K� lS�

bðI� þ dA�ÞS� ¼ 1:

Therefore, ðSðtÞ;LðtÞ; IðtÞ;AðtÞÞ ¼ E�. This proves the claim.
By LaSalle’s invariance principle, we deduce that E� is globally

asymptotically stable in K and hence in C
�
. This completes the

proof. h
5. Discussion

In this paper, we modified a compartmental model proposed by

Arino et al. [6] with the consideration of recruitment. The new
model has different dynamics from the original model. For the
original model, every equilibrium is a disease free equilibrium

and there are infinitely many equilibria. Every solution tends
to an equilibrium where the final size is determined. The mod-
ified model has a threshold dynamics. There is a basic reproduc-

tion number R0. If R0 6 1, then there is only the disease free
equilibrium and it is globally asymptotically stable. If R0 > 1,
then the disease free equilibrium is unstable and there is also

a unique endemic equilibrium which attracts all solutions other
than the disease free equilibrium. The basic reproduction num-
ber is expressed in terms of the model parameters. Therefore,
prediction and prevention strategies can be easily made.
Nevertheless, the model is a little simple. There are several
factors need to be considered. For example, on the one hand,
as mentioned in Introduction, there is an incubation period for

an infected to be infectious. Hence, it is more reasonable to
build models described with delay differential equations. On
the other hand, for influenza, the recovered can be susceptible

again. As a result, SLIARS models may be proposed. We want
to check whether the threshold dynamics preserves or not. We
leave these as future study.
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