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Abstract In this paper, we state and prove some common fixed point theorems in fuzzy metric
spaces. These theorems generalize and improve known results (see [1]).
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1. Introduction

In 1965, the theory of fuzzy sets was investigated by Zadeh [2].
In 1981, Heilpern [3] first introduced the concept of fuzzy con-
tractive mappings and proved a fixed point theorem for these
mappings in metric linear spaces. His result is a generalization
of the fixed point theorem for point-to-set maps of Nadler [4].
Therefore, several fixed point theorems for types of fuzzy con-
tractive mappings have appeared (see, for instance [1,5-9]).

In this paper, we state and prove some common fixed point
theorems in fuzzy metric spaces. These theorems generalize
and improve known results (see [1]).
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2. Basic preliminaries

The definitions and terminologies for further discussions are
taken from Heilpern [3]. Let (X,d) be a metric linear space.
A fuzzy set in X is a function with domain X and values in
[0,1]. If A4 is a fuzzy set and x € X, then the function-value
A(x) is called the grade of membership of x in 4. The collection
of all fuzzy sets in X is denoted by J(X).

Let 4 € 3(X) and « € [0, 1]. The a-level set of 4, denoted by
A,, is defined by

Ay ={x:A4A(x) = o} if a€(0,1], Ado={x:A(x) >0},

whenever B is the closure of set (nonfuzzy) B.
Definition 2.1. A fuzzy set 4 in X is an approximate quantity iff

its a-level set is a nonempty compact convex subset (nonfuzzy)
of X for each « € [0,1] and supcyA(x) = 1.

The set of all approximate quantities, denoted by W(X), is a

subcollection of J(X).

Definition 2.2. Let 4, B € W(X), « € [0, 1] and CP(X) be the set
of all nonempty compact subsets of X. Then
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p(4,B)= _inf d(x,y),

XEAy,yEBy

D,(A,B) = H(A,, B,),

0,(A4,B)= sup d(x,y) and

XEAy,yEB,

where H is the Hausdorff metric between two sets in the collec-
tion CP(X). We define the following functions

p(A4,B) =supp,(A4,B), 0(A4,B) =supd,(4,B) and
D(A, B) = supD,(4, B).
It is noted that p, is nondecreasing function of o.

Definition 2.3. Let 4, B € W(X). Then A4 is said to be more
accurate than B (or B includes A4), denoted by A4 c B, iff
A(x) < B(x) for each x € X.

The relation c induces a partial order on W(X).

Definition 2.4. Let X be an arbitrary set and Y be a metric lin-
ear space. F is said to be a fuzzy mapping iff F is a mapping
from the set X into W(Y), i.e., F(x) € W(Y) for each x € X.

The following proposition is used in the sequel.

Proposition 2.1. ([4]).If A, B€ CP(X) and a € A, then there
exists b € B such that d(a,b) < H(A,B).

Following Beg and Ahmed [10], let (X,d) be a metric space.
We consider a subcollection of 3(X) denoted by W' (X). Each
fuzzy set Ae W'(x), its a-level set is a nonempty compact
subset (nonfuzzy) of X for each o€ [0,1]. It is obvious that
each element A € W(X) leads to A € W (X) but the converse is
not true.

The authors [10] introduced the improvements of the lem-
mas in Heilpern [3] as follows.

Lemma 2.1. If {x,} c A for each A € W' (X) and x, € X, then
Pu(X0,B) < D,(A,B) for each B€ W' (X).

Lemma 2.2. p,(x,4) <d(x,y) + p(y,A) forall x, y € X and
AeW'(X).

Lemma 2.3. Let x€ X, A€ W' (X) and {x} be a fuzzy set with
membership function equal to a characteristic function of the set
{x}. Then {x}c A if and only if p,(x,A) = 0 for each
o€ [0,1].

Lemma 2.4. Let (X,d) be a complete metric space, F:
X— W'(X) be a fuzzy map and x, € X. Then there exists
x; € X such that {x;}  F(xy).

Remark 2.1. It is clear that Lemma 2.4 is a generalization of
corresponding lemma in Arora and Sharma [1] and Proposi-
tion 3.2 in Lee and Cho [7].

Let ¥ be the family of real lower semi-continuous functions
F:[0,00)® = R, R := the set of all real numbers, satisfying the
following conditions:

(Y1) F is non-increasing in 3rd, 4th, 5th, 6th coordinate
variable,
(¥») there exists i € (0,1) such that for every u, v = 0 with

(l//21) F(u: Vv, v,u,u + V,O) < 0 or (lpzz) F(us v, u, V,O,u + V) < 05
we have u < h v, and
(¥3) Fu,u,0,0,u,u) > 0 for all u > 0.

3. Main results

In 2000, Arora and Sharma [1] proved the following result.

Theorem 3.1. Let (X,d) be a complete metric space and T;, T,
be fuzzy mappings from X into W(X). If there is a constant q,
0< q < 1, such that, for each x, y € X,

D(Tl(x)7 Tz(y)) < qmax{d(x,y),p(x, Tl (X))J?(y, TZ(.}’))v
p(x, T2(v)),p(v, T1(x))},
then there exists z € X such that {z} c T;(z) and {z} c T>(z).

Remark 3.1. If there is a constant ¢, 0 < ¢ < 1, such that, for
each x, y € X,

D(Ti(x), Ta(y))<gmax{d(x,y), p(x, T (x)), p(», T2(y))}, (1)

then the conclusion of Theorem 3.1 remains valid. This result
is considered as a special case of Theorem 3.1.
Beg and Ahmed [10] generalized Theorem 3.1 as follows.

Theorem 3.2. Let (X,d) be a complete metric space and T, T>
be fuzzy mappings from X into W (X). If there is a F € ¥ such
that, for all x, y € X,

F(D(Tl (X), T2(y))>d(x7y)7p(x7 Tl (X))vp(ya Tl(y))7
p(x, Ta(y)),p(y, T1(x))) <0, (2)

then there exists z € X such that {z} c T(z) and {z} < T»(2).

Widely inspired by a paper of Tas et al. [11], we give
another different generalization of Theorem 3.1 with contrac-
tive condition (1) as follows.

Theorem 3.3. Let (X,d) be a complete metric space and T;, T>
be fuzzy mappings from X into W' (X ). Assume that there exist
¢, 2, c3€ [0,00) with ¢; + 2¢5 < 1 and ¢, + ¢c3 < 1 such
that, for all x, y € X,

DZ(TI (x)7 T2(y)) < C1 max{dz(x,y),pz(x, Tl (X))vpz(y, TZ(.V))}
+ comax{p(x, T1(x))p(x, T2(»)), p(y, T1 (x))
P, ()} + esp(x, Ta(v))p(v, Th(x)).
3)

Then there exists z € X such that {z} c T;(z) and {z} C
Tz(Z) .

Proof. Let x( be an arbitrary point in X. Then by Lemma 2.4,
there exists an element x; € X such that {x;} < T(xq). For
x1 € X, (Tx(x1)); is nonempty compact subset of X. Since
(T (xo)1, (T(x1))1 € CP(X) and x; € (T1(x0))1, then Proposi-
tion 2.1 asserts that there exists x; € (75(x;)); such that
d(x1,x2) < D1(T1(x0), T>(x1)). So, we obtain from the inequal-
ity D(A, B) = D,(A,B) Yo € [0, 1] that
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& (x1,3%2) < DT (x0), Ta(x1)) < D*(T'(xo), Ta(x1))
< ey max{d’ (xo, x1), p*(x0, T1 (%)), p*(x1, To(x1))}
+c2 max{p(xo, T1(x0))p(xo, T2(x1)),

p(x1, Ti(x0))p(x1, Ta(x1))}
+e3p(xo, Ta(x1))p(x1, T (x0))
< ¢ max{dz(xo,xl),dz(xl,x2)}
“+ead(xo, x1)[d(x0, x1) + d(x1,x2)].

If d(xq,x5) > d(x,x1), then we have

d*(x1,%2) < (€1 + 262)d(x1, x2),

which is a contradiction. Thus,

d(xy,x2) < hd(xo,x1),

where h = v/c; + 2¢, < 1. Similarly, one can deduce that
d(x2,x3) < hd(x1,x7).

By induction, we have a sequence (x,,) of points in X such
that, for all n € N U {0},

{xoms1} C Ti(x2m), {x2n42} C Ta(X2041)-

It follows by induction that d(x,, x,+ 1) < A" d(xo,x;). Since

d(xnyxm) g d(XVH xn+l) + d(xil+l7xrl+2) +...+ d(xmfl:xm)
R d(xo, x1) + B d(xo, x1) + . A+ K" d(xo, x1)
h—”d(X(),Xl),

<
<I—l

then lim,, ,,—500d(X,, X)) = 0. Therefore, (x,) is a Cauchy se-
quence. Since X is complete, then there exists z € X such that
lim,_,..x, = z. Next, we show that {z} cTy(z), i=1, 2.
Now, we get from Lemmas 2.1 and 2.2 that
P,(z, T2(2)) < d(z, Xon41) + P (X2n41, T2(2))

< d(Z,xan) + Doc(Tl (XZH)’ TZ(Z))a

for each « € [0,1]. Taking supremum on « in the last inequal-
ity, we obtain that

p(z, T2(2)) < d(z,x211) + D(T1(x2), T2(2)). (4)
From the inequality (3), we have that

D*(T1(x24), Ta(2)) < e max{d’ (xa, ), p* (Xou, T (x20)),
Pz, Tx(2))} + ey max{p(xa, Ty (x2))
P(xX2n, T2(2)), (2, T1 (x20))p(2, T2(2)) }
+ e3p(xan, Ta(2))p(2, Ti(X24))

< ¢y max{d* (xa, 2), d* (Xon, X20s1),
(2, T2(2))} + ¢ max{d(xa, X2441)
P(X2n, T(2)), d(z, X2041)p(2, T2(2)) }
+ c3p(xan, Tr(2))d(z, X2ps1)- (5)

Letting n — oo in the inequalities (4) and (95), it follows that
p(z, Tx(2)) < Vap(z, Ta(2)).

Since /c; < 1, we see that p(z, T»(z)) = 0. So, we get from
Lemma 2.3 that {z} < T»(z). Similarly, one can be shown that
{z} cT(z). O

Remark 3.2.

(I) Condition (3) is not deducible from condition (2) since
the function F from [0, 00)® into [0, 00) defined as

F(l‘17l‘27l‘z7l‘47l‘57l‘6) _[ — (1 l'I'laX{l‘z7 } szaX{t3t57t6l4}

— C3ls5lg,

for all 1y, 15, 13, 14, ts, tg € [0,00), Where ¢1, ¢a, ¢35 € [0,00) with
¢; + 2¢; < land ¢; + ¢3 < 1, does not generally satisfy con-
dition (¥3). Indeed, we have that

Flu,u,0,0,u,u) = 1> — cju® — csu’,

for all ¥ > 0 and does not imply that F(u,u,0,0,u,u) > 0 for
all u > 0.1t suffices to consider ¢; =3, ¢; =4, ¢; =1 and then
¢+ 2¢; < land ¢; + ¢z <1 but Flu,u,0,0,u,u) < 0 for all
u > 0. Therefore, Theorems 3.2 and 3.3 are two different gen-
eralizations of Theorem 3.1 with contractive condition (1).
(IT) If there exist ¢, ¢, ¢3 €[0,00) with ¢; + 2¢; < 1 and
¢y + ¢3 < 1 such that, for all x, y € X,

F(Ti(x), T>2(») < ex max{d(x,7), p*(x, T1(x)), p* (v, ()}
+ cxmax{p(x, T1(x))p(x, Ta(y)). p(y, T1(x))
P T2(¥)} + asp(x, T2(y)p (v, Th (%)),

then the conclusion of Theorem 3.3 remains valid. This result

is considered as a special case of Theorem 3.3 because D(F;(x),

F(»)) < 0(Fi(x), Fx(») [12, page 414]. Moreover, this result
generalizes Theorem 3.3 of Park and Jeong [8].

Example 3.1. Let X = [0, 1] endowed with the metric d defined
by d(x,y) = | x — 3l . Itis clear that (X, d) is a complete metric
space. Let T} = T, = T. Define a fuzzy mapping 7 on X such
that for all x € X, T(x) is the characteristic function for {3x}.
For each x, y € X,

DAT(x), T) = pedb(x,)
g‘lmax{dz(x7 ,)71, ( ( ))7 ( (y))}""CZ
x max{p(x, T(x))p(x. T0)),p (0, TC)p(r, T)))

+esp(x, T()p(y, T(x)),
where ¢; = % < 1 and ¢, = ¢3 = 0. The characteristic function

for {0} is the fixed point of 7.

The following theorem generalizes Theorem 3.3 to a se-
quence of fuzzy contractive mappings.

Theorem 3.4. Let (T, n€ NU{0}) be a sequence of fuzzy
mappings from a complete metric space (X,d) into W X).
Assume that there exist c;, ¢;, ¢c3 € [0,00) with ¢; + 2¢; < 1
and ¢y + c3 < 1 such that, for all x, y € X,

D*(To(x), Tu(y) < ex max{d’(x, ), p* (x, To(x)),p* (v, Tu(»))}
+ camax{p(x, To(x))p(x, T,(y)),
p, To(x)p(r, Tu(v)) }
+ esp(x, T, (v)p(v, To(x))

Then there exists a common fixed point of the family (T,:
neNU{0}).

Vn € N.

Proof. Putting 77 = Tpand 7> = T, Vn € N in Theorem 3.3.
Then, there exists a common fixed point of the family (7,:
ne NU{0}). O
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Remark 3.3. If there is a ¢ € ®@ such that, for all x, y € X,

DX(To(x), T,(») < ey max{d(x, ), p*(x, To(x)), p* (v, Tu(»))}
+ camax{p(x, To(x))p(x, T,(y)),
P, To(x))p(y, Tu(y))}
+ asp(x, Tu(n)p (v, To(x))
then the conclusion of Theorem 3.4 remains valid. This result

is considered as a special case of Theorem 3.4 for the same rea-
son in Remark 3.2(]).

Vn € N.
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