

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org [www.elsevier.com/locate/joems](http://www.sciencedirect.com/science/journal/1110256X)

Partially ordered left almost semihypergroups

Naveed Yaqoob ^{a,b,*}, Muhammad Gulistan ^c

^a Department of Mathematics, College of Science in Al-Zulfi, Majmaah University, Al-Zulfi, Saudi Arabia

^b Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

^c Department of Mathematics, Hazara University, Mansehra, Pakistan

Received 11 December 2013; revised 17 March 2014; accepted 27 May 2014 Available online 3 July 2014

KEYWORDS

LA-semihypergroups; Ordered LA-semihypergroups; M-hypersystems

Abstract The aim of this paper is to study the concept of ordered LA-semihypergroup. Here we consider some LA-semihypergroups and define a binary relation on them such that to become partially ordered LA-semihypergroups.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 20N20

ª 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction and preliminaries

Hyperstructure theory was introduced in 1934, when Marty [\[1\]](#page-4-0) defined hypergroups, began to analyze their properties and applied them to groups. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. Several books and papers have been written on hyperstructure theory, see [\[2–6\]](#page-4-0).

Let H be a non-empty set, then the map $\circ : H \times H \to \mathcal{P}^*(H)$ is called hyperoperation or join operation on the set H , where $\mathcal{P}^*(H) = \mathcal{P}(H) \setminus \{\emptyset\}$ denotes the set of all non-empty subsets of H . A hypergroupoid is a set H together with a (binary) hyperoperation.

Peer review under responsibility of Egyptian Mathematical Society.

If A and B are two non-empty subsets of H , then we denote

$$
A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \quad a \circ B = \{a\} \circ B \text{ and } A \circ b = A \circ \{b\}.
$$

There are several authors who study the ordering of hyperstructures, for instance, Bakhshi and Borzooei [\[7\]](#page-4-0), Chvalina [\[8\],](#page-4-0) Chvalina and Moučka [\[9\],](#page-4-0) Heidari and Davvaz [\[10\]](#page-4-0), Hošková $[11]$, Kondo and Lekkoksung $[12]$ and Novák $[13]$.

Recently, Hila and Dine [\[14\]](#page-4-0) introduced the notion of LAsemihypergroups as a generalization of semigroups, semihypergroups, and LA-semigroups. Yaqoob, Corsini and You-safzai <a>[\[15\]](#page-4-0) extended the work of Hila and Dine and characterized intra-regular left almost semihypergroups by their hyperideals using pure left identity.

A hypergroupoid (H, \circ) is called an LA-semihypergroup if for every $x, y, z \in H$, we have $(x \circ y) \circ z = (z \circ y) \circ x$. The law $(x \circ y) \circ z = (z \circ y) \circ x$ is called a left invertive law. An element $e \in H$ is called a left identity (resp., pure left identity) if for all $x \in H, x \in e \circ x$ (resp., $x = e \circ x$). In an LA-semihypergroup, the medial law $(x \circ y) \circ (z \circ w) = (x \circ z) \circ (y \circ w)$ holds for all $x, y, z, w \in H$. An LA-semihypergroup may or may not contain a left identity and pure left identity. In an LA-semihypergroup H with pure left identity, the paramedial law $(x \circ y) \circ (z \circ w) =$

1110-256X ª 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. <http://dx.doi.org/10.1016/j.joems.2014.05.012>

^{*} Corresponding author at: Department of Mathematics, Quaidi-Azam University, Islamabad, Pakistan. Tel.: +92 3335700307. E-mail addresses: nayaqoob@ymail.com (N. Yaqoob), [gulistanmath](mailto:gulistanmath@hu.edu.pk) [@hu.edu.pk](mailto:gulistanmath@hu.edu.pk) (M. Gulistan).

 $(w \circ z) \circ (y \circ x)$ holds for all $x, y, z, w \in H$. If an LA-semihypergroup contains a pure left identity, then by using medial law, we get $x \circ (y \circ z) = y \circ (x \circ z)$ for all $x, y, z \in H$. (cf. [\[15\]](#page-4-0)).

Lemma 1 [\[15\]](#page-4-0). If H is an LA-semihypergroup with left identity, then $H \circ H = H$.

Definition 1 [\[15\].](#page-4-0) Let H be an LA-semihypergroup. A nonempty subset A of H is called a sub LA-semihypergroup of *H* if $x \circ y \subseteq A$ for every $x, y \in A$.

Definition 2 [\[15\]](#page-4-0). A subset *I* of an LA-semihypergroup *H* is called a right (left) hyperideal of H if $I \circ H \subseteq I$ ($H \circ I \subseteq I$) and is called a hyperideal if it is two-sided hyperideal.

Definition 3 [\[15\]](#page-4-0). By a bi-hyperideal of an LA-semihypergroup H , we mean a sub LA-semihypergroup B of H such that $(B \circ H) \circ B \subseteq B$.

Definition 4 [\[15\]](#page-4-0). A non-empty subset Q of an LA-semihypergroup H is called a quasi-hyperideal of H if $Q \circ H \cap H \circ Q \subseteq Q.$

Let (H, \circ) be an LA-semihypergroup and σ an equivalence relation on H . If A and B are non-empty subsets of H , then $A\hat{\sigma}B$ means that for all $a \in A$, there exists $b \in B$ such that $a\sigma b$ and for all $b \in B$, there exists $a \in A$ such that $a \cdot b$. Also, $A\hat{\sigma}B$ means that for all $a \in A$ and $b \in B$, we have $a\sigma b$.

Definition 5. The equivalence relation σ is called

- (1) regular on the right (resp., on the left) if for all $x \in H$, from $a\sigma b$, it follows that $(a \circ x)\hat{\sigma}(b \circ x)$ (resp., $(x \circ a)\widehat{\sigma}(x \circ b));$
- (2) strongly regular on the right (resp., on the left) if for all $x \in H$, from a σb , it follows that $(a \circ x) \hat{\sigma} (b \circ x)$ (resp., $(x \circ a) \hat{\sigma}(x \circ b)$;
- (3) σ is called regular (resp., strongly regular) if it is regular (resp., strongly regular) on the right and on the left.

A partial order is a binary relation σ on a set X which satisfies the conditions of reflexivity, anti-symmetry and transitivity.

2. Partially ordered left almost semihypergroups

Here we introduce the concept of partially ordered left almost semihypergroups and discuss their related properties.

Definition 6. An ordered LA-semihypergroup (H, \circ, \leq) is a poset (H, \leqslant) at the same time an LA-semihypergroup (H, \circ) such that: for any $a, b, x \in H, a \leq b$ implies $x \circ a \leq x \circ b$ and $a \circ x \leqslant b \circ x.$

If A and B are non-empty subsets of H , then we say that $A \leq B$ if for every $a \in A$ there exists $b \in B$ such that $a \leq b$.

Example 1. Let $H = \{x, y, z\}$. The binary hyperoperation "o", the order \leq " and the corresponding Hasse diagram are given as follows:

$$
\begin{array}{c|c|c}\n\circ & x & y & z & y \\
\hline\nx & x & y & z & \\
y & z & \{y, z\} & \{y, z\} \\
z & y & \{y, z\} & \{y, z\}\n\end{array}\n\qquad \qquad\n\begin{array}{c}\n\nearrow 2 \\
\searrow 2 \\
\searrow 2\n\end{array}
$$

 \leqslant := { $(x, x), (x, y), (x, z), (y, y), (z, z)$ }.

It is easy to verify that (H, \circ, \leq) is an ordered LAsemihypergroup.

Definition 7. If (H, \circ, \leq) is an ordered LA-semihypergroup and $A \subset H$, then \overline{A} is the subset of H defined as follows:

 $[A] = \{t \in H : t \leq a, \text{for some } a \in A\}.$

Lemma 2. Let (H, \circ, \leq) be an ordered LA-semihypergroup. Then the following assertions hold:

- (*i*) $A \subset (A)$ for every $A \subset H$.
- (*ii*) If $A \subseteq B$, then $(A) \subseteq (B)$ for every $A, B \subseteq H$.
- (*iii*) $(A] \circ (B] \subseteq (A \circ B]$ for every $A, B \subseteq H$.
- (*iv*) $((A)$ = (A) for every $A \subseteq H$.
- (v) $((A) \circ (B)] = (A \circ B)$ for all $A, B \subseteq H$.
- (*vi*) If $A, B, C \subseteq H$ such that $A \subseteq B$, then $C \circ A \subseteq C \circ B$ and $A \circ C \subseteq B \circ C.$

Proof. The proof is straightforward. \Box

Definition 8. A non-empty subset A of an ordered LA-semihypergroup (H, \circ, \leqslant) is called a sub LA-semihypergroup of H if $(A \circ A] \subseteq (A].$

Definition 9. A non-empty subset A of an ordered LA-semihypergroup (H, \circ, \leq) is called a left (resp., right) hyperideal of H if the following conditions hold:

- (*i*) $H \circ A \subseteq A$ (resp., $A \circ H \subseteq A$);
- (*ii*) If $a \in A$ and $b \le a$, then $b \in A$ for every $b \in H$.

A is called a hyperideal of H if it is a left and a right hyperideal.

Definition 10. A sub LA-semihypergroup B of an ordered LAsemihypergroup (H, \circ, \leqslant) is called a bi-hyperideal of H if the following conditions hold:

 (i) $(B \circ H) \circ B \subseteq B;$ (*ii*) If $a \in B$ and $b \le a$, then $b \in B$ for every $b \in H$.

Definition 11. A non-empty subset Q of an ordered LA-semihypergroup (H, \circ, \leqslant) is called a quasi-hyperideal of H if the following conditions hold:

\n- (i)
$$
Q \circ H \cap H \circ Q \subseteq Q
$$
;
\n- (ii) If $a \in Q$ and $b \leq a$, then $b \in Q$ for every $b \in H$.
\n

Definition 12. A non-empty subset P of an ordered LA-semihypergroup (H, \circ, \leqslant) is called a prime hyperideal of H if the following conditions hold:

- (*i*) $A \circ B \subseteq P \Rightarrow A \subseteq P$ or $B \subseteq P$ for any two hyperideals A and B of H :
- (*ii*) If $a \in P$ and $b \le a$, then $b \in P$ for every $b \in H$.

Definition 13. A non-empty subset I of an ordered LA-semihypergroup (H, \circ, \leqslant) is called a semiprime hyperideal of H if the following conditions hold:

- (*i*) $A \circ A \subseteq I \Rightarrow A \subseteq P$ for any hyperideal A of H;
- (*ii*) If $a \in I$ and $b \le a$, then $b \in I$ for every $b \in H$.

Proposition 1. Let (H, \circ, \leqslant) be an ordered LA-semihypergroup such that $H = H \circ H$, then every right hyperideal of H is a hyperideal.

Proof. Let A be a right hyperideal of H. Let $x \in H \circ A$ which implies that $x \in y \circ z$ for some $y \in H$ and $z \in A$ with $z \le i$ for some $i \in A$. Now as $H = H \circ H$ so $y \in b \circ c$ for some $b, c \in H$. Therefore

 $x \leq y \circ i \subseteq (b \circ c) \circ i \subseteq (i \circ c) \circ b \in (A \circ H) \circ H \subseteq A.$

This implies that $x \in A$. Also if $a \in A$ and $b \le a$, then $b \in A$ for every $b \in H$ holds obviously. Thus A is left hyperideal of H. Hence A is a hyperideal. \Box

Theorem 1. The intersection of two hyperideals of an ordered LA-semihypergroup H, if it is non-empty, is a hyperideal of H.

Proof. The proof is straightforward. \Box

Lemma 3. Let (H, \circ, \leqslant) be an ordered LA-semihypergroup with pure left identity such that $H = H \circ H$, then $(H \circ a]$ is a left hyperideal of H, for all $a \in H$.

Proof. First we will show that $(H \circ a]$ is a left hyperideal of H, i.e $H \circ (H \circ a] \subseteq (H \circ a]$. Let $x \in H \circ (H \circ a]$ then $x \in y \circ b$ for some y in H and b in $(H \circ a]$ where $b \leq c \circ a$ for some $c \in H$. Since $H = H \circ H$, so let $y \in z_1 \circ z_2$. We have

 $x \leq y \circ (c \circ a) \subseteq (z_1 \circ z_2) \circ (c \circ a)$ $=(a \circ c) \circ (z_2 \circ z_1)$, by paramedial law $= ((z_2 \circ z_1) \circ c) \circ a$, by left invertive law $\subseteq H \circ a.$

Therefore $x \in (H \circ a]$. For the second condition, let x be any element in $(H \circ a]$, then $x \leq b \circ a$ for some $b \circ a$ in $H \circ a$. Let y be any other element of H such that $y \le x \le b \circ a$, which implies that y is in $(H \circ a]$. Hence $(H \circ a]$ is a left hyperideal of H . \Box

Lemma 4. Let (H, \circ, \leqslant) be an ordered LA-semihypergroup with pure left identity and let A be a left hyperideal of H then $(A \circ A]$ is a hyperideal of H.

Proof. First we show that $(A \circ A] \circ H \subseteq (A \circ A]$. For this, let $x \in (A \circ A] \circ H$, which implies that $x \in y \circ z$ for some $y \in (A \circ A]$ and $z \in H$, where $y \leq a \circ b$ for some $a \circ b \subseteq A \circ A$. Now we consider

Thus $(A \circ A] \circ H \subseteq (A \circ A]$. Next we show that $H \circ (A \circ A] \subseteq$ $(A \circ A]$. For this, let us consider $x \in H \circ (A \circ A]$, which implies that $x \in y \circ z$ for some $y \in H$ and $z \in (A \circ A]$, where $z \le a \circ b$ for some $a \circ b \subseteq A \circ A$. Now consider $x \leq y \circ z \subseteq y \circ (a \circ b)$. Now using the fact that (H, \circ, \leq) be an ordered LA-semihypergroup with pure left identity, we have

 $x \leq y \circ z \subseteq y \circ (a \circ b) = a \circ (y \circ b) \subseteq A \circ (H \circ A) \subseteq A \circ A$.

Again let $x \in (A \circ A]$ then $x \leq a \circ b$ for some $a \circ b \subseteq A \circ A$. Let w be any other element of H such that $w \le x \le a \circ b$ then $w \in A \circ A$. Hence $(A \circ A]$ is a hyperideal of H. \square

Theorem 2. An ordered LA-semihypergroup H is an ordered semihypergroup if and only if $x \circ (y \circ z) = (z \circ y) \circ x$ for all $x, y, z \in H$.

Proof. The proof is straightforward. \Box

Lemma 5. Let H be an ordered LA-semihypergroup with pure left identity and $a \in H$. Then $\langle a \rangle = (H \circ a]$.

Proof. As *H* is an ordered LA-semihypergroup with pure left identity, so we have $H \circ (H \circ a] \subseteq (H \circ a]$, which shows that $(H \circ a]$ is a left hyperideal of H containing a. Let I be another left hyperideal containing a. Thus $H \circ a \subseteq I$, so $(H \circ a] \subseteq I$. h

Definition 14. Let H be an ordered LA-semihypergroup. A non-empty subset M of H is called an M -hypersystem of H if for each $a, b \in M$, there exist $x \in H$ and $c \in M$ such that $c \leq a \circ (x \circ b)$ or equivalently $c \in (a \circ (H \circ b)].$

Definition 15. Let H be an ordered LA-semihypergroup. A non-empty subset N of H is called an N -hypersystem of H if for each $a \in N$, there exist $x \in H$ and $c \in N$ such that $c \leq a \circ (x \circ a)$ or equivalently $c \in (a \circ (H \circ a)].$

Remark 1. Every M-hypersystem of H is an N-hypersystem of H.

Definition 16. A left hyperideal P of an ordered LA-semihypergroup H is called quasi-prime hyperideal if for all left hyperideals A; B of $H, A \circ B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$.

Definition 17. A left hyperideal P of an ordered LAsemihypergroup H is called quasi-semiprime hyperideal if for any left hyperideal A of $H, A \circ A \subseteq P$ implies $A \subseteq P$.

Remark 2. Every quasi-prime hyperideal of H is a quasisemiprime hyperideal.

Lemma 6. Let I be a left hyperideal of an ordered LA-semihypergroup H with pure left identity e. Then I is quasi-prime hyperideal if and only if for all $a, b \in H$, $a \circ (H \circ b) \subseteq I$ implies $a \in I$ or $b \in I$.

Proof. Suppose that $a \circ (H \circ b) \subseteq I$. We get $H \circ (a \circ (H \circ b))$ \subseteq H \circ I \subseteq I. Consider

$$
H \circ (a \circ (H \circ b)) = (H \circ H) \circ (a \circ (H \circ b)) = (H \circ a) \circ (H \circ (H \circ b))
$$

$$
= (H \circ a) \circ ((H \circ H) \circ (H \circ b))
$$

$$
= (H \circ a) \circ ((b \circ H) \circ (H \circ H))
$$

$$
= (H \circ a) \circ ((b \circ H) \circ H) = (H \circ a) \circ ((H \circ H) \circ b)
$$

$$
= (H \circ a) \circ (H \circ b).
$$

Now since I is a left hyperideal of H , so

$$
(H \circ a] \circ (H \circ b] \subseteq ((H \circ a) \circ (H \circ b)] = (H \circ (a \circ (H \circ b))] \subseteq I.
$$

Since $(H \circ a]$ and $(H \circ b]$ are left hyperideals of H and I is quasi-prime hyperideal, $(H \circ a] \subseteq I$ or $(H \circ b] \subseteq I$. By Lemma 5, $a \in I$ or $b \in I$. Conversely, let A and B be left hyperideals of H such that $A \circ B \subseteq I$ and $A \nsubseteq I$. Then there exist $x \in A$ and $x \notin I$. Now for all $y \in B$, we have $x \circ (H \circ y) \subseteq A \circ$ $(H \circ B) \subseteq A \circ B \subseteq I$. Hence by assumption, $y \in I$ for all $y \in B$. Hence $B \subseteq I$, this implies that I is quasi-prime hyperideal. \Box

Theorem 3. Let I be a left hyperideal of an ordered LA-semihypergroup H with pure left identity e. Then I is quasi-prime hyperideal if and only if $H \setminus I$ is an M-hypersystem.

Proof. Let I be quasi-prime hyperideal and let $a, b \in H \setminus I$. Assume that $c \notin (a \circ (H \circ b))$ for all $c \in H \setminus I$. Then $(a \circ (H \circ b)] \subseteq I$. This implies that $a \circ (H \circ b) \subseteq I \Rightarrow a \in I$ or $b \in I$, which contradicts the assumption that $a, b \in H \setminus I$. So $c \in (a \circ (H \circ b)]$ for all $c \in H \setminus I$. Hence $H \setminus I$ is an Mhypersystem.

Conversely assume that $H \setminus I$ is an M-hypersystem. Assume that $a \circ (H \circ b) \subseteq I$. Suppose that $a, b \in H \setminus I$, so there exist some $c \in H \setminus I$ and $x \in H$ such that $c \leq a \circ (x \circ b)$ ubseteq $(a \circ (H \circ b))$, which implies that $c \in I$, it contradicts the assumption $c \in H \setminus I$. Hence $a \circ (H \circ b) \subseteq I$ implies that $a \in I$ or $b \in I$. Hence I is quasi-prime hyperideal. \square

Lemma 7. Let I be a left hyperideal of an ordered LA-semihypergroup H with pure left identity e. Then I is quasi-semiprime hyperideal if and only if for all $a \in H, a \circ (H \circ a) \subseteq I$ implies $a \in I$.

Proof. The proof is straightforward. \Box

Theorem 4. Let I be a left hyperideal of an ordered LA-semihypergroup H with pure left identity e. Then I is quasi-semiprime hyperideal if and only if $H \setminus I$ is an N-hypersystem.

Proof. The proof is straightforward. \Box

Theorem 5. If N is an N-hypersystem of an ordered LA-semihypergroup H and $a \in N$, then there exists an M-hypersystem M of H such that $a \in M \subseteq N$.

Proof. Let N be an N-hypersystem of an ordered LA-semihypergroup H and $a \in N$, then by definition there exists some $c_1 \in N$ such that $c_1 \in (a \circ (H \circ a)],$ so $(a \circ (H \circ a)] \cap N \neq \emptyset$. Take $a_1 \in (a \circ (H \circ a)] \cap N$ and again using the definition of *N*-hypersystem there exist $c_2 \in N$ such that $c_2 \in (a_1 \circ$

 $(H \circ a_1)$, so $(a_1 \circ (H \circ a_1) \cap N \neq \emptyset$. Continuing in this way, we take $a_i \in (a_{i-1} \circ (H \circ a_{i-1})] \cap N \neq \emptyset$. Take $a = a_0$ and let $M = \{a_0, a_1, \ldots\}$ then this set M is an M-hypersystem and $a \in M \subset N$. \Box

Definition 18. A left hyperideal I of an ordered LA-semihypergroup H is called quasi-irreducible hyperideal if for all left hyperideals A ; B of H , $A \cap B \subset I$ implies $A \subset I$ or $B \subset I$.

Definition 19. Let H be an ordered LA-semihypergroup with pure left identity. A non-empty subset I of H is called an I hypersystem of H if for each $a, b \in I$, $(*a* > 0 *b*) \cap I \neq \emptyset$.

Theorem 6. Let I be a left hyperideal of an ordered LA-semihypergroup H with pure left identity e. Then I is quasi-irreducible hyperideal if and only if $H \setminus I$ is an I-hypersystem.

Proof. Let I be a quasi-irreducible hyperideal of H and suppose that for each $a, b \in H \setminus I$, such that $(*a* > 0 < *b* >)$ $\cap H \setminus I = \emptyset$. This implies that $(*a* > \cap *b*) \subseteq I$. So $a, b \in I$, which is a contradiction to the assumption that $a, b \in H \setminus I$. Hence $(*a* > \cap *b*) \cap H \setminus I \neq \emptyset$, so $H \setminus I$ is an I -hypersystem.

Conversely let for any left hyperideals $A; B$ of $H, A \cap B \subset I$. Suppose that $A \nsubseteq I$ or $B \nsubseteq I$ and let $a \in A$ and $b \in B$, which implies that $a, b \in H \setminus I$. Since $H \setminus I$ is an *I*-hypersystem so there exist some $c \in < a > \cap < b >$ and $c \in H \setminus I$, which shows that $c \in \langle a \rangle \cap \langle b \rangle \subseteq A \cap B \subseteq I$, which is not possible. Thus $A \subset I$ or $B \subset I$. Hence I is quasi-irreducible hyperideal. \square

Definition 20. Let (H_1, \circ_1, \leq_1) and (H_2, \circ_2, \leq_2) be two ordered LA-semihypergroups. Then $(H_1 \times H_2, \circ)$ is an ordered LAsemihypergroup, where the hyperoperation \circ defined as follows: $(x_1, x_2) \circ (y_1, y_2) = (x_1 \circ_1 y_1, x_2 \circ_2 y_2).$

The order relation defined on $H_1 \times H_2$ as follows: $(x_1, x_2) \leqslant (y_1, y_2)$ if and only if $x_1 \leqslant_1 y_1$ or $x_1 = y_1$ and $x_2 \leq 2y_2$. In the following we prove that $(H_1 \times H_2, \circ, \leq)$ is an ordered LA-semihypergroup and is called the direct product of ordered LA-semihypergroup (H_1, \circ_1, \leq_1) and (H_2, \circ_2, \leq_2) .

Theorem 7. Let (H_1, \circ_1, \leq_1) and (H_2, \circ_2, \leq_2) be two ordered LA-semihypergroups. Then $(H_1 \times H_2, \circ, \leqslant)$ is an ordered LAsemihypergroup.

Proof. Suppose that $(x_1, x_2) \leq (y_1, y_2)$ for $(x_1, x_2), (y_1, y_2) \in H_1 \times H_2$ and $(t_1, t_2) \in (h_1, h_2) \circ (x_1, x_2)$ for $(h_1, h_2) \in H_1 \times H_2$. Then $t_1 \in h_1 \circ_1 x_1$ and $t_2 \in h_2 \circ_2 x_2$. Since $(x_1, x_2) \leq (y_1, y_2)$, so we have two cases:

Case (i) $x_1 \leq_1 y_1$. Then $t_1 \in h_1 \circ_1 x_1 \leq_1 h_1 \circ_1 y_1$ so there exists $s_1 \in h_1 \circ_1 y_1$ such that $t_1 \leq_1 s_1$. Now, if $s_2 \in h_2 \circ_2 y_2$ then $(t_1, t_2) \leqslant (s_1, s_2) \in (h_1, h_2) \circ (y_1, y_2).$

Case (ii) $x_1 = y_1$ and $x_2 \leq y_2$. Then $t_2 \in h_2 \circ_2 x_2 \leq h_2 \circ_2 y_2$ so there exists $s_2 \in h_2 \circ_2 y_2$ such that $t_2 \leq 2s_2$. $(t_1, t_2) \leq (s_1, s_2) \in$ $(h_1, h_2) \circ (y_1, y_2)$. Therefore, $(H_1 \times H_2, \circ, \leqslant)$ is an ordered LAsemihypergroup. \square

3. Regular ordered LA-semihypergroups

In this section we present some results on regular ordered LAsemihypergroup.

Definition 21. Let (H, \circ, \leq) be an ordered LA-semihypergroup, and $a \in H$. Then a is said to be regular element of H if there exists an element $x \in H$ such that $a \leq a \circ x \circ a$, or equivalently $a \leq a \circ H$) $\circ a$. If every element of H is regular then H is said to be a regular ordered LA-semihypergroup.

Lemma 8. Every right hyperideal of a regular ordered LA-semihypergroup H is a hyperideal.

Proof. Let (A) be any right hyperideal of a regular ordered LA-semihypergroup H, then for each $a \in H$ there exist $x \in H$ such that $a \leq a \circ x$ or a. Let $y \in A$, then

 $a \circ y \leqslant ((a \circ x) \circ a) \circ y \subseteq (y \circ a) \circ (a \circ x) \subseteq A,$

which shows that (A) is a left hyperideal of H. Hence (A) is a hyperideal of H . \Box

Lemma 9. Let (H, \circ, \leqslant) be an ordered LA-semihypergroup. If H is regular ordered LA-semihypergroup, then $(A \circ B] = (A \cap B)$ for right hyperideal A and left hyperideal B of H.

Proof. The proof is straightforward. \Box

Theorem 8. Every hyperideal of a regular ordered LA-semihypergroup H is prime hyperideal if and only if it is irreducible hyperideal of H.

Proof. Suppose that P is a prime hyperideal of H and let $(A \circ B] \subseteq P$. Then by Lemma 9, $(A \circ B) = (A \cap B)$ so $(A \cap B] \subseteq P$ which implies that either $(A] \subseteq P$ or $(B] \subseteq P$. Hence P is irreducible hyperideal of H .

Conversely, suppose that P is an irreducible hyperideal of H. Then $(A \cap B] \subset P$ implies either $(A \subset P$ or $(B \subset P$. Again by above Lemma 9, $(A \circ B] = (A \cap B)$. Hence P is prime hyperideal. \square

The authors are highly grateful to referees for their time to read the paper very carefully and their valuable comments which greatly improve the quality of this paper.

References

- [1] F. Marty, Sur une generalization de la notion de groupe, 8^{iem} Congres Math. Scandinaves. Stockholm., 1934, pp. 45–49.
- [2] P. Corsini, Prolegomena of hypergroup theory, Aviani editor, 1993.
- [3] [T. Vougiouklis, Hyperstructures and their Representations,](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0025) [Hadronic Press, Florida, 1994](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0025).
- [4] [S. Abdullah, M. Aslam, T. Anwar, A note on M-hypersystems](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0030) [and N-hypersystems in](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0030) C[-semihypergroups, Quasigr. Relat.](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0030) [Syst. 19 \(2\) \(2011\) 169–172.](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0030)
- [5] [S. Abdullah, K. Hila, M. Aslam, On bi-](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0035)C[-hyperideals of](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0035) C[semihypergroups, UPB Sci. Bull. Ser. A 74 \(4\) \(2012\) 79–90.](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0035)
- [6] [A. Ahmed, M. Aslam, S. Abdullah, Interval valued](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0040) (α, β) [-fuzzy](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0040) [hyperideals of semihyperrings, UPB Sci. Bull. Ser. A 72 \(2\)](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0040) [\(2013\) 69–86](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0040).
- [7] [M. Bakhshi, R.A. Borzooei, Ordered polygroups, Ratio Math.](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0045) [24 \(2013\) 31–40.](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0045)
- [8] J. Chvalina, Commutative hypergroups in the sense of Marty and ordered sets, in: Proc. Summer School, Gen. Algebra Ordered Sets, Olomouc (Czech Republic), 1994, pp. 19–30.
- [9] J. Chvalina, J. Moučka, Hypergroups determined by orderings [with regular endomorphism monoids, Ital. J. Pure Appl. Math.](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0050) [16 \(2004\) 227–242](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0050).
- [10] [D. Heidari, B. Davvaz, On ordered hyperstructures, U.P.B. Sci.](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0055) [Bull. Ser. A 73 \(2\) \(2011\) 85–96](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0055).
- [11] S. Hošková, Upper order hypergroups as a reflective [subcategory of subquasiorder hypergroups, Ital. J. Pure Appl.](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0060) [Math. 20 \(2006\) 215–222](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0060).
- [12] [M. Kondo, N. Lekkoksung, On intra-regular ordered](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0065) Γ [semihypergroups, Int. J. Math. Anal. 7 \(28\) \(2013\) 1379–1386.](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0065)
- [13] M. Novák, *EL*[-hyperstructures: an overview, Ratio Math. 23](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0070) [\(2012\) 65–80](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0070).
- [14] K. Hila, J. Dine, On hyperideals in left almost semihypergroups, ISRN Algebra, Article ID 953124, 2011, p. 8.
- [15] [N. Yaqoob, P. Corsini, F. Yousafzai, On intra-regular left](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0075) [almost semihypergroups with pure left identity, J. Math. \(2013\)](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0075) [10. Article ID 510790.](http://refhub.elsevier.com/S1110-256X(14)00069-8/h0075)