

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE

The quasi-uniform character of a topological semigroup

John Mastellos *

Department of Mathematics, University of Patras, 26504 Patras, Greece

Received 14 November 2012; revised 12 June 2014; accepted 17 June 2014 Available online 28 July 2014

KEYWORDS

Topological embedding; Quasi-uniformity; Specialization order; T_0 and not T_1 space **Abstract** The topological embedding of a topological semigroup *S*, commutative with the property of cancelation, into the group $G = S \times S/R$, (*R* the equivalence $(a, b)R(a', b') \iff ab' = a'b)$ to which *S* is algebraically embedded, was the subject of the search for the mathematicians of a long period. It was based on the fact that *S* must naturally be a uniform topological space, as every topological group was. The present paper is devoted to the fact that a quasi-uniformity is defined to any topological space, thus to any topological semigroup.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 06A11; 06F20; 22A15; 54E15; 20F60; 54H10; 20M05; 20N02

© 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

1.1. In a series of papers for a long period the mathematicians engaged in *the embedding of a topological commutative semigroup with cancelation to a topological group.* The basic idea was very simple: since a topological group is a *uniform space*, that is a very nice space, it seems a natural demand for a topological semigroup, which embeds to a topological group, to be a uniform space as well. (Cf. the paper of E. Scheiferdecker [12, 1956] and the papers of [11,14,15,4,5,1,2,6] and others). In [3, 2001] the authors refer to a *quasi-uniformity* on a

* Tel.: + 30 2610996751.

E-mail address: kontolat@math.upatras.gr

Peer review under responsibility of Egyptian Mathematical Society.

ELSEVIER Production and hosting by Elsevier

semigroup, that is: a topological semigroup S has a neutral element e and a neighborhood filter $\eta(e)$ of e which gives to S a *quasi-uniform structure*. On the other hand, the operations on the topological semigroups and groups must be continuous.

In the present paper we start with the *quasi-uniformity* which every topological T_0 structure has, hence every topological commutative with cancelation semigroup has. We suppose that the topology of the given *topological semigroup* is *weaker* or *equal* than the one which this structure may has. It is evident that if S is a semigroup and R is an *equivalence relation* on it, the quotient S/R is not a group, not even a semigroup. Meantime, it is defined the *specialization ordering* which has every T_0 but not T_1 topological space. The compatibility of the structures (of topology and of being the space semigroup) and the extension which Szpilran in [13] induces to an ordered space, seem to be obligatory for us.

1.2. In the remaining part of this paragraph we give necessary elements from the relative theory.

1110-256X © 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. http://dx.doi.org/10.1016/j.joems.2014.06.012 A semigroup S is called topological semigroup, if there is a topology τ such that the function

$$\Phi: S \times S \to S, \Phi(x, y) = x \cdot y \text{ (or simply = } xy)$$

is continuous. A group G is called *topological group* if the functions Φ and K

$$\Phi: S \times S \to S, \Phi(x, y) = x \cdot y \text{ and } K: G \to G, K(g) = g^{-1}$$

are continuous.

A uniform space on a set X is a filter U on $X \times X$ such that: (a) Each member of U contains the diagonal of $X \times X$. (b) If $U \in U$, then $V \circ V \subseteq U$ for some $V \in U$. (c) There is a base of U from symmetrical elements. The elements of U are called *entourages*.

If the structure lacks the condition (c), then the space is a *quasi-uniform*. In a semi-group *S* (resp. a *group G*) by $\tau(\mathbf{U})$ we denote the topology that originated by a *quasi-uniformity* (resp. a *uniformity*) **U**. Also by $(S, \cdot, \tau(\mathbf{U}))$ we denote the whole structure.

Besides, W.J. Pervin (in [9]) in 1962, firstly published the statement: "For every topological space there is a quasi-uniformity which induces the given topology". Pervin, in the above paper, says that for a topological space (X, τ) , the sets

$$U_O = \{ (O \times O) \cup [(X \setminus O) \times X] \mid O \in \tau \}$$

define a base for a *quasi-uniformity*, where $O \in \tau$. For every fixed O, the set U_O is an entourage of the quasi-uniformity.

1.3. The quotient structure (or quotient semigroup) $Q = Q(S, \Sigma)$, (Σ is a commutative sub-semigroup of S), is a set whose elements are of the form $a\alpha^{-1}, a \in S, \alpha \in \Sigma$. So $Q(S, \Sigma) = S \times \Sigma/R$, where R is an equivalence relation defined by: $(a, b)R(c, d) \iff ad = bc$, the operation in $S \times \Sigma$ is component-wise. If the semigroup S is commutative we can write Q = Q(S, S) for the quotient structure and the structure $G = S \times S/R$, (R the known relation), is a group to which S is algebraically embedded. This topological embedding of S into the above G is exactly the object of the "embedding" which mathematicians made during the period we have referred to.

1.4. The authors of [3] define a *quasi-uniformity* for a topological commutative semigroup (S, \cdot, τ) . The sets of the form

$$\overline{U} = \{ (x, y) \mid y \in xU, U \in \eta(e) \}.$$

are the entourages of the space. The proof of this proposition is based on the fact that for every element U of the $\eta(e)$, there is another element V, such that $V \cdot V \subseteq U(e)$. On the other hand, this construction of a quasi-uniform space is compatible with the one introducing by Pervin.

1.5. In his classical paper [12], Scheiferdecker gave the notion of the *invariance for a uniformity* U. Let $U \in U$ and $a, b, k \in S$. Then

$$(a,b) \in U \iff (ka,kb) \in U.$$

The main theorem in [12] which we are interesting to, is the following:

1.6. Theorem (Scheiferdecker, [12, p. 375]). *Necessary and* sufficient conditions for a topological semigroup (S, \cdot, τ) (τ the topology of S) to embed into its quotient group $G = S \times S/R$, where R is the known equivalence relation, are the following:

- (a) The topology τ is the one induced by a uniformity U.
- (b) The uniform structure may be defined via entourages which fulfill the "invariance" property. □

Scheiferdecker considered the above *G* and the structure $(S, \cdot, \tau = \tau(\mathbf{U}))$, where the topology $\tau(\mathbf{U})$ is the one that is induced from the uniformity of **U**. He proved that the subsets

$$U_1 = \{ (A, B) \in Q \times Q | (A = \alpha^{-1}a, B = \beta^{-1}b) \text{ and} \\ (x\alpha = y\beta \in \Sigma \Rightarrow (xa, yb) \in U, U \in \mathbf{U}) \}$$

 $a, b \in S, \alpha, \beta \in \Sigma$, constitute the entourages of a new *uniformity*, whose the trace on S is the same topology τ . We denote this new uniformity by U₁.

1.7. This paper is divided into 3 paragraphs. More precisely, in 1 the paper's preliminaries are given. In paragraph 2 we present the main part of this research. Especially we examine and investigate many properties of a topological semigroup, without considering the notion of the quasi-uniformity (see for example 2.2, 2.3, 2.5, 2.6, 2.8, etc.). Finally, paragraph 3 refers to the specialization inequality define on a T_0 and not a T_1 space.

2. Quasi-uniform structure in a semigroup

In the sequel, *S* is always a *commutative semigroup with cancel ation*. The condition $aS \cap bS \neq \emptyset$, $a, b \in S$ ([8]), means that the equivalence relation *R* such that

$$(a,b)R(c,d) \iff ad = bc, a, b, c, d \in S,$$

is not void. We suppose that this condition is in valid through all the paper. The function

$$\pi: S \times S \to G, \pi((a, b)) = \overline{(a, b)}$$

assigns to each $(a, b) \in S \times S$ the equivalence class in G containing the element (a, b) and which we symbolize by $\overline{(a, b)}$. **2.1. Examples**

- In the real line we consider additively the set ℜ, (the set of real numbers), and as topology the one which has as base the intervals (a, +∞), a ∈ ℜ. The set ℜ is the set of symbols which finally we construct. We embed this in the set G = ℜ × ℜ/R, R the known equivalence relation, which is the natural construction of real numbers with the natural topology. The first topology is weakest of the second.
- (2) The same problem in the interval [0, 1] with operation the multiplication, the numbers their-selves are the symbols we note and the topology, the one which has as base the set of the form {(a, 1), a ∈ [0, 1)}. It embeds into G = [0, 1) × [0, 1)/R of the natural construction of the set of real number and with the natural topology. The former topology is again weaker than the topology of G.
- (3) If in 1. we consider as the first and the second topologies the Sorgenfrey topology of ℜ (the set of natural numbers) the results are the expected ones. The Sorgenfrey topology of ℜ which has as relation the couples: {(x, y) | x ≤ y < x + ε}.

2.2. Proposition. If a quasi-uniformity U is defined on a commutative with cancelation semigroup (S, \cdot) and has the property

$$(\forall U \in \mathbf{U})(\forall a \in S)[U \subseteq (a, a)U],$$

then S is a topological semigroup.

Proof. It is enough to prove:

 $(\forall U)(\exists V)(\forall x \in S)(\forall y \in S)[V(x) \cdot V(y) \subseteq U(xy)]$

or

 $(\forall U)(\exists V)(\forall x' \in V(x))(\forall y' \in V(y))[x'y' \in U(xy)].$

We suppose that U, V belong to the quasi-uniformity U and fulfill $V \circ V \subseteq U$. Since $(x, x') \in V$ and because of the supposition, it is $(xy, x'y) \in V$. In the same way, since $(y, y') \in V$, it is $(x'y, x'y') \in V$, hence $x'y' \in V \circ V(xy)$ or $x'y' \in U(xy)$. \Box

2.3. Proposition. Let $(S, \cdot, \tau(\mathbf{U}))$ be a commutative with cancelation semigroup and \mathbf{U} a quasi-uniformity on S. If the translation $x \mapsto a \cdot x$, a any element of S, is continuous, then S is a topological semigroup.

Proof. Let $U(x \cdot y), U \in U$, be a neighborhood of xy. There is a V' such that $V' \circ V' \subseteq U$. Then, there is a V'' such that $(y, y') \in V'' \Rightarrow (ay, ay') \in V'$, for every a. Similarly, there is a V''' such that $(x, x') \in V''' \Rightarrow (xy, x'y) \in V' \cap V''$, where we have put y = a and x = y. Put $V = V'' \cap V'''$ and then $(x, x') \in V, (y, y') \in V \Rightarrow (xy, x'y) \in V' \cap V'', (x'y, x'y') \in V' \cap$ V'', so $(x, x') \in V$ and $(y, y') \in V$. Therefore $(xy, x'y') \in U$. \Box

2.4. Remark. We know that *under the conditions of the Proposition 2.3, in the uniform case, if the semigroup S is a group, then it is a topological group.* In fact, we have to prove that the function $x \mapsto x^{-1}$ is continuous. Indeed: $(\forall U)(\exists V)$ $[(x, y) \in V \mapsto (y^{-1}, x^{-1}) \in U]$ and, as the entourages are symmetrical, we conclude a same result.

2.5. Proposition. Let $(S, \cdot, \tau(\mathbf{U}))$ be a topological commutative with cancelation semigroup, where \mathbf{U} is a quasi-uniformity. The following statements are equivalent:

- (1) for every a, x in S, for every $U \in \mathbf{U}, aU(x) \subseteq U(ax)$,
- (2) for every a, x, y in S, for every $U \in \mathbf{U}, (x, y) \in U$ implies $(ax, ay) \in U$.

Proof. (1) implies (2)

 $(x, y) \in U$ implies $y \in U(x)$, that is $ay \in aU(x)$, hence $ay \in U(ax)$, so $(ax, ay) \in U$.

(2) implies (1)

 $y \in U(ax)$ implies $y = ak, k \in U(x)$, that is $y = ak, (x,k) \in U$, hence $y = ak, (ax, ak) \in U$ or $(ax, y) \in U$. Thus $y \in U(ax)$. \Box

2.6. Proposition. Let $(S, \cdot, \tau(\mathbf{U}))$ be a topological commutative with the property of cancelation semigroup, where \mathbf{U} is a quasi-uniformity. The following statements are equivalent:

- (3) for every a, x in S, for every $U \in \mathbf{U}, U(ax) \subseteq aU(x)$,
- (4) for every a, x, y in S, for every $U \in \mathbf{U}$, $(ax, ay) \in U$ implies $(x, y) \in U$.

Proof. (3) implies (4)

 $(ax, ay) \in U$ implies $ay \in U(ax)$, hence $ay \in aU(x)$ or $ay = a\lambda$ for some $\lambda \in U(x)$. So $y = \lambda$ and $(x, \lambda) \in U$, that is $(x, y) \in U$.

(4) implies (3)

 $y \in U(ax)$ implies $(ax, y) \in U$, hence $(ax, aa^{-1}y) \in U$, so $(x, a^{-1}y) \in U$, so $a^{-1}y \in U(x)$, that is $aa^{-1}y \in aU(x)$ and finally $y \in aU(x)$. \Box

2.7. Remark. The statements (1) and (3) of Propositions 2.5 and 2.6 obtain the existence of the property of the invariance for a semigroup S. Besides, the *invariance property* obtain both the statements (1) and (3), for a semigroup.

2.8. Proposition. Let $(S, \cdot, \tau(\mathbf{U}))$ be a topological commutative with the property of cancelation semigroup, where \mathbf{U} is a quasi-uniformity. If moreover S has the property:

for every $a, x, y \in S$, for every $U \in \mathbf{U}, U(ax) \subseteq aU(x)$,

then the translations are continuous and open.

Proof. Since the structure is a topological one, the operation is continuous and the inverse image of an open set A is open. We suppose that $x \in S$ and A be an open subset of S. It is enough to prove that xA is open, that is there is a $U \in \mathbf{U}$ such that $U(ax) \subseteq xA$, for $a \in A$. We have that A is open and $a \in A$, hence there is a $U \in \mathbf{U}$ such that $U(a) \subseteq xA$, hence there is a $U \in \mathbf{U}$ such that $U(a) \subseteq A$, hence $xU(a) \subseteq xA$. Because of the supposition, there holds the demanded statement. \Box

2.9. Example. We suppose that in a space: $"y \in U(ax)"$ does not mean that $"y \in aU(x)"$ (in which case we would *invariance*). We consider, as an example, the space of (0, 1) with the natural topology. Then, $ax = \frac{2}{3} \cdot \frac{3}{5} = \frac{2}{5}$, U being the entourage which corresponds to $d(x, y) < \frac{1}{10}$. Then, $y \in U(ax)$ means that $\frac{3}{10} < y < \frac{5}{10}$, while $"z \in aU(x)"$ gives $\frac{17}{50} < z < \frac{23}{30}$. It means that there are points of $U(a \cdot x)$ which does not belong to $a \cdot U(x)$.

2.10. Let *S* be a semigroup and $Q = Q(S, \Sigma)$ (Σ is a commutative sub-semigroup of *S*) the corresponding *quotient struc*ture. We shall use the following already function $\pi: S \times \Sigma \to Q, \pi(a, b) = \overline{(a, b)}$. If π is continuous, then is also an open function. We also define $P: S \to Q, P(x) = \pi(xb, b)$ and $\rho: S \to S \times \Sigma, \rho(s) = (sb, b), b$ any element of Σ . It is ρ continuous. If π is continuous, then the function $P = \pi \circ \rho$ is continuous too. The image P(S) is exactly the embedding of *S* to the *quotient structure* $Q = Q(S, \Sigma)$.

We point out that if the semigroup S becomes a *quasi-uni*form space by a topology $\tau(\mathbf{U})$ and has the property of *invari*ance, then S is not necessary a topological group. The reason is that the entourages are not obligatory symmetrical.

The following theorem refers to the constructions of the T_0 and not a T_1 quasi-uniform spaces. The constructions are the ones of the basic Scheiferdecker's statement cited in the paragraph 1. The Ore conditions are, of course, in valid here.

2.11. Theorem. Let $(S, \cdot, \tau(\mathbf{U}))$ be a structure, where *S* is a topological T_0 and not a T_1 commutative with the property of cancelation semigroup, **U** be a quasi-uniformity generated by the topology of *S* and **B**_U be a base of **U**. Let, also, $Q = S \times S/R$, *R* the known equivalence relation, the quotient structure of *S*. We also suppose that **U** has the invariance property, that is:

$$(a,b) \in U \iff (x^*a, x^*b) \in U, x^* \in S, U \in \mathbf{U}.$$
 (1)

Then, in the quotient structure of a quasi-uniformity U_1 is defined a base B_{U_1} which are given by

$$U_1 = \left\{ (A, B) \in Q \times Q | A = a\alpha^{-1}, B = b\beta^{-1}, [x\alpha = y\beta \to (x\alpha, yb) \in U], x\alpha \leq yb \right\},$$
(2)

 $a, b, \alpha, \beta \in S$. (The inequality is the specialization relation). Thus, if the quotient structure Q is a T_0 and not a T_1 space, an inequality is defined in Q which is compatible with the algebraic structure. Moreover, there holds:

(a) $(A,B) \in U_1 \Rightarrow (ZA,ZB) \in U_1, Z, A, B \text{ in } Q, U_1 \in \mathbf{U}_1.$ (b) $(\forall U \in \mathbf{B}_{\mathbf{U}_1})(\exists U_1 \in \mathbf{B}_{\mathbf{U}_1})[U = U_1 \cap (S \times S)].$

Proof. The filter $U_1 = \{U_1 \mid U \in U\}$ defines a quasi-uniformity. In fact:

- (1) The relation is reflective: $x\alpha = y\alpha$, hence x = y and $(xa, ya) \in U$, that is $(A, A) \in U_1$.
- (2) $(\forall U_1 \in \mathbf{U}_1)(\exists V_1 \in \mathbf{U}_1)[V_1 \circ V_1 \subseteq U_1]$: We suppose A, B are as above and $C = c\gamma^{-1}$.

We consider U and V such that $V \circ V \subseteq U$. If $x\alpha = y\gamma$, then $(xa, yc) \in V$ and $(A, C) \in V_1$. If also $(z\gamma, t\beta) \in V$, we have $(zc, tb) \in V$ and then $(C, B) \in V_1$. Therefore $xz\alpha = zy\gamma$ and $zy\gamma = zt\beta$, so $(xaz, yzc) \in V$ and $(yzc, ztb) \in V$, because of the *invariance property*. Hence $(xza, ztb) \in U$ and finally $(A, C) \in V_1, (C, B) \in V_1$ or $(A, B) \in U_1$.

Since the space is T_0 and not a T_1 , every couple belongs to an entourage and gives an inequality.

Proof of (b)

First we prove that $U \subseteq U_1 \cap (S \times S)$ Let $(a,b) \in U$. It is $a = A = (\alpha a)\alpha^{-1}, b = B = (\alpha b)\alpha^{-1}$. Hence $(a,b) = (A,B) \in U_1$. Also, $(a,b) \in S \times S$. Then, $(a,b) \in U_1 \cap (S \times S)$.

Now we show that: $U_1 \cap (S \times S) \subseteq U$

Let $(A, B) \in U_1 \cap (S \times S)$. Then $A = (\alpha a)\alpha^{-1}$, $B = (\beta b)\beta^{-1}$. Due to (1), for $x\alpha = y\beta$, we have $((x\alpha)a, (y\beta)b) \in U$, thus $(a, b) \in U$.

Proof of (a)

First, we prove the following:

Under the invariance: $(\alpha^{-1}a, \alpha^{-1}b) \in U_1 \iff (a, b) \in U, a, b, \alpha \in S.$

Indeed:

⇒ Let $(A = \alpha^{-1}a, B = \alpha^{-1}b) \in U_1$. If $x\alpha = y\alpha$, then x = yand $(xa, yb) \in U$. Finally $(a, b) \in U$. \leftarrow Let $(a, b) \in U$. If $A = \alpha^{-1}a, B = \alpha^{-1}b$, then supposing that $x\alpha = y\alpha$, we have x = y and (xa, yb) = (xa, xb) = (x, x) $(a, b) \in U_1$. Now it is chough to prove the following:

(i) $(\gamma^{-1}A, \gamma^{-1}B) \in U_1 \iff (A, B) \in U_1, \gamma \in S.$ (ii) $(\delta A, \delta B) \in U_1 \iff (A, B) \in U_1, \delta \in S.$

(i) Put A = α⁻¹a, B = α⁻¹b. Then, (γ⁻¹(α¹a), γ⁻¹ · (α⁻¹b)) ∈ U₁. By the above lemma we have (a, b) ∈ U.
(ii) The elements A and B are as above. We also suppose that δ'α = α'δ, α, α', δ, δ' ∈ S. (It is possible, because of (1)). So, α = δ'⁻¹α'δ and α⁻¹ = δ⁻¹α'⁻¹ · δ'. Hence

$$(\delta A, \delta B) = (\delta \alpha^{-1} \alpha, \delta \alpha^{-1} b) = (\delta \delta^{-1} \alpha'^{-1} \delta' \alpha, \delta \delta^{-1} \alpha'^{-1} \delta' b)$$
$$= (\alpha'^{-1} \delta' \alpha, \alpha'^{-1} \delta' b).$$

That is: $(\delta A, \delta B) \in U_1 \iff (\alpha'^{-1}\delta'\alpha, \alpha'^{-1}\delta'b) \in U_1$, hence $(\alpha^{-1}a, \alpha^{-1}b) \in U_1$ or $(a, b) \in U_1$. The rest are trivial. \Box

2.12. The above facts (a) and (b) express the process toward the validity of the *invariance* of the given semi-group to the

quotient structure. We have mainly needed, for the sake of brief, the same *denominator*.

All the elements of the quotient space $Q = Q(S, \Sigma)/R$ have the form $a \cdot \alpha^{-1}, a, \alpha \in S$, or the form $\overline{(a, \alpha^{-1})}$. The relations which rule the different operations and equivalences, based on the following, where $b, \beta \in S$:

(1)
$$a\alpha^{-1} = b\beta^{-1} \iff \alpha\lambda = \beta l, \lambda \in \Sigma, l \in S.$$

(2) $a\alpha^{-1}b\beta^{-1} = at(\beta\tau)^{-1}$ with $b\tau = \alpha t, \tau \in \Sigma, t \in S.$

So, in this set Q a commutative semigroup is defined and the cancelation property is an easy consequence.

2.13. Theorem. (Cf. [12, p. 377]). With the suppositions of the Theorem 2.11 in the semigroup $(S, \cdot, \tau(\mathbf{U}))$ the following statements hold:

(i)
$$\left(\overline{(a,\alpha)}, \overline{(b,\beta)}\right) \in U_1 \Rightarrow \left(\overline{(ka,\alpha)}, \overline{(kb,\beta)}\right) \in U_1, k \in S.$$

(ii)
$$\left(\overline{(a,\alpha)}, \overline{(b,\beta)}\right) \in U_1 \Rightarrow \left(\overline{(k,k)} \cdot \overline{(a,\alpha)}, \overline{(k,k)}\right)$$

 $\overline{(b,\beta)} \in U_1, k \in S.$

- (iii) $A = a\alpha^{-1}, B = b\beta^{-1}, (A, B) \in U_1 \Rightarrow (\gamma^{-2}A, \gamma^{-2}B) \in U_1,$ where $\gamma \in S, \gamma^{-2} = \gamma^{-1} \cdot \gamma^{-1}.$
- (iv) Generally, if there holds the invariance for the U, then there holds for the U_1 as well.

Proof. We correspond to every $U \in \mathbf{U}$ the entourage $U_1 \in \mathbf{U}_1$. The demonstrations follow, in a great part, the logic of Scheiferdecker.

- (i) If x₁α = x₂β, then we may prove that (kx₁a, kx₂b) ∈ U, where k = (k, 1) ∈ U₁. The theorem is true because of the suppositions and the *invariance property*.
- (ii) We suppose that $x_1\alpha = x_2\beta$, hence $(x_1a, x_2b) \in U$, so $x_1\alpha = x_2\beta$ and $(x_1ka, x_2kb) \in U_1$ because of the *invariance property* in **U**.
- (iii) It is $\gamma^{-2} = (k, k\gamma^2)$ for any $k \in S$. We have to prove that:

$$\overline{(a,\alpha)},\overline{(b,\beta)}\Big)\in U_1\Rightarrow \left(\overline{(ka,k\gamma\alpha)},\overline{(kb,k\gamma\beta)}\right)\in U_1,$$

after the supposition $x_1\alpha = x_2\beta$. From this last relation we have that $x_1k\gamma\alpha = x_2k\gamma\beta$ and from that we conclude to our demand.

(iv) We suppose that $(a, b) \in U$, that is $(\overline{(ax, x)}, \overline{(by, y)}) \in U_1$. We will prove that $(\overline{(kax, x)}, \overline{(kby, y)}) \in U_1, k \in S$. It is known that $(\overline{(kax, kx)}, \overline{(kby, ky)}) \in U_1$. That is, if $\sigma_1 kx = \sigma_2 ky$, then $(\sigma_1 kax, \sigma_2 kby) \in U$ or $\sigma_1 x = \sigma_2 y$ entails $(\sigma_1 ax, \sigma_2 by) \in U$ or $(\overline{(kax, x)}, \overline{(kby, y)}) \in U_1$ or $\overline{(ka, kb)} \in U_1$. \Box

2.14. For every $U \in \mathbf{U}$, the subsets $\pi^{-1}(U)$ consist a base **B** for a *quasi-uniformity* structure. In fact:

- (a) Let $V \in U, \pi^{-1}(V) = U, V_1 \circ V_1 \subseteq V$. From the latter relation: $\overline{(a,b)} \in V_1, \overline{(b,c)} \in V_1$, that is $\overline{(a,c)} \in V$. So, there holds $\pi^{-1}(V) = V_1$ and if $(x,y) \in \pi^{-1}(V)$, then $\pi(x,y) = \overline{(a,b)}$, besides $\pi(y,z) = \overline{(b,c)}$, that is $V_1 \circ V_1 \subseteq V$.
- (b) $\cap \{U \mid U \in \mathbf{B}\} = \cap (\pi^{-1}\{V \mid V \in \mathbf{U}\}) = \pi^{-1} (\cap \{V \mid V \in \mathbf{U}\}),$ the latter containing the diagonal of $S \times \Sigma$.

2.15. Proposition. Let $(S, \cdot, \tau = \tau(\mathbf{U}), e)$ be a topological commutative with the property of cancelation semigroup, *e* its neutral element and \mathbf{U} a quasi-uniformity on *S*. If $Q = S \times \Sigma/R$ (*R* the known equivalence relation), is the quotient structure of *S* and if *S* has the additional property:

"if O is open, then $x \cdot O$ is open too",

then S is topologically embedded to Q.

Proof. Let $\pi: S \times \Sigma \to Q$, $\pi((a, b)) = (a, b)$ and $P: S \to Q$, $P(x) = \pi(xb, b)$. We consider the map:

 $\rho: (S,\tau) \to (S \times S, \tau \times \tau), \rho(x) = (x, e).$

We have:

- (i) The map ρ is 1-1. It is $\rho(x_1) = \rho(x_2)$. Hence, $(x_1, e) = (x_2, e)$ implies $x_1 = x_2$.
- (ii) The map ρ is onto $\rho(S)$.
- (iii) The set $\rho(S)$ is a sub-semigroup of $S \times S$. It is $(x, e) \cdot (y, e) = (x \cdot y, e) \in \rho(S)$.
- (iv) The map $\rho : (S, \tau) \to (S \times S, \tau \times \tau)$, is a homomorphism $(\rho(x, y) = (x \cdot y, e) = (x, e) \cdot (y, e) = \rho(x) \cdot \rho(y)).$
- (v) The map: f₁: (S²×S², τ²×τ²) → (S×S, τ×τ), f₁((a,b), (c,d)) = (a ⋅ c, b ⋅ d) is continuous.
 Let A be an open sub-set of S×S such that (a ⋅ c, b ⋅ d) ∈ A.
 We have to find a subset B such that B⊆S²×S², ((a,b), (c,d)) ∈ B, f₁(B) ⊆A, where B is open. There are neighborhoods U_a, U_b of a ⋅ c, b ⋅ d respectively, such that U_a, × U_b ⊆A. Since the maps (a,c) → a ⋅ c and (b,d) → bd are continuous, there are neighborhoods V_a, V_b, V_c, V_d of a, b, c, d respectively with V_a ⋅ V_c ⊆ U_a and V_b ⋅ V_d ⊆ U_{bd}. We put: B = V_a ⋅ V_c × V_b ⋅ V_d.
- (vi) The structure $(S \times S, \tau \times \tau)$ is a topological semigroup.
- (vii) The structure $(\rho(S), \tau|_{\rho(S)})$ $(\tau|_{\rho(S)})$, the one reduced on $\rho(S)$ is a topological semigroup.
- (viii) The map ρ is continuous.Let $A \subseteq S \times S$ be an open set and $(x, e) \in A$. We have to find an open set B such that $B \subseteq S, x \in B, \rho(B) \subseteq A$. For the set A, there are open neighborhoods U_x, U_e of x and e, respectively, such that $U_x \times U_e \subseteq A$. If $B = U_x$, then $\rho(B) = \rho(U_x) = (U_x, e)$ $\subseteq A$.
- (ix) The map $\rho: (S, \tau) \to (S \times S, \tau \times \tau|_{\rho(S)})$ is open.
- (x) The map $\pi : (S \times S, \tau \times \tau) \to (Q, \tau \times \tau|_Q), \pi(x, y) = (x, y)$ is continuous, $(\tau \times \tau|_Q)$ is, the natural topology on Q according to its definition).
- (xi) The map $P: (S, \tau) \to (Q, \tau \times \tau|_Q), P(x) = \overline{(x, e)}$ is continuous.

We observe that the maps:

$$ho: (S, au) o (S imes S, au imes au|_{
ho(S)})$$

and

$$\pi: (S \times S, \tau \times \tau) \to (Q, \tau \times \tau|_Q)$$

are continuous, hence the map $\pi|_{\rho(S)}$ is continuous, and therefore the map $P = \rho \circ \pi|_{\rho(S)}$ is continuous.

(xii) The map $P: (S, \tau) \to (Q, \tau \times \tau|_{Q})$ is open.

Since the set $S \times S$ is a topological group it is homeomorphic to $S \times S/R$, hence we have an embedding of S into the topological group $S \times S$. \Box

2.16. Examples

- We consider the space (ℜ₊, τ₊) where ℜ₊ is the set of positive numbers and τ₊ is the usual topology of positive numbers. We consider the space as an additive semigroup and, similarly, we consider the space (ℜ, τ), where ℜ is the set of real numbers noted additively and τ the usual topology of real numbers. We note that for an open subset *O* of the set of positive numbers and for any x ∈ ℜ the set x · O is open. Thus, we have embedding of ℜ₊ to ℜ.
- (2) Let $J_1 = [0, 1]$, under the usual multiplication, $J_2 = [\frac{1}{2}, 1]$ with multiplication defined by $x \circ y = \max(\frac{1}{2}, xy)$ where xy denotes the usual multiplication of real numbers and $J_3 = [0, 1]$ with multiplication defined by $x \circ y =$ $\min(x, y)$. J_1 and J_2 have just the two idempotent numbers zero and identity, but in J_3 every element is an idempotent. Every non-idempotent element of J_2 is algebraically nilpotent (see these examples in [12]).Let us consider the topology which has as base the set of the form $\{(a, 1] : 0 \le \alpha < 1\}$. We remark that the topology in the three spaces is the topology of a quasi-uniformity. The proposition of 2.15 is in valid for the spaces J_1, J_3 and there does not holds for J_2 .
- (3) If (X, \mathbf{U}) is a quasi-uniform space, $\Delta = \bigcap_U \mathbf{U}$ and α the canonical mapping from (X, \mathbf{U}) onto X/Δ . Given $U \in \mathbf{U}$, select $V \in \mathbf{U}$ such that $V \circ V \circ V \subset U$. Then $(\alpha \times \alpha)(V) : (\alpha \times \alpha)(V) = (\alpha \times \alpha)(V \circ \Delta \circ V) \subset (\alpha \times \alpha)(U)$. Thus $\alpha \mathbf{U}$ is a quasi-uniformity on X/Δ and is U-preserving. (C.f. [7]).

3. The specialization ordering on a semi-group

3.1. A quasi-uniformity induces on a space, say X, a relation

$$\cap \{ U \in \mathbf{U} \},\tag{1}$$

which is *reflective* and *transitive*. This relation is a proper inequality for a topological T_0 and not a T_1 space. As we have already said, we denote it by $x \leq y$ (or by $x \leq^X y$), for $x, y \in X$ and it means that $x \in cl\{y\}$. If in the space exists an operation, symbolized, say, by \cdot , then the *compatibility* of relation and operation is given by:

$$x \leqslant y, a \in X \Rightarrow a \cdot x \leqslant a \cdot y. \tag{2}$$

Proposition. Let $(S, \cdot, \tau = \tau(\mathbf{U}), \leq^S)$, $(\leq^S$ the specialization order) be a topological commutative with cancelation semigroup, T_0 and not T_1 , \mathbf{U} is the quasi-uniformity on S such that $\tau = \tau(\mathbf{U})$. We also assume that:

$$(\forall a \in S)[U \in \mathbf{U} \Rightarrow (a, a)U \in \mathbf{U}]. \tag{(*)}$$

Then

$$a \leqslant^{S} b, x \leqslant^{S} y \Rightarrow x \cdot a \leqslant y \cdot b, a, b, x, y \in S.$$

$$(**)$$

Proof. Let $a \leq b$. Then, the element *a* belongs to every neighborhood of *b*. Thus, if *V*, *V'*, *U* are entourages of U, we have that for every $V, a \in V(b)$, hence $(a,b) \in V$ or -because of the supposition- $(x \cdot a, x \cdot b) \in V$ and thus $x \cdot a \leq x \cdot b$. Besides: for every V, V', U with $V \circ V' \subseteq U$ there holds $(a,b) \in V \Rightarrow (a \cdot x, b \cdot x) \in V, x \in V(y) \Rightarrow (x, y) \in V' \Rightarrow (b \cdot x, b \cdot y) \in U$ and thus $(x \cdot a, y \cdot b) \in U$. \Box

3.2. Remark. The inverse relation of the relation (*) is: $(\forall a \in S)[(a, a)U \in \mathbf{U} \Rightarrow U \in \mathbf{U}].$ (3) If the specialization order is linear, then the condition (**) implies (3). In fact, if $x \cdot a < x \cdot b$ and $a \ge b$, we have $x \cdot a \ge x \cdot b$, which is a contradiction.

3.3. During sixties, mathematicians faced the following problem:

"Given a commutative semigroup S with the property of cancelation, ordered by \leq and given a semigroup Q of quotient structure, under which conditions the order \leq may be extended to an order \leq^{Q} on Q?"

In fact, the problem was similar to one that the structure Q was a semigroup larger that the given one. Of course, the given inequality is not obligatory, the *specialization*.

The extension of \leq on S to an order on Q means that there is another order \leq^Q on Q such that

$$\leq \subseteq \leq^{Q}$$
 and $a \leq b \Rightarrow a \leq^{Q} b$.

The first who gave sufficient conditions at the end to extend an order of a semigroup S to its quotient group G, was Puttaswamaiah (cf. [10]). Beyond this, Weinert generalized the study of the order of a semigroup S to the order of any quotient semigroup T. Weinert (in [19]) recapitulated the conditions. The operation in the product $S \times S$ is defined by the relations:

 $(a, \alpha) \cdot (b, \beta) = (at, \beta \tau), \tau, t \in S$, with $b\tau = \alpha \cdot t$.

The definition is independent of the choice of the t and τ and the equivalence classes both of them. The proposition below is owed to Puttaswamaiah, it has been generalized by Weinert and the relative idea of a space T_0 but not a T_1 one, is a new one.

3.4. Proposition. If S is a topological commutative with cancelation semigroup T_0 and not a T_1 ordered by \leq , (\leq the specialization order), then this order has an extension \leq^Q to every quotient semigroup Q, if there holds:

$$a\xi \leqslant b\xi, a, b, \xi \in S \Rightarrow a \leqslant b. \qquad \Box \tag{4}$$

The extended ordering $\leq ^{Q}$ is uniquely determined by the relation (5) below.

The set Q is one of the quotient semigroups and, of course, is probably a group. The new relation \leq^{Q} is defined by the following:

$$a\alpha^{-1} \leqslant^{Q} b\beta^{-1} \iff$$
 therease $l, \lambda \in S$ with $\alpha \cdot \lambda = \beta \cdot l$ and
 $a \cdot \lambda \leqslant b \cdot l$ (5)

So, the Proposition 3.4 may be transformed into the next one.

3.5. Proposition. Let $(S, \cdot, \tau = \tau(\mathbf{U}))$ be a topological commutative with the property of cancelation T_0 and not T_1 semigroup. We also suppose that S fulfills the statement:

$$(\forall a \in S)(\forall U \in \mathbf{U})[U \in \mathbf{U} \iff (a, a)U \in \mathbf{U}].$$
(***)

Then, the semigroup S is topologically embedded into the quotient structure Q. If moreover the space Q is T_0 and for S there holds the above (3), then the specialization order of S is extended to an inequality of Q.

Proof. If the space *S* is T_0 and not T_1 , then the space has the ordering of *specialization* and the condition (* * *) assures that the ordering is compatible with the operation in *S*. For the set *Q*, it is not secure that it is not T_1 .

The condition $a \cdot \xi \leq b \cdot \xi, a, b, \xi \in S$ means that for any $U \in \mathbf{U}$, it is $(\xi \cdot a, \xi \cdot b) \in U$, hence $(a, b) \in U$, which, finally,

implies that $a \leq b$. So, we get the condition which assures the extensibility of \leq . \Box

3.6. Remark. The above condition (***) expresses the *invariance* of U and it is a rather hard condition. We remark that in the basic Proposition 3.1 the above relation (***) is in valid for the structure of the *quotient structure Q*, for the one only direction.

3.7. We refer, now, to the relation \leq itself. S.E. Szpilrajn (in [13, 1930]) proved that

"every partially ordered set is extended to a linear ordered one".

For any topological space (X, τ) we consider a *quasi-uniformity* U such that $\tau = \tau(U)$ and we make use, as usual, of the following symbols: we put U^{-1} for the class $\{U^{-1} \mid U \in U\}$ and $U^* = U \lor U^{-1}$, where U* is the *supremum* of the *quasi-uniformities* U and U^{-1} . Let $a, b \in X$. By a||b we denote that the elements a, b are non-comparable to each other.

For any two elements a, b in X and $U \in U$, we define the subset:

$$\mathfrak{I}_{ab}^{U} = \{ (x, y) \mid (x, y) \in U \text{ or } ((x, a) \in U \text{ and } (b, y) \in U) \}.$$
(6)

It is proved that this subset is the entourage of a *quasi-uniformity*. During all the process the relation is the *specialization* order. Of course, the relation must always be compatible and the operation continuous.

We state the following:

3.8. Proposition. Let be the structure $(S, \cdot, \tau = \tau(\mathbf{U}), \leq)$, where *S* is a topological commutative with the property of cancelation semigroup; moreover **U** is a quasi-uniformity with $\tau = \tau(\mathbf{U})$, the space is a T_0 and not a T_1 space and \leq is the specialization order defined on *S*. We assume that there holds the above condition (***). For any $U \in \mathbf{U}$ we construct (by the above (6)) the set \mathfrak{I}_{ab}^U and after that the filter

$$\mathbf{F}_{ab} = \{ \mathfrak{I}_{ab}^U \mid U \in \mathbf{U} \}.$$

Then,

- (a) The filter \mathbf{F}_{ab} induces a T_0 quasi-uniformity on S.
- (b) The point (a,b) belongs to all the elements of \mathbf{F}_{ab} , where by \mathbf{F}_{ab} has not the T_1 property; moreover $\cap U \subset \cap \mathbf{F}_{ab}$.
- (c) $\mathbf{U}^* = \mathbf{F}_{ab} \vee \mathbf{F}_{ab}^{-1}$, (that is \mathbf{U}^* is the supremum of $\mathbf{F}_{ab}, \mathbf{F}_{ab}^{-1}$).
- (d) If in addition the relation

$$(\forall k \in S)(\forall U \in \mathbf{U})(\forall (a, b)) [(k, k)\mathfrak{I}_{ab}^{U} \in \cap \mathbf{F}_{ab} \to \mathfrak{I}_{ab}^{U} \in \mathbf{F}_{ab}] \quad (7)$$

is fulfilled, then the extension of the relation \leq is the extension of the $\cap \mathbf{F}_{ab}$.

(e) In all the levels of the demonstration, the relation (* * *) holds.

Proof. (a) *The transitive property*: it comes as follows: Given $U \in \mathbf{U}$, let $V \in \mathbf{U}$ with $V \circ V \circ V \subseteq U$. We also assume that (a, b), as also (b, a), are not contained to U. If $(x, y) \in \mathfrak{I}_{ab}^{V} \circ \mathfrak{I}_{ab}^{V} \circ \mathfrak{I}_{ab}^{V}$ there is $z \in S$ such that $(x, z) \in \mathfrak{I}_{ab}^{V}$ and $(z, y) \in \mathfrak{I}_{ab}^{V}$. We distinguish the cases: $(x, z) \in V, (z, y) \in V$ or $(x, z) \in V, (z, a) \in V, (b, y) \in V$ etc. It is not very difficult for one to prove the result in all the other cases.

The T_0 -property is a consequence of the result (c) below, since the T_0 -property for U is equivalent to the property of being the structure U^{*} a T_1 -space.

(b) It is an easy consequence of the definition.

The space is not T_1 , since a and b at least belong to all $\mathfrak{I}_{ab}^U, U \in \mathbf{U}$.

(c) We have to prove that for any $\mathfrak{I}_{ab}^U, U \in \mathbf{U}$, there is a V such that

$$\mathfrak{Z}_{ab}^{V} \circ \left(\mathfrak{Z}_{ab}^{V}\right)^{-1} \subseteq U \cap U^{-1}.$$

Let V be such that $V \circ V \circ V \subseteq U$ and (a, b) as well as (b, a), is not contained to U. We distinguish cases, for instance $(x, y) \in V, (x, y) \in V^{-1}$, or $(x, y) \in V, (x, a) \in V$ and $(b, x) \in V$ etc. In all the cases the demanded are easily concluded.

- (d) Firstly, we denote by the same symbol \leq every extension of the given relation. Now, the condition $\xi \cdot a \leq \xi \cdot b$ means that for every $U \in \mathbf{U}$ and for every a, b elements of X, there holds $(\xi \cdot a, \xi \cdot b) \in \mathfrak{I}_{ab}^{U}, \mathfrak{I}_{ab}^{U} \in \mathbf{F}_{ab}$ which implies-from the relation (* * *)-that there holds $(a, b) \in \mathfrak{I}_{xy}^{U}$. If the elements are comparable in the starting level, then it is again $a \leq b$, if there are non-comparable, they imply again $a \leq b$.
- (e) Since $\mathfrak{I}_{ab}^U \in \mathbf{U}$, the condition (***) is valid for all the entourages of \mathbf{F}_{ab} . \Box

Acknowledgment

I would like to express my cordial thanks for you and your referees who carefully corrected my paper. I frankly thank you for your effort.

References

 T. Christopf Francis, Free topological semigroups and embedding topological semigroups in topological groups, Pacific J. Math. 34 (1970) 343–353, MR. 10, pp. 54–58.

- [2] T. Christoph Francis, Factor semigroups which are topological semigroups, Math. Japonica 17 (1972) 21–31.
- [3] H.-P.A. Kunzi, J. Marin, S. Romaguera, Quasi-uniformities on topological semigroups and bicompletion, Semigroup Forum 62 (2001) 403–422.
- [4] Donald Marxen, Uniform semigroups, Math. Ann. 202 (1973) 27–36, MR. 0447459.
- [5] Donald Marxen, Quotients of uniform semigroups, Semigroup Forum 11 (1975) 130–139.
- [6] Sheila A. McKilligan, Embedding topological Semigroups in topological groups, Proc. Edinburgh Math. Soc. (1970) 127–138.
- [7] Leopoldo Nachbin, Topology and order, Van Nostrand Math. Stud. (1964).
- [8] O. Ore, Linear equations in non-commutative fields, Ann. Math. 32 (1931) 463–477.
- [9] W.J. Pervin, Quasi-uniformization of topological spaces, Math. Ann. 147 (1962) 316–317.
- [10] B.M. Puttaswamaiah, On semigroups of quotient, Am. Math. Monthly 74 (1967) 1062–1065.
- [11] N.J. Rothman, Embedding of topological semigroups, Math. Annal. 139 (1960) 197–203.
- [12] Eberhad Schieferdecker, Einbettungssätze für topologische halbgruppen, Math. Annal. 131 (1956) 372–384, MR. 18658.
- [13] E. Szpilrajn, Sur l'extension del'Ordre partial, Fund. Math. 21 (1930) 386–389.
- [14] Joachim Weinert Hans, On the extension of partial orders on semigroups of right quotients, Trans. Am. Math. Soc. 142 (1969) 345–353.
- [15] Joachim Weinert Hans, Semigroups of right quotients of topological semigroups, Trans. Am. Math. Soc. 147 (1970) 333–348.