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1. Introduction

The study of BCK/BCl-algebras [1,2] was initiated by Imai
and Iseki in 1966 as a generalization of the concept of
set-theoretic difference and propositional calculus. Hu and Li
[3] introduced a wide class of abstract algebras: BC H-algebras.
They have shown that the class of BCl-algebras is a proper
subclass of the class of BCH-algebras. Neggers et al. [4] intro-
duced Q-algebras and generalized some theorems discussed in
BCK/BCl-algebras. Ahn et al. [5] introduced a new notion,
called QS-algebras and discussed some properties of the G-part
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of OS-algebras. Neggers and Kim [6] introduced a new notion,
called B-algebras which is related to several classes of algebras
of interest such as BCK/BCI/BCH-algebras. Kim and Kim [7]
introduced the notion of BG-algebras, which is a generaliza-
tion of B-algebras. Senapati et al. [8-15] done lot of works
on B-algebras and BG-algebras. Walendziak [16] introduced
a new notion, called a BF-algebra which is a generalization
of B-algebra and obtained several results.

Bandru and Rafi [17] introduced a new notion, called
G-algebras, which is a generalization of QS-algebras and dis-
cussed relationship between these algebras with other related
algebras such as Q-algebras, BCl-algebras, BCH-algebras,
BF-algebras and B-algebras. They introduced the concept of
0-commutative, G-part and medial of G-algebras and studied
their related properties.

The objective of this paper is to introduce the concept
of L-fuzzy set [18] to G-subalgebras of G-algebras. The notion
of L-fuzzy G-subalgebras of G-algebras is defined and lot of
properties are investigated. We classified the G-subalgebras
by their family of level subalgebras of G-algebras. We prove
that if every L-fuzzy G-subalgebras has the finite image, then
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every descending chain of G-subalgebras terminates at finite
step. In addition to it we observe that every ascending chain
of G-subalgebras terminates at finite step if the set of values
of any L-fuzzy G-subalgebras is a well ordered subset of L.

2. Preliminaries

In this section, some elementary aspects that are necessary for
this paper are included. Throughout this paper (L,<,V,A)
denotes a complete distributive lattice with maximal element
1 and minimal element 0 respectively.

Definition 2.1 ([17] G -algebra). A non-empty set X with a
constant 0 and a binary operation x is said to be G-algebra if it
satisfies the following axioms

Gl.xxx=0

G2. xx(xxy)=y, forall xyeX.

A G-algebra is denoted by (X, *,0).

Now, we introduce the concept of G-subalgebra over a crisp
set X and the binary operation * in the following. The defini-
tion of G-subalgebra is given below.

Definition 2.2 ([17] G-subalgebra). A non-empty subset S of a
G-algebra X is called a G-subalgebra of X if xxy € S, for all
x,y €S

From this definition it is observed that, if a subset S of a
G-algebra and it is closed, then S becomes a G-subalgebra.

Our main objective is to investigate the idea of
G-subalgebras on L-fuzzy set. In L-fuzzy set, the membership
values of the elements are written together along with the ele-
ments. The definition of this set is given below.

Definition 2.3 ([18]). Let X be a non-empty set. A L-fuzzy set
A= {(x,04(x)): x € X} of X is a function oy : X — L.

The intersection of two L-fuzzy sets A4 = {< x,0,4(x) >:
x€ X} and B={<x,ap(x) > x€ X} in X is defined as
ANB=oy(x) Noy(y) for all x € X.

3. Main results

In what follows, let X denote a G-algebra unless otherwise
specified. Combined the definitions of G-subalgebra over crisp
set and the idea of L-fuzzy set we define L-fuzzy G-subalgebra,
which is defined below.

Definition 3.1. Let 4 = {(x,04(x)) : x € X} be a L-fuzzy set in
X, where X is a G-subalgebra, then the set A4 is L-fuzzy G-
subalgebra over the binary operator * if it satisfies the
condition oy (x * y) = ay(x) Aay(y) for all x,y € X.

If 4 is a L-fuzzy G-subalgebra in X, then a,(0) is the upper
bound of o4(x), for all x € X, i.e. ay(0) = o4(x). Also, it is
easily proved that o, (0 x) > ay(x) for all x € X. Let {x,}
be a sequence of X. Then ay(0) = o4(x,) or 1 = 0y(0) =
otq (). If lim, o004 (x,) = 1, then o4(0) = 1.

Like other subalgebras, the intersection of two L-fuzzy
G-subalgebras of X is also a L-fuzzy G-subalgebra of X. More

generally, intersection of infinite number of L-fuzzy
G-subalgebras of X is also a L-fuzzy G-subalgebra of X.

If A is a L-fuzzy G-subalgebra of X, then it is easy to verify
that the set 1,, = {x € X : ay(x) = 24(0)} is a G-subalgebra of
X.

Theorem 3.2. Let B be a non-empty subset of X and A be a
L-fuzzy set in X defined by

) A, ifxeB
ay(x) =
4 T, otherwise

for all 4,7 € L with 1 > . Then 4 is a L-fuzzy G-subalgebra
of X'if and only if B is a G-subalgebra of X. Moreover, I,, = B.

Proof. Let A be a L-fuzzy G-subalgebra of X. Let x,y € X be
such that x,y € B. Then o4(x*y) = oy(x) Aoy(y) =AA L=
4. So x*y € B. Hence, B is a G-subalgebra of X.

Conversely, suppose that B is a G-subalgebra of X. Let
x,y € X. Consider two cases:

Case (i) If x,y€B then xxye€ B, thus au(x*xy)=1=
24(x) A 24 ().

Case (ii) If x ¢ B or,
oy (x) Aoy (p).

y ¢ B, then oay(xxy) =1=

Hence, A4 is a L-fuzzy G-subalgebra of X.

Also, I, ={x € X,o4(x) =04(0)} = {x € X,ay(x) =2}
=B U

Definition 3.3. Let 4 is a L-fuzzy G-subalgebra of X. For
s€ L, theset U(ay :s) ={x € X:a,y(x) > s} is called a level
subset of 4.

Obviously, this level subset U(a, : s) is a G-subalgebra of
X.

Theorem 3.4. Let A be a L-fuzzy set in X, such that the set
U(ay : ) is G-subalgebra of X for every s € L. Then A is a L-
fuzzy G-subalgebra of X.

Proof. Let for every s € L, U(o, : s) is subalgebra of X. In
contrary, let xg,y, € X be such that oy(xo*y,) <
oq(x0) Aog(vy). Let oy(xg) = 61,04(yy) = 6> and oy (xg * yy)
=s. Then s < 0; A0,. Let us consider, s; =1 [o0y(xo % yo)+
oq(x0) Nog(vy)]. We get that s :%(s + 0, A 0y). Therefore,
01 > 81 :%(Y—‘—@l /\92) > s and 92 > 81 :%(S—‘—G] /\92) > S.
Hence, 0, A0, > 51 >5=o04(x)%y,), so that xoxy, ¢
U(oy = s) which is a contradiction, since ay(xy) = 0, = 0,/
0, > 51 and oy(y,) =602 = 0, A0, > 5. This implies xo,y, €
U(ay = 5). Thus oy(x*y) = ag(x) Aoy(y) for all x,y € X.
Hence, A4 is a L-fuzzy G-subalgebra of X. [J

Theorem 3.5. Any subalgebra of X can be realized as a level sub-
algebra of some L-fuzzy G-subalgebra of X.

Proof. Let P be a L-fuzzy G-subalgebra of X, and 4 be a L-
fuzzy set on X defined by

) {L ifxeP
o4(x) =
8 0, otherwise
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for all 4 € L. We consider the following cases:

Case (i): If x,ye P, then ay(x)=24,pB,(x) =r.

og(xxy) =A=ANA=oy(x) Aoay(y).

Case (ii): Ifx € Pandy ¢ P thenoy(x) = Aand oy(y) = 0.
Thus, oy(x*y) = 0=2AA0=0a,(x) Aoy(y).

Case (iii): Ifx ¢ Pand y € P then a,(x) =0 and a,(y) = /.
Thus, o (xxy) = 0=0A 1= oy(x) Aay(y).

Case (iv): If x ¢ P and y ¢ P then ay(x)=0 and
o4(y) =0. Now ay(x*y) =2 0=0A0=o0y(x)A
o ().

Thus,

Therefore, A is a L-fuzzy G-subalgebra of X. [

As a generalization of Theorem 3.5, we prove the following
theorem:

Theorem 3.6. Let X be a G-algebra. Then given any chain of

G-subalgebras Py C Py C P, C--- C P, = X, there exists a
L-fuzzy G-subalgebra A of X whose level subalgebras are
exactly the G-subalgebras of this chain.

Proof. Consider a set of numbers sy > s; > --- > s,, where
each s; € [0,1]. Let 4 = {< x,a4(x) >: x € X} be a L-fuzzy
set defined by

ifxEPo

na(x) = { (1)

Siy ierPi—Pi,1,0<l.<l”.

We consider the following two cases:

Case (i): Let x,y € P, — P,_;. Therefore, by (1),a,(x) =
o4(y) = s;. Since P; is a G-subalgebra, we have
x*xy € P;, and so either xxy € P;— P, or
x+xy€P;;. In any case we conclude that
og(xxy) = 5= as(x) Aoy ().

Case (ii): Let x€P;—P,-; and ye€ P;—P;; for i>j.
Therefore, by (1), a,(x) =s; and o4 (y) = s;. Then
xxy € P; since P; is a G-subalgebra of X and
P; C P;. Hence oy (x xy) = 55 = ay(x) Ay (»).

Thus A4 is a L-fuzzy G-subalgebra of X. From (1), it follows
that Im(oy) = {s0,51,...,5-}. Hence, the level subalgebras of
A are given by the chain of G-subalgebras

Uoy :59) CU(oy:8) C-+- CU(oty:s) =X,

Now Uloy:so) ={x € X:ay(x) =30} =P Finally we
prove that U(ay:s;)=P; for 0<i<r. Clearly
P, CU(oy:s;). If x € Uloy = s;), then oy (x) > s; which implies
that x ¢ P; for j > i. Hence a4(x) € {so,51,...,5}, and so
x € P, for some k<i. As P, CP;, it follows that x € P;.
Therefore, U(ay :s;) = P; for 0 <i<r. This completes the
proof. O

Note that if X is a finite G-algebra, then the number of G-
subalgebras of X is finite where as the number of level subalge-
bras of a L-fuzzy G-subalgebra A appears to be infinite. But
since every level subalgebra is indeed a G-subalgebra of X,
not all these G-subalgebras are distinct. The next theorem
characterizes this aspect.

Theorem 3.7. Let A be a L-fuzzy G-subalgebra of a G-algebra
X. Two level subalgebras U(oy = s1), U(ay : 52) (with sy < s2) of
A are equal if and only if there is no x € X such that
51 < oq(x) < 520

Proof. Assume that U(oy :s1) = U(ay :s5) for sy <s, and
assume that there exists x € X such that s; < o4(x) < 5. Then
U(oy :5) is a proper subset of U(a,:s;), which is a
contradiction.

Conversely, suppose that there is no x € X such that
s1 < oq(x) < $7. Since 51 < s2, we have U(oy = 52) C U(oy = 51).
If x € U(oy : 51), then ay(x) = 51 and so a4(x) = 5o, because
a4(x) does not lie between s; and s,. Hence x € Uy : 52)
which implies that U(oy : 51) C U(ay : 52). This completes the
proof. O
Remark 3.8. As a consequence of Theorem 3.7, the level sub-
algebras of a L-fuzzy G-subalgebra 4 of a finite G-algebra X
form a chain. But a4(x) < a4(0) for all x € X. Therefore
U(ay = 50), where so = 04(0), is the smallest level subalgebra
but not always U(ay : 59) as shown in the following example,
and so we have the chain U(oy :sy) C Ulay:s) C---
C U(ay = s,) = X, where sg > 51 > -+ > 5,.

Theorem 3.9. Let X be a finite G-algebra and A be a L-fuzzy
G-subalgebra of X. If Im(oq) = {s1,...,,}, then the family of
G-subalgebras U(o : s;),1 < i< n constitutes all the level sub-
algebras of A.

Proof. Let s€[0,1] and s ¢ Im(oy). Suppose s; < s <
-+ < s, without loss of generality. If s <s;, then U(oy : s1)
=X=U(oy:5). If 5> 5, then obviously Ulo,:s)=¢. If
si-1 < s <s;, then by Theorem 3.7, we get Uloy:s) =X
= U(oy : ;). Thus for any s € L, the level subalgebra is one
of {U(ay:s)|i=1,2,...,n}. O

It is easy to very that two L-fuzzy G-subalgebras of a
G-algebra may have an identical family of level subalgebras
but the L-fuzzy G-subalgebras may not be equal.

Theorem 3.10. Let X be a G-algebra and A be a L-fuzzy
G-subalgebra of X. If Im(a4) is finite, say {si1,s2,...,5,}, then

Sfor any s;,s; € Im(oy), Uloug = 57) = Uy @ 57) implies s; = ;.

Theorem 3.11. Let A= {(x,o4(x)):x€ X} and B=
{(x,ap(x)) : x € X} be two L-fuzzy G-subalgebras of a finite
G-algebra X with identical family of level subalgebras. If
Im(ay) = {to,t1,...,t,} and Im(op) = {so,51,...,8} where
to>1 > >t and sy > s > ... > s, then we have

yr=k
(ll) U(O(A : l,’) = U(O(B : S,’),O < l< k
(#ii) if x € X such that o.4(x) = t;, then ag(x) =1s;,0 <i<k.

Proof

(i) By Theorem 3.9, the only subalgebras of 4 and B are the
two families U(o, : ;) and U(op :s;) . Since A and B
have the same family of level subalgebras, it follows that
r=k.
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(i) Using Remark 3.8 and (i), we have chains of level sub-
algebras  Uloy :19) CU(ay:t) C--- C U0y : ) =X
and U(up:ty) CU(op:ty) C--- CU(ap:ty) =X. It

follows clearly that if ¢,¢; € Im(oy) such that ¢, > ¢

and s;,s; € Im(og) such that s; > s; then
U(OCA . l,') C U(OlA : I/‘) and U(O(B IS,') C U(O(B IS/‘). (2)

Since the two families of level subalgebras are identical, it is

clear that U(ay : #)) = U(ap : 5p). By hypothesis U(o, : 1) =
U(ag :s5;) for some j>0. Assume that Uloy:t)#
U(op : s1). Then U(oy : ty) = U(op = s;) for some j> 1, and
Uog = 51) = Uy : ;) for some #; < t,. Thus by (2) we obtain
that Ulap:s) =U(uy: 1) CU(uy:t;) and Uy : ;) =
Ulog : 51) C Ulag : 55). Th1s is a contradiction. Hence
U(ay : 1) = U(ap : 51). By induction on 7,0 < i < k, we finally

obtain that U(ay : ;) = U(up : 5;),0 < i < k.

(iii) Let x € X be such that oy(x) =¢ and let az(x) =s;,
where 0 < i< k and 0 < j < k. It is sufficient to show
that s; =s;. Now x € U(oy : ;) = U(op = 5;) implies that
ag(x) =s; = . This gives from (2) that
Ulag :s;) CU(ap :s;). Since x € U(og :s;), it follows
from (ii) thatx € U(oy : t;) and so o4(x) = t; > t;, which

implies that U(o, : #;) CU(oy : t;) by (2). Using (if), we
have Ulog :8;) = Uy : ;) CU(0ty 2 t;) = Ul 2 55).
Thus U(og :s;) = U(ag :s;), and by Theorem 3.10,
s; = s;. This completes the proof. [

Theorem 3.12. Let A and B be two L-fuzzy G-subalgebras of a
finite G-algebra X such that the families of level subalgebras of A
and B are identical. Then A = B if and only if Im(o.4) = Im(ap).

Proof. If 4 = B, then clearly Im(oy) = Im(op). Conversely,
assume that Im(oy) = Im(oz). For convenience, let us denote
Im(oy) = {to,t1,...,t,} and Im(op) = {so,51,--.,8}, where
fh > 1 > s> and So > 81 > > 8. Then Sy € Im(ag) =
Im(oy). Thus sy = t,, for some ny. Assume that 1, # . So
ty, < to. Now s € Im(o4), and hence s, =1, for some n.
Since sy > 51, we have t,, > 1, . Continuing in this way, we
have t,, > t, >--->1t,. Since sy = t,, < 1, this contradicts
to the fact that Im(o,) = Im(ap). Hence we must have
So = to. Proceeding this manner, we get that s; = 1,0 < i< r.
Now let xg,x1,...,x, be distinct elements of X such that
o4(x;) = 1,0 < i< r. By Theorem 3.11, ap(x;) = 5,0 <i<r.
Since s; =¢;, it follows that oy (x) = op(x) for each x € X.
Therefore A = B. [

Theorem 3.13. Let T) D T, D Ts--- be a descending chain of
G-subalgebras of X which terminates at finite step. For a L-fuzzy
G-subalgebra A of X, if a sequence of elements of Im(o,) is
strictly increasing, then A is finite valued.

Proof. Assume that A4 is infinite valued. Let {¢,} be a strictly
increasing sequence of elements of Im(ay). Then 0 < ¢,
< ¢, <--- < 1. Note that U(a, : ¢,) is G-subalgebras of X
for t=1,2,3,.... Let x€ U(oy: ¢,) for t=2,3,.... Then
oy(x) = ¢, > ¢,_,, which implies that x € U(o4 : ¢,_,). Hence
Uy : ) CU(oy 2 ¢,_,) for t=2,3,.... Since ¢,_, € Im(o4)
there exists x,_; such that oy(x,_;) = ¢, ,. It follows that
X1 €U(oy : ¢,_y), but x.y ¢ Uy : ¢,). Thus Uloy : @)

C U(ay : ¢,_,), and so we obtain a strictly descending chain
Uoy : ¢py) 2 U(oy = ) 2 -+ - of G-subalgebras of X which is
not terminating. This is impossible. Therefore, A4 is finite val-
ved. O

Now we consider the converse of Theorem 3.13.

Theorem 3.14. If every L-fuzzy G-subalgebra A of X has the
finite image, then every descending chain of G-subalgebras of X
terminates at finite step.

Proof. Suppose there exists a strictly descending chain
To 2 Ty 2 T - - - of G-subalgebras of X which does not termi-
nate at finite step. Define a L-fuzzy set 4 in X by

if xeTn\TnJrlv
if xem?,T,,

n_
ay(x) = {’iﬂ
where n=0,1,2,... and T, stands for X. Let x,y € X. Now,
we consider the following cases:

If x and yeT,, then xxyeT, because T, is a
G-subalgebra of X. Hence,

n
e ) = = () Ata ().
If xeT,\T,;, and x€T,\ T,:1, where n>m, then
xx*y e T,. Hence,

m
aq(xxy) = oo =oy(x) Aag(p).
If xeT,\T,.y and x€ T, \ Ty, where n<m, then
x*y € T,. Hence,

n
aa(x*y) = P aa(X) A og ().

This proves that 4 is a L-fuzzy G-subalgebra with an infinite
number of different values, which is a contradiction. This com-
pletes the proof. O

Theorem 3.15. Every ascending chain of G-subalgebras of X ter-
minates at finite step if and only if the set of values of any
L-fuzzy G-subalgebra is a well ordered subset of L.

Proof. Let 4 be a L-fuzzy G-subalgebra of X. Suppose that the
set of values of 4 is not a well-ordered subset of L. Then there
exists a strictly decreasing sequence {y,} such that a,(x,) = y,.
It follows that U(oy : ;) C U(og :7,) S Uy :p3) € -+ is a
strictly ascending chain of G-subalgebras of X which is not ter-
minating. This is impossible.

To prove the converse suppose that there exists a strictly
ascending chain

Lenherne - - (3)

of closed ideals of X which does not terminate at finite step.
Note that T'= U,en T, 1s a closed ideal of X. Define an ILFS
A= (a4, B4) in X by

{% where k= min{n € N|x € T,}

oy (X) =
AN =10 i x¢ T,

By using similar method as Theorem 3.14, we can prove that 4
is a L-fuzzy G-subalgebra of X. Since the chain (3) is not
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terminating, 4 has a strictly descending sequence of values.
This contradicts that the value set of any L-fuzzy G-subalgebra
is well-ordered. This completes the proof. [

4. Conclusions

To investigate the structure of an algebraic system, it is clear
that subalgebras with special properties play an important
role. In the present paper, we considered the notions of L-
fuzzy G-subalgebras of G-algebras and investigated some of
their useful properties. It is our hope that this work would
other foundations for further study of the theory of G-
algebras.

In our future study of L-fuzzy structure of G-algebra, may
be the following topics should be considered: (i) to find inter-
val-valued L-fuzzy G-subalgebras, (i) to find intuitionistic
L-fuzzy  and interval-valued intuitionistic = L-fuzzy
G-subalgebras, (iii) to find intuitionistic (7, S)-fuzzy
G-subalgebras, where S and T are given imaginable triangular
norms, (iv) to find (e, eV q)-fuzzy and intuitionistic L-fuzzy
G-subalgebras of G-algebras.
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