

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

L-fuzzy G-subalgebras of G-algebras

. |

Tapan Senapati^{a,*}, Chiranjibe Jana^b, Monoranjan Bhowmik^c, Madhumangal Pal^b

^a Department of Mathematics, Padima Janakalyan Banipith, Kukurakhupi 721517, India

^b Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University,

Midnapore 721102, India

^c Department of Mathematics, V. T. T. College, Midnapore 721101, India

Received 24 September 2013; revised 8 April 2014; accepted 25 May 2014 Available online 2 July 2014

KEYWORDS

G-algebra; G-subalgebra; L-fuzzy set; L-fuzzy G-subalgebra **Abstract** In this paper, the *L*-fuzzification of *G*-subalgebras are considered and some related properties are investigated. A characterization of *L*-fuzzy *G*-algebras are given. We classified the *G*-subalgebras by their family of level subalgebras of *G*-algebras.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 06F35; 03G25; 08A72

© 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

The study of BCK/BCI-algebras [1,2] was initiated by Imai and Iseki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. Hu and Li [3] introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. Neggers et al. [4] introduced *Q*-algebras and generalized some theorems discussed in BCK/BCI-algebras. Ahn et al. [5] introduced a new notion, called QS-algebras and discussed some properties of the *G*-part

* Corresponding author. Tel.: +91 9635430583.

E-mail addresses: math.tapan@gmail.com (T. Senapati), jana.chiran jibe7@gmail.com (C. Jana), mbvttc@gmail.com (M. Bhowmik), mmpalvu@gmail.com (M. Pal).

Peer review under responsibility of Egyptian Mathematical Society.

of QS-algebras. Neggers and Kim [6] introduced a new notion, called B-algebras which is related to several classes of algebras of interest such as BCK/BCI/BCH-algebras. Kim and Kim [7] introduced the notion of BG-algebras, which is a generalization of B-algebras. Senapati et al. [8–15] done lot of works on B-algebras and BG-algebras. Walendziak [16] introduced a new notion, called a BF-algebra which is a generalization of B-algebra and obtained several results.

Bandru and Rafi [17] introduced a new notion, called G-algebras, which is a generalization of QS-algebras and discussed relationship between these algebras with other related algebras such as Q-algebras, BCI-algebras, BCH-algebras, BF-algebras and B-algebras. They introduced the concept of 0-commutative, G-part and medial of G-algebras and studied their related properties.

The objective of this paper is to introduce the concept of *L*-fuzzy set [18] to *G*-subalgebras of *G*-algebras. The notion of *L*-fuzzy *G*-subalgebras of *G*-algebras is defined and lot of properties are investigated. We classified the *G*-subalgebras by their family of level subalgebras of *G*-algebras. We prove that if every *L*-fuzzy *G*-subalgebras has the finite image, then

1110-256X © 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. http://dx.doi.org/10.1016/j.joems.2014.05.010 every descending chain of G-subalgebras terminates at finite step. In addition to it we observe that every ascending chain of G-subalgebras terminates at finite step if the set of values of any L-fuzzy G-subalgebras is a well ordered subset of L.

2. Preliminaries

In this section, some elementary aspects that are necessary for this paper are included. Throughout this paper (L, \leq , \lor, \land) denotes a complete distributive lattice with maximal element 1 and minimal element 0 respectively.

Definition 2.1 ([17] *G*-algebra). A non-empty set X with a constant 0 and a binary operation * is said to be *G*-algebra if it satisfies the following axioms

G1.
$$x * x = 0$$

G2. $x * (x * y) = y$, for all $x, y \in X$.
A *G*-algebra is denoted by $(X, *, 0)$.

Now, we introduce the concept of G-subalgebra over a crisp set X and the binary operation * in the following. The definition of G-subalgebra is given below.

Definition 2.2 ([17] *G*-subalgebra). A non-empty subset S of a *G*-algebra X is called a *G*-subalgebra of X if $x * y \in S$, for all $x, y \in S$.

From this definition it is observed that, if a subset S of a G-algebra and it is closed, then S becomes a G-subalgebra.

Our main objective is to investigate the idea of G-subalgebras on L-fuzzy set. In L-fuzzy set, the membership values of the elements are written together along with the elements. The definition of this set is given below.

Definition 2.3 ([18]). Let X be a non-empty set. A L-fuzzy set $A = \{\langle x, \alpha_A(x) \rangle : x \in X\}$ of X is a function $\alpha_A : X \to L$.

The intersection of two *L*-fuzzy sets $A = \{ < x, \alpha_A(x) > : x \in X \}$ and $B = \{ < x, \alpha_B(x) > : x \in X \}$ in *X* is defined as $A \cap B = \alpha_A(x) \land \alpha_A(y)$ for all $x \in X$.

3. Main results

In what follows, let X denote a G-algebra unless otherwise specified. Combined the definitions of G-subalgebra over crisp set and the idea of L-fuzzy set we define L-fuzzy G-subalgebra, which is defined below.

Definition 3.1. Let $A = \{\langle x, \alpha_A(x) \rangle : x \in X\}$ be a *L*-fuzzy set in *X*, where *X* is a *G*-subalgebra, then the set *A* is *L*-fuzzy *G*-subalgebra over the binary operator * if it satisfies the condition $\alpha_A(x * y) \ge \alpha_A(x) \land \alpha_A(y)$ for all $x, y \in X$.

If *A* is a *L*-fuzzy *G*-subalgebra in *X*, then $\alpha_A(0)$ is the upper bound of $\alpha_A(x)$, for all $x \in X$, i.e. $\alpha_A(0) \ge \alpha_A(x)$. Also, it is easily proved that $\alpha_A(0 * x) \ge \alpha_A(x)$ for all $x \in X$. Let $\{x_n\}$ be a sequence of *X*. Then $\alpha_A(0) \ge \alpha_A(x_n)$ or $1 \ge \alpha_A(0) \ge \alpha_A(x_n)$. If $\lim_{n\to\infty} \alpha_A(x_n) = 1$, then $\alpha_A(0) = 1$.

Like other subalgebras, the intersection of two L-fuzzy G-subalgebras of X is also a L-fuzzy G-subalgebra of X. More

generally, intersection of infinite number of *L*-fuzzy *G*-subalgebras of *X* is also a *L*-fuzzy *G*-subalgebra of *X*.

If A is a L-fuzzy G-subalgebra of X, then it is easy to verify that the set $I_{\alpha_A} = \{x \in X : \alpha_A(x) = \alpha_A(0)\}$ is a G-subalgebra of X.

Theorem 3.2. Let B be a non-empty subset of X and A be a L-fuzzy set in X defined by

$$\alpha_A(x) = \begin{cases} \lambda, & \text{if } x \in B \\ \tau, & \text{otherwise} \end{cases}$$

for all $\lambda, \tau \in L$ with $\lambda \ge \tau$. Then *A* is a *L*-fuzzy *G*-subalgebra of *X* if and only if *B* is a *G*-subalgebra of *X*. Moreover, $I_{\alpha_A} = B$.

Proof. Let A be a L-fuzzy G-subalgebra of X. Let $x, y \in X$ be such that $x, y \in B$. Then $\alpha_A(x * y) \ge \alpha_A(x) \land \alpha_A(y) = \lambda \land \lambda = \lambda$. So $x * y \in B$. Hence, B is a G-subalgebra of X.

Conversely, suppose that *B* is a *G*-subalgebra of *X*. Let $x, y \in X$. Consider two cases:

Case (i) If $x, y \in B$ then $x * y \in B$, thus $\alpha_A(x * y) = \lambda = \alpha_A(x) \wedge \alpha_A(y)$.

Case (ii) If $x \notin B$ or, $y \notin B$, then $\alpha_A(x * y) \ge \tau = \alpha_A(x) \wedge \alpha_A(y)$.

Hence, A is a L-fuzzy G-subalgebra of X.

Also,
$$I_{\alpha_A} = \{x \in X, \alpha_A(x) = \alpha_A(0)\} = \{x \in X, \alpha_A(x) = \lambda\}$$

= B . \Box

Definition 3.3. Let A is a L-fuzzy G-subalgebra of X. For $s \in L$, the set $U(\alpha_A : s) = \{x \in X : \alpha_A(x) \ge s\}$ is called a level subset of A.

Obviously, this level subset $U(\alpha_A : s)$ is a G-subalgebra of X.

Theorem 3.4. Let A be a L-fuzzy set in X, such that the set $U(\alpha_A : s)$ is G-subalgebra of X for every $s \in L$. Then A is a L-fuzzy G-subalgebra of X.

Proof. Let for every $s \in L$, $U(\alpha_A : s)$ is subalgebra of X. In contrary, let $x_0, y_0 \in X$ be such that $\alpha_A(x_0 * y_0) < \alpha_A(x_0) \land \alpha_A(y_0)$. Let $\alpha_A(x_0) = \theta_1, \alpha_A(y_0) = \theta_2$ and $\alpha_A(x_0 * y_0) = s$. Then $s < \theta_1 \land \theta_2$. Let us consider, $s_1 = \frac{1}{2}[\alpha_A(x_0 * y_0) + \alpha_A(x_0) \land \alpha_A(y_0)]$. We get that $s_1 = \frac{1}{2}(s + \theta_1 \land \theta_2)$. Therefore, $\theta_1 > s_1 = \frac{1}{2}(s + \theta_1 \land \theta_2) > s$ and $\theta_2 > s_1 = \frac{1}{2}(s + \theta_1 \land \theta_2) > s$. Hence, $\theta_1 \land \theta_2 > s_1 > s = \alpha_A(x_0 * y_0)$, so that $x_0 * y_0 \notin U(\alpha_A : s)$ which is a contradiction, since $\alpha_A(x_0) = \theta_1 \ge \theta_1 \land \theta_2 > s_1$ and $\alpha_A(y_0) = \theta_2 \ge \theta_1 \land \theta_2 > s_1$. This implies $x_0, y_0 \in U(\alpha_A : s)$. Thus $\alpha_A(x * y) \ge \alpha_A(x) \land \alpha_A(y)$ for all $x, y \in X$. Hence, A is a L-fuzzy G-subalgebra of X.

Theorem 3.5. Any subalgebra of X can be realized as a level subalgebra of some L-fuzzy G-subalgebra of X.

Proof. Let P be a L-fuzzy G-subalgebra of X, and A be a L-fuzzy set on X defined by

$$\alpha_A(x) = \begin{cases} \lambda, & \text{if } x \in P \\ 0, & \text{otherwise} \end{cases}$$

for all $\lambda \in L$. We consider the following cases:

- **Case (i):** If $x, y \in P$, then $\alpha_A(x) = \lambda, \beta_A(x) = \tau$. Thus, $\alpha_A(x * y) = \lambda = \lambda \land \lambda = \alpha_A(x) \land \alpha_A(y)$.
- **Case (ii):** If $x \in P$ and $y \notin P$ then $\alpha_A(x) = \lambda$ and $\alpha_A(y) = 0$. Thus, $\alpha_A(x * y) \ge 0 = \lambda \land 0 = \alpha_A(x) \land \alpha_A(y)$.
- **Case (iii):** If $x \notin P$ and $y \in P$ then $\alpha_A(x) = 0$ and $\alpha_A(y) = \lambda$. Thus, $\alpha_A(x * y) \ge 0 = 0 \land \lambda = \alpha_A(x) \land \alpha_A(y)$.
- **Case (iv):** If $x \notin P$ and $y \notin P$ then $\alpha_A(x) = 0$ and $\alpha_A(y) = 0$. Now $\alpha_A(x * y) \ge 0 = 0 \land 0 = \alpha_A(x) \land \alpha_A(y)$.

Therefore, A is a L-fuzzy G-subalgebra of X. \Box

As a generalization of Theorem 3.5, we prove the following theorem:

Theorem 3.6. Let X be a G-algebra. Then given any chain of G-subalgebras $P_0 \subset P_1 \subset P_2 \subset \cdots \subset P_r = X$, there exists a L-fuzzy G-subalgebra A of X whose level subalgebras are exactly the G-subalgebras of this chain.

Proof. Consider a set of numbers $s_0 > s_1 > \cdots > s_r$, where each $s_i \in [0, 1]$. Let $A = \{ < x, \alpha_A(x) > : x \in X \}$ be a *L*-fuzzy set defined by

$$\alpha_A(x) = \begin{cases} s_0, & \text{if } x \in P_0 \\ s_i, & \text{if } x \in P_i - P_{i-1}, \ 0 < i \le r. \end{cases}$$
(1)

We consider the following two cases:

- **Case (i):** Let $x, y \in P_i P_{i-1}$. Therefore, by $(1), \alpha_A(x) = \alpha_A(y) = s_i$. Since P_i is a *G*-subalgebra, we have $x * y \in P_i$, and so either $x * y \in P_i P_{i-1}$ or $x * y \in P_{i-1}$. In any case we conclude that $\alpha_A(x * y) \ge s_i = \alpha_A(x) \land \alpha_A(y)$.
- **Case (ii):** Let $x \in P_i P_{i-1}$ and $y \in P_j P_{j-1}$ for i > j. Therefore, by (1), $\alpha_A(x) = s_i$ and $\alpha_A(y) = s_j$. Then $x * y \in P_i$ since P_i is a *G*-subalgebra of *X* and $P_j \subset P_i$. Hence $\alpha_A(x * y) \ge s_j = \alpha_A(x) \land \alpha_A(y)$.

Thus *A* is a *L*-fuzzy *G*-subalgebra of *X*. From (1), it follows that $Im(\alpha_A) = \{s_0, s_1, \ldots, s_r\}$. Hence, the level subalgebras of *A* are given by the chain of *G*-subalgebras

$$U(\alpha_A:s_0) \subset U(\alpha_A:s_1) \subset \cdots \subset U(\alpha_A:s_r) = X.$$

Now $U(\alpha_A : s_0) = \{x \in X : \alpha_A(x) \ge s_0\} = P_0$. Finally we prove that $U(\alpha_A : s_i) = P_i$ for $0 < i \le r$. Clearly $P_i \subseteq U(\alpha_A : s_i)$. If $x \in U(\alpha_A : s_i)$, then $\alpha_A(x) \ge s_i$ which implies that $x \notin P_j$ for j > i. Hence $\alpha_A(x) \in \{s_0, s_1, \dots, s_i\}$, and so $x \in P_k$ for some $k \le i$. As $P_k \subseteq P_i$, it follows that $x \in P_i$. Therefore, $U(\alpha_A : s_i) = P_i$ for $0 \le i \le r$. This completes the proof. \Box

Note that if X is a finite G-algebra, then the number of G-subalgebras of X is finite where as the number of level subalgebras of a L-fuzzy G-subalgebra A appears to be infinite. But since every level subalgebra is indeed a G-subalgebra of X, not all these G-subalgebras are distinct. The next theorem characterizes this aspect.

Theorem 3.7. Let A be a L-fuzzy G-subalgebra of a G-algebra X. Two level subalgebras $U(\alpha_A : s_1), U(\alpha_A : s_2)$ (with $s_1 < s_2$) of A are equal if and only if there is no $x \in X$ such that $s_1 \leq \alpha_A(x) < s_2$.

Proof. Assume that $U(\alpha_A : s_1) = U(\alpha_A : s_2)$ for $s_1 < s_2$ and assume that there exists $x \in X$ such that $s_1 \leq \alpha_A(x) < s_2$. Then $U(\alpha_A : s_2)$ is a proper subset of $U(\alpha_A : s_1)$, which is a contradiction.

Conversely, suppose that there is no $x \in X$ such that $s_1 \leq \alpha_A(x) < s_2$. Since $s_1 < s_2$, we have $U(\alpha_A : s_2) \subseteq U(\alpha_A : s_1)$. If $x \in U(\alpha_A : s_1)$, then $\alpha_A(x) \ge s_1$ and so $\alpha_A(x) \ge s_2$, because $\alpha_A(x)$ does not lie between s_1 and s_2 . Hence $x \in U(\alpha_A : s_2)$, which implies that $U(\alpha_A : s_1) \subseteq U(\alpha_A : s_2)$. This completes the proof. \Box

Remark 3.8. As a consequence of Theorem 3.7, the level subalgebras of a *L*-fuzzy *G*-subalgebra *A* of a finite *G*-algebra *X* form a chain. But $\alpha_A(x) \leq \alpha_A(0)$ for all $x \in X$. Therefore $U(\alpha_A : s_0)$, where $s_0 = \alpha_A(0)$, is the smallest level subalgebra but not always $U(\alpha_A : s_0)$ as shown in the following example, and so we have the chain $U(\alpha_A : s_0) \subset U(\alpha_A : s_1) \subset \cdots$ $\subset U(\alpha_A : s_r) = X$, where $s_0 > s_1 > \cdots > s_r$.

Theorem 3.9. Let X be a finite G-algebra and A be a L-fuzzy G-subalgebra of X. If $Im(\alpha_A) = \{s_1, \ldots, s_n\}$, then the family of G-subalgebras $U(\alpha_A : s_i), 1 \le i \le n$ constitutes all the level subalgebras of A.

Proof. Let $s \in [0, 1]$ and $s \notin Im(\alpha_A)$. Suppose $s_1 < s_2 < \cdots < s_n$ without loss of generality. If $s \leq s_1$, then $U(\alpha_A : s_1) = X = U(\alpha_A : s)$. If $s > s_n$, then obviously $U(\alpha_A : s) = \phi$. If $s_{i-1} < s < s_i$, then by Theorem 3.7, we get $U(\alpha_A : s) = X = U(\alpha_A : s_i)$. Thus for any $s \in L$, the level subalgebra is one of $\{U(\alpha_A : s_i) | i = 1, 2, ..., n\}$. \Box

It is easy to very that two *L*-fuzzy *G*-subalgebras of a *G*-algebra may have an identical family of level subalgebras but the *L*-fuzzy *G*-subalgebras may not be equal.

Theorem 3.10. Let X be a G-algebra and A be a L-fuzzy G-subalgebra of X. If $Im(\alpha_A)$ is finite, say $\{s_1, s_2, \ldots, s_n\}$, then for any $s_i, s_j \in Im(\alpha_A), U(\alpha_A : s_i) = U(\alpha_A : s_j)$ implies $s_i = s_j$.

Theorem 3.11. Let $A = \{\langle x, \alpha_A(x) \rangle : x \in X\}$ and $B = \{\langle x, \alpha_B(x) \rangle : x \in X\}$ be two L-fuzzy G-subalgebras of a finite G-algebra X with identical family of level subalgebras. If $Im(\alpha_A) = \{t_0, t_1, \ldots, t_r\}$ and $Im(\alpha_B) = \{s_0, s_1, \ldots, s_k\}$ where $t_0 > t_1 > \cdots > t_r$ and $s_0 > s_1 > \ldots > s_k$ then we have

(*i*) r = k(*ii*) $U(\alpha_A : t_i) = U(\alpha_B : s_i), 0 \le i \le k$ (*iii*) *if* $x \in X$ such that $\alpha_A(x) = t_i$, then $\alpha_B(x) = s_i, 0 \le i \le k$.

Proof

(i) By Theorem 3.9, the only subalgebras of A and B are the two families U(α_A : t_i) and U(α_B : s_i). Since A and B have the same family of level subalgebras, it follows that r = k.

(ii) Using Remark 3.8 and (*i*), we have chains of level subalgebras $U(\alpha_A : t_0) \subset U(\alpha_A : t_1) \subset \cdots \subset U(\alpha_A : t_k) = X$ and $U(\alpha_B : t_0) \subset U(\alpha_B : t_1) \subset \cdots \subset U(\alpha_B : t_k) = X$. It follows clearly that if $t_i, t_j \in Im(\alpha_A)$ such that $t_i > t_j$ and $s_i, s_j \in Im(\alpha_B)$ such that $s_i > s_j$ then

$$U(\alpha_A : t_i) \subset U(\alpha_A : t_j)$$
 and $U(\alpha_B : s_i) \subset U(\alpha_B : s_j)$. (2)

Since the two families of level subalgebras are identical, it is clear that $U(\alpha_A : t_0) = U(\alpha_B : s_0)$. By hypothesis $U(\alpha_A : t_1) =$ $U(\alpha_B : s_j)$ for some j > 0. Assume that $U(\alpha_A : t_1) \neq$ $U(\alpha_B : s_1)$. Then $U(\alpha_A : t_1) = U(\alpha_B : s_j)$ for some j > 1, and $U(\alpha_B : s_1) = U(\alpha_A : t_i)$ for some $t_i < t_1$. Thus by (2) we obtain that $U(\alpha_B : s_j) = U(\alpha_A : t_1) \subset U(\alpha_A : t_i)$ and $U(\alpha_A : t_i) =$ $U(\alpha_B : s_1) \subset U(\alpha_B : s_j)$. This is a contradiction. Hence $U(\alpha_A : t_1) = U(\alpha_B : s_1)$. By induction on $i, 0 \leq i \leq k$, we finally obtain that $U(\alpha_A : t_i) = U(\alpha_B : s_i), 0 \leq i \leq k$.

(iii) Let $x \in X$ be such that $\alpha_A(x) = t_i$ and let $\alpha_B(x) = s_j$, where $0 \le i \le k$ and $0 \le j \le k$. It is sufficient to show that $s_j = s_i$. Now $x \in U(\alpha_A : t_i) = U(\alpha_B : s_i)$ implies that $\alpha_B(x) = s_j \ge s_i$. This gives from (2) that $U(\alpha_B : s_j) \subseteq U(\alpha_B : s_i)$. Since $x \in U(\alpha_B : s_j)$, it follows from (*ii*) that $x \in U(\alpha_A : t_j)$ and so $\alpha_A(x) = t_i \ge t_j$, which implies that $U(\alpha_A : t_i) \subseteq U(\alpha_A : t_j)$ by (2). Using (*ii*), we have $U(\alpha_B : s_i) = U(\alpha_A : t_i) \subseteq U(\alpha_A : t_j) = U(\alpha_B : s_j)$. Thus $U(\alpha_B : s_i) = U(\alpha_B : s_j)$, and by Theorem 3.10, $s_j = s_i$. This completes the proof. \Box

Theorem 3.12. Let A and B be two L-fuzzy G-subalgebras of a finite G-algebra X such that the families of level subalgebras of A and B are identical. Then A = B if and only if $Im(\alpha_A) = Im(\alpha_B)$.

Proof. If A = B, then clearly $Im(\alpha_A) = Im(\alpha_B)$. Conversely, assume that $Im(\alpha_A) = Im(\alpha_B)$. For convenience, let us denote $Im(\alpha_A) = \{t_0, t_1, \ldots, t_r\}$ and $Im(\alpha_B) = \{s_0, s_1, \ldots, s_k\}$, where $t_0 > t_1 > \cdots > t_r$ and $s_0 > s_1 > \cdots > s_r$. Then $s_0 \in Im(\alpha_B) = Im(\alpha_A)$. Thus $s_0 = t_{n_0}$ for some n_0 . Assume that $t_{n_0} \neq t_0$. So $t_{n_0} < t_0$. Now $s_1 \in Im(\alpha_A)$, and hence $s_1 = t_{n_1}$ for some n_1 . Since $s_0 > s_1, \cdots > t_n$. Continuing in this way, we have $t_{n_0} > t_{n_1} > \cdots > t_n$. Since $s_0 = t_{n_0} < t_0$, this contradicts to the fact that $Im(\alpha_A) = Im(\alpha_B)$. Hence we must have $s_0 = t_0$. Proceeding this manner, we get that $s_i = t_i, 0 \leq i \leq r$. Now let x_0, x_1, \ldots, x_r be distinct elements of X such that $\alpha_A(x_i) = t_i, 0 \leq i \leq r$. By Theorem 3.11, $\alpha_B(x_i) = s_i, 0 \leq i \leq r$. Since $s_i = t_i$, it follows that $\alpha_A(x) = \alpha_B(x)$ for each $x \in X$. Therefore A = B.

Theorem 3.13. Let $T_1 \supseteq T_2 \supseteq T_3 \cdots$ be a descending chain of *G*-subalgebras of *X* which terminates at finite step. For a *L*-fuzzy *G*-subalgebra *A* of *X*, if a sequence of elements of $Im(\alpha_A)$ is strictly increasing, then *A* is finite valued.

Proof. Assume that *A* is infinite valued. Let $\{\phi_n\}$ be a strictly increasing sequence of elements of $Im(\alpha_A)$. Then $0 \le \phi_1 < \phi_2 < \cdots < 1$. Note that $U(\alpha_A : \phi_t)$ is *G*-subalgebras of *X* for $t = 1, 2, 3, \ldots$ Let $x \in U(\alpha_A : \phi_t)$ for $t = 2, 3, \ldots$ Then $\alpha_A(x) \ge \phi_t > \phi_{t-1}$, which implies that $x \in U(\alpha_A : \phi_{t-1})$. Hence $U(\alpha_A : \phi_t) \subseteq U(\alpha_A : \phi_{t-1})$ for $t = 2, 3, \ldots$ Since $\phi_{t-1} \in Im(\alpha_A)$ there exists x_{t-1} such that $\alpha_A(x_{t-1}) = \phi_{t-1}$. It follows that $x_{t-1} \in U(\alpha_A : \phi_{t-1})$, but $x_{t-1} \notin U(\alpha_A : \phi_t)$. Thus $U(\alpha_A : \phi_t)$

 $\subseteq U(\alpha_A : \phi_{t-1})$, and so we obtain a strictly descending chain $U(\alpha_A : \phi_1) \supseteq U(\alpha_A : \phi_2) \supseteq \cdots$ of *G*-subalgebras of *X* which is not terminating. This is impossible. Therefore, *A* is finite valued. \Box

Now we consider the converse of Theorem 3.13.

Theorem 3.14. If every L-fuzzy G-subalgebra A of X has the finite image, then every descending chain of G-subalgebras of X terminates at finite step.

Proof. Suppose there exists a strictly descending chain $T_0 \supseteq T_1 \supseteq T_2 \cdots$ of *G*-subalgebras of *X* which does not terminate at finite step. Define a *L*-fuzzy set *A* in *X* by

$$\alpha_A(x) = \begin{cases} \frac{n}{n+1} & \text{if} \quad x \in T_n \setminus T_{n+1}, \\ 1 & \text{if} \quad x \in \bigcap_{n=0}^{\infty} T_n, \end{cases}$$

where n = 0, 1, 2, ... and T_0 stands for X. Let $x, y \in X$. Now, we consider the following cases:

If x and $y \in T_n$, then $x * y \in T_n$ because T_n is a G-subalgebra of X. Hence,

$$\begin{array}{l} \alpha_A(x*y) \geqslant \displaystyle\frac{n}{n+1} = \alpha_A(x) \wedge \alpha_A(y). \\ \text{If } x \in T_n \setminus T_{n+1} \quad \text{and} \quad x \in T_m \setminus T_{m+1}, \text{ where } n > m, \text{ then } \\ x*y \in T_m. \text{ Hence,} \end{array}$$

$$\alpha_A(x * y) \ge \frac{m}{m+1} = \alpha_A(x) \wedge \alpha_A(y)$$

If $x \in T_n \setminus T_{n+1}$ and $x \in T_m \setminus T_{m+1}$, where n < m, then $x * y \in T_n$. Hence,

$$\alpha_A(x*y) \ge \frac{n}{n+1} = \alpha_A(x) \wedge \alpha_A(y).$$

This proves that A is a L-fuzzy G-subalgebra with an infinite number of different values, which is a contradiction. This completes the proof. \Box

Theorem 3.15. Every ascending chain of G-subalgebras of X terminates at finite step if and only if the set of values of any L-fuzzy G-subalgebra is a well ordered subset of L.

Proof. Let *A* be a *L*-fuzzy *G*-subalgebra of *X*. Suppose that the set of values of *A* is not a well-ordered subset of *L*. Then there exists a strictly decreasing sequence $\{\gamma_n\}$ such that $\alpha_A(x_n) = \gamma_n$. It follows that $U(\alpha_A : \gamma_1) \subsetneq U(\alpha_A : \gamma_2) \subsetneq U(\alpha_A : \gamma_3) \subsetneq \cdots$ is a strictly ascending chain of *G*-subalgebras of *X* which is not terminating. This is impossible.

To prove the converse suppose that there exists a strictly ascending chain

$$T_1 \subsetneq T_2 \subsetneq T_3 \subsetneq \cdots \tag{3}$$

of closed ideals of X which does not terminate at finite step. Note that $T = \bigcup_{n \in \mathbb{N}} T_n$ is a closed ideal of X. Define an ILFS $A = (\alpha_A, \beta_A)$ in X by

$$\alpha_A(x) = \begin{cases} \frac{1}{k} & \text{where} \quad k = \min\{n \in \mathbb{N} | x \in T_n\} \\ 0 & \text{if} \quad x \notin T_n \end{cases}$$

By using similar method as Theorem 3.14, we can prove that A is a *L*-fuzzy *G*-subalgebra of *X*. Since the chain (3) is not

terminating, A has a strictly descending sequence of values. This contradicts that the value set of any *L*-fuzzy *G*-subalgebra is well-ordered. This completes the proof. \Box

4. Conclusions

To investigate the structure of an algebraic system, it is clear that subalgebras with special properties play an important role. In the present paper, we considered the notions of L-fuzzy G-subalgebras of G-algebras and investigated some of their useful properties. It is our hope that this work would other foundations for further study of the theory of G-algebras.

In our future study of *L*-fuzzy structure of *G*-algebra, may be the following topics should be considered: (*i*) to find interval-valued *L*-fuzzy *G*-subalgebras, (*ii*) to find intuitionistic *L*-fuzzy and interval-valued intuitionistic *L*-fuzzy *G*-subalgebras, (*iii*) to find intuitionistic (*T*, *S*)-fuzzy *G*-subalgebras, where *S* and *T* are given imaginable triangular norms, (*iv*) to find ($\epsilon, \epsilon \lor q$)-fuzzy and intuitionistic *L*-fuzzy *G*-subalgebras of *G*-algebras.

Acknowledgements

The authors are highly grateful to referees and Professor M. Asaad, Associate Editor, for their valuable comments and suggestions for improving the paper.

References

- [1] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [2] T. Senapati, M. Bhowmik, M. Pal, Atanassov's intuitionistic fuzzy translations of intuitionistic fuzzy H-ideals in *BCK/BCI*algebras, Notes Intuition. Fuzzy Sets 19 (1) (2013) 32–47.

- [3] Q.P. Hu, X. Li, On BCH-algebras, Math. Seminar Notes 11 (2) (1983) 313–320.
- [4] J. Neggers, S.S. Ahn, H.S. Kim, On Q-algebras, Int. J. Math. Math. Sci. 27 (12) (2001) 749–757.
- [5] S.S. Ahn, H.S. Kim, On QS-algebras, J. Chungcheong Math. Soc. 12 (1999) 33–41.
- [6] J. Neggers, H.S. Kim, On B-algebras, Mat. Vesnik 54 (1–2) (2002) 21–29.
- [7] C.B. Kim, H.S. Kim, On BG-algebras, Demonstratio Math. 41 (3) (2008) 497–505.
- [8] M. Bhowmik, T. Senapati, M. Pal, Intuitionistic L-fuzzy ideals in BG-algebras, Afr. Mat., doi: 10.1007/s13370-013-0139-5.
- [9] T. Senapati, M. Bhowmik, M. Pal, Interval-valued intuitionistic fuzzy BG-subalgebras, J. Fuzzy Math. 20 (3) (2012) 707–720.
- [10] T. Senapati, M. Bhowmik, M. Pal, Fuzzy B-subalgebras of Balgebra with respect to t-norm, J. Fuzzy Set Valu. Anal. 2012 (2012) 11.
- [11] T. Senapati, M. Bhowmik, M. Pal, Fuzzy dot subalgebras and fuzzy dot ideals of B-algebras, J. Uncert. Syst. 8 (1) (2014) 22– 30.
- [12] T. Senapati, M. Bhowmik, M. Pal, Intuitionistic fuzzifications of ideals in BG-algebras, Math. Aeterna 2 (9) (2012) 761–778.
- [13] T. Senapati, M. Bhowmik, M. Pal, Interval-valued intuitionistic fuzzy closed ideals of BG-algebra and their products, Int. J. Fuzzy Logic Syst. 2 (2) (2012) 27–44.
- [14] T. Senapati, M. Bhowmik, M. Pal, Fuzzy closed ideals of Balgebras, Int. J. Comput. Sci., Eng. Technol. 1 (10) (2011) 669– 673.
- [15] T. Senapati, M. Bhowmik, M. Pal, Fuzzy closed ideals of Balgebras with interval-valued membership function, Int. J. Fuzzy Math. Archive 1 (2013) 79–91.
- [16] A. Walendziak, On BF-algebras, Math. Slovaca 57 (2) (2007) 119–128.
- [17] R.K. Bandru, N. Rafi, On G-algebras, Sci. Magna 8 (3) (2012) 1–7.
- [18] J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1) (1967) 145–174.