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The literature is very rich with works deal with the enumerating the spanning trees in any graph G since 

the pioneer Kirchhoff (1847). Generally, the number of spanning trees in a graph can be acquired by 

directly calculating an associated determinant corresponding to the graph. However, for a large graph, 

evaluating the pertinent determinant is ungovernable. In this paper, we introduce a new technique for 

calculating the number of spanning trees which avoids the strenuous computation of the determinant for 

calculating the number of spanning trees. Using this technique, we can obtain the number of spanning 

trees of any graph generated by the wheel graph. Finally, we give the numerical result of asymptotic 

growth constant of the spanning trees of studied graphs. 
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1. Introduction 

The research of the complexity of a graph has a comparatively

long history. The importance of this research line is in fact due to:

1- Investigating the possible particle transitions of masers using

energy analysis, 

2- Estimating the accuracy of a network, 

3- Recounting specific chemical isomers, 

4- Electrical circuits layout, 

5- Enumerating the number of Eulerian tours in a graph [1–10] . 

The complexity (the number of spanning trees) τ ( G ) of a finite

connected undirected graph G is defined as the total number of

distinct connected acyclic spanning subgraphs. 

There are many techniques to compute this number. Kirch-

hoff [11] gave the famous matrix tree theorem. In which τ ( G ) =
any cofactor of L (G ) , where L (G ) is equal to the degree matrix

D (G ) of G minus the adjacency matrix A (G ) of G . 

Another method to count the complexity of a graph is using

Laplacian eigenvalues. Let G be a connected graph with n vertices.
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versity, Al-Madinah 41411, Saudi Arabia. 

E-mail addresses: salamadaoud@gmail.com , sa_na_daoud@yahoo.com 

2

T  

g

http://dx.doi.org/10.1016/j.joems.2017.07.005 

1110-256X/© 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
elmans and Chelnoknov [12] derived the following formula: 

(G ) = 

1 

n 

n − 1 ∏ 

k =1 

μk . (1)

Where n = μ1 ≥ μ2 ≥ ... ≥ μn = 0 are the eigenvalues of the

aplacian matrix L (G ) . 

Degenerating the graph through successive elimination of con-

raction of its edges represent the core of another way to compute

he complexity of a graph [13] . In this way, the summation of com-

lexities in small well known graphs yields directly the complexity

f an unknown graph G . Let e be an edge with endpoints u and v
n the graph G , the deletion G − e of e from G is the graph gained

y removing e and the contraction G · e of e from G is the graph

btained by removing e and identifying u and v . The formula for

omputing the complexity of a graph G is given by 

(G ) = τ (G − e ) + τ (G · e ) . (2)

Recently, Daoud [14] introduced some new theorems which

eneralized this method. We will make use of these theorems in

his work. 

. Main results 

heorem 1. For n ≥ 3 , the number of spanning trees of the wheel

raph W n is given by 

(
3 + 

√ 

5 

2 

)n 

+ 

(
3 − √ 

5 

2 

)n 

− 2 . 
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nW nA nB nC nD

Fig. 1. The five families of graphs which we use to find an explicit formula for the complexity in the wheel graph W n . 
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Fig. 2. The gear graph G 8 . 
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1  
roof: Consider the following five different families of graphs de-

oted by W n , A n , B n , C n and D n as shown in Fig. 1 , where n de-

ote the number of vertices. 

We use Eq. (2) on the indicated edges to find a system of re-

urrence relations: 

( W n ) = τ ( A n ) + τ ( B n −1 ) 
( A n ) = τ ( C n −1 ) + τ ( W n −1 ) 
( B n ) = τ ( D n ) + τ ( B n −1 ) 
( C n ) = τ ( C n −1 ) + τ ( D n −1 ) 
( D n ) = τ ( C n ) + τ ( D n −1 ) = τ ( D n −1 ) + τ ( B n −1 ) . 

Consider the last two relations for τ ( C n ) and τ ( D n ) , we have:

( C n +1 ) = τ ( C n ) + τ ( D n ) = 2 τ ( C n ) + τ ( D n −1 ) = 3 τ ( C n ) − τ ( C n −1 ) , 

r τ ( C n +1 ) − 3 τ ( C n ) + τ ( C n −1 ) = 0 , thus τ ( C n ) − 3 τ ( C n −1 ) +
( C n −2 ) = 0 and τ ( C n −1 ) − 3 τ ( C n −2 ) + τ ( C n −3 ) = 0 . 

Subtracting these two equations, we get τ ( C n ) − 4 τ ( C n −1 ) +
 τ ( C n −2 ) − τ ( C n −3 ) = 0 , which is the final recurrence relation for

( C n ) . 

Consider the first two relations for τ ( W n ) and τ ( A n ) . 

Since τ ( B n −1 ) = τ ( C n ) , we have τ ( W n ) = τ ( A n ) + τ ( C n ) and

ence τ ( W n −1 ) = τ ( A n −1 ) + τ ( C n −1 ) . 

Substituting into the second relation, we obtain τ ( A n ) =
( A n −1 ) + 2 τ ( C n −1 ) , therefore τ ( A n ) − τ ( A n −1 ) = 2 τ ( C n −1 ) ,

ince τ ( C n −1 ) − 3 τ ( C n −2 ) + τ ( C n −3 ) = 0 , we have 2 τ ( C n −1 ) −
 (3) τ ( C n −2 ) + 2 τ ( C n −3 ) = 0 , [ τ ( A n ) − τ ( A n −1 )] − 3 [ τ ( A n −1 ) −
( A n −2 )] + [ τ ( A n −2 ) − τ ( A n −3 )] = 0 , thus τ ( A n ) − 4 τ ( A n −1 ) +
 τ ( A n −2 ) − τ ( A n −3 ) = 0 , which is the final recurrence relation for

( A n ) . 

Now both τ ( A n ) and τ ( C n ) have the third order homogeneous

ecurrence relation: 

 n − 4 x n −1 + 4 x n −2 − x n −3 = 0 . (3)

Thus τ ( W n ) = τ ( A n ) + τ ( C n ) must have the same relation.

herefore the characteristic equation corresponding to this re-

urrence relation is r 3 − 4 r 2 + 4 r − 1 = 0 , which has characteristic

oots r = 

3 ±√ 

5 
2 and r = 1 . Therefore, the general solution of τ ( W n )

s τ ( W n ) = α( 3+ √ 

5 
2 ) n + β( 3 −

√ 

5 
2 ) n + γ . 

Solution of the recurrence relation (3) now reduces to find the

alues of the constants α, β and γ such that the general solution

onforms with the given initial conditions τ ( W 3 ) = 16 , τ ( W 4 ) =
5 and τ ( W 5 ) = 121 . Substituting the initial conditions in the gen-

ral solution we obtain 

( W n ) = α
(

3+ √ 

5 
2 

)3 

+ β
(

3 −√ 

5 
2 

)3 

+ γ = 16 

( W n ) = α
(

3+ √ 

5 
2 

)4 

+ β
(

3 −√ 

5 
2 

)4 

+ γ = 45 

( W n ) = α
(

3+ √ 

5 
2 

)5 

+ β
(

3 −√ 

5 
2 

)5 

+ γ = 121 . 

This system of equations have a unique solution α = β = 1 and

= −2 , and hence the result follows. �

The gear graph G n , is the graph obtained from W n by inserting a

ertex between any two adjacent vertices in its cycle C n . See Fig. 2 .

heorem 2. For n ≥ 3 , the number of spanning trees of the gear

raph G n is given by (2 + 

√ 

3 ) n + (2 − √ 

3 ) n − 2 . 
roof: Consider the following five different families of graphs de-

oted by G n , A n , B n , C n and D n as shown in Fig. 3 , where n de-

ote the number of vertices of W n . 

We use Eq. (2) together with Theorem 2.2 in [14] on the indi-

ated edges and paths to find a system of recurrence relations: 

( G n ) = τ ( A n ) + τ ( B n −1 ) 
( A n ) = 2 τ ( C n −1 ) + τ ( G n −1 ) 
( B n ) = 2 τ ( D n ) + τ ( B n −1 ) 
( C n ) = τ ( C n −1 ) + τ ( D n −1 ) 
( D n ) = 2 τ ( C n ) + τ ( D n −1 ) = τ ( D n −1 ) + τ ( B n −1 ) . 

Consider the last two relations for τ ( C n ) and τ ( D n ) , we have

( C n +1 ) = τ ( C n ) + τ ( D n ) = 3 τ ( C n ) + τ ( D n −1 ) = 4 τ ( C n ) − τ ( C n −1 ) , 

r τ ( C n +1 ) − 4 τ ( C n ) + τ ( C n −1 ) = 0 , Thus τ ( C n ) − 4 τ ( C n −1 ) +
( C n −2 ) = 0 and τ ( C n −1 ) − 4 τ ( C n −2 ) + τ ( C n −3 ) = 0 . 

Subtracting these two equations, we get τ ( C n ) − 5 τ ( C n −1 ) +
 τ ( C n −2 ) − τ ( C n −3 ) = 0 , which is the final recurrence relation for

( C n ) . Consider the first two relations for τ ( G n ) and τ ( A n ) . 

Since τ ( B n −1 ) = 2 τ ( C n ) , we have τ ( G n ) = τ ( A n ) + 2 τ ( C n ) and

ence τ ( G n −1 ) = τ ( A n −1 ) + 2 τ ( C n −1 ) . 

Substituting into the second relation, we obtain τ ( A n ) =
( A n −1 ) + 4 τ ( C n −1 ) , therefore τ ( A n ) − τ ( A n −1 ) = 4 τ ( C n −1 ) ,

ince τ ( C n −1 ) − 4 τ ( C n −2 ) + τ ( C n −3 ) = 0 , we have 4 τ ( C n −1 ) −
 (4) τ ( C n −2 ) + 4 τ ( C n −3 ) = 0 , [ τ ( A n ) − τ ( A n −1 )] − 4 [ τ ( A n −1 ) −
( A n −2 )] + [ τ ( A n −2 ) − τ ( A n −3 )] = 0 , thus τ ( A n ) − 5 τ ( A n −1 ) +
 τ ( A n −2 ) − τ ( A n −3 ) = 0 , which is the final recurrence relation for

( A n ) . 

Now both τ ( A n ) and τ ( C n ) have the third order homogeneous

ecurrence relation: 

 n − 5 x n −1 + 5 x n −2 − x n −3 = 0 . (4) 

Thus the characteristic equation corresponding to this recur-

ence relation is r 3 − 5 r 2 + 5 r − 1 = 0 , which has characteristic

oots r = 2 ± √ 

3 and r = 1 . Thus the general solution of τ ( G n ) is

( G n ) = α (2 + 

√ 

3 ) n + β (2 − √ 

3 ) n + γ . 

Solution of the recurrence relation (4) now reduces to find the

alues of the constants α, β and γ such that the general solution

onforms with the given initial conditions τ ( G 3 ) = 50 , τ ( G 4 ) =
92 and τ ( G ) = 722 . Substituting the initial conditions in the gen-
5 
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nG nA nB nC nD

Fig. 3. The five families of graphs which we use to find an explicit formula for the complexity in the gear graph G n . 

nE nA nB nC nD

Fig. 4. The five families of graphs which we use to find an explicit formula for the complexity in the graph E n . 
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eral solution we obtain 

τ ( G 3 ) = α (2 + 

√ 

3 ) 
3 + β (2 − √ 

3 ) 
3 + γ = 50 

τ ( G 4 ) = α (2 + 

√ 

3 ) 
4 + β (2 − √ 

3 ) 
4 + γ = 192 

τ ( G 5 ) = α (2 + 

√ 

3 ) 
5 + β (2 − √ 

3 ) 
5 + γ = 722 . 

This system of equations have a unique solution α = β = 1 and

γ = −2 , and hence the result follows. �

Theorem 3. Let G 

∗
n be the graph obtained from the wheel graph

 n by replacing each edge on the rim by a path consisting k edges,

then τ (G 

∗
n ) = ( k +2 

2 + 

√ 

( k +2 
2 ) 

2 − 1 ) n + ( k +2 
2 −

√ 

( k +2 
2 ) 

2 − 1 ) n − 2 . 

Proof: Consider the following five different families of graphs de-

noted by G 

∗
n , A n , B n , C n and D n , where n denote the number of

vertices. 

We use Eq. (2) and Theorem 2.2 in [14] on the indicated edges

and paths to find a system of recurrence relations: 

τ (G 

∗
n ) = τ ( A n ) + τ ( B n −1 ) 

τ ( A n ) = k τ ( C n −1 ) + τ (G 

∗
n −1 ) 

τ ( B n ) = k τ ( D n ) + τ ( B n −1 ) 
τ ( C n ) = τ ( C n −1 ) + τ ( D n −1 ) 
τ ( D n ) = k τ ( C n ) + τ ( D n −1 ) = τ ( D n −1 ) + τ ( B n −1 ) . 

The proof can be completed via the same technique used in

Theorem 2 . �

Theorem 4. Let E n be the graph obtained from the wheel graph W n 

by inserting a vertex between the central vertex and each vertex in

its cycle, then for n ≥ 3 , τ ( E n ) = 2 2 n − 2 n +1 + 1 . 

Proof: Consider the following five different families of graphs de-

noted by E n , A n , B n , C n and D n as shown in Fig. 4 , where n denote

the number of vertices of W n . 

We use Eq. (2) together with Theorem 2.2 in [14] on the indi-

cated edges and paths to find a system of recurrence relations: 

τ ( E n ) = 2 τ ( A n ) + τ ( B n −1 ) 
τ ( A n ) = τ ( C n −1 ) + τ ( E n −1 ) 
τ ( B n ) = τ ( D n ) + 2 τ ( B n −1 ) 
τ ( C n ) = 2 τ ( C n −1 ) + τ ( D n −1 ) 
τ ( D n ) = τ ( C n ) + 2 τ ( D n −1 ) = 2 τ ( D n −1 ) + τ ( B n −1 ) . 

Consider the last two relations for τ ( C n ) and τ ( D n ) , we

have τ ( C n +1 ) = 2 τ ( C n ) + τ ( D n ) = 4 τ ( C n ) + 2 τ ( D n −1 ) = 5 τ ( C n ) −
4 τ ( C n −1 ) or τ ( C n +1 ) − 5 τ ( C n ) + 4 τ ( C n −1 ) = 0 , Thus τ ( C n ) −
5 τ ( C n −1 ) + 4 τ ( C n −2 ) = 0 and τ ( C n −1 ) − 5 τ ( C n −2 ) + 4 τ ( C n −3 ) = 0 . 

Subtracting these two equations, we get τ ( C n ) − 6 τ ( C n −1 ) +
9 τ ( C n −2 ) − 4 τ ( C n −3 ) = 0 , which is the final recurrence relation for

τ ( C n ) . Consider the first two relations for τ ( G n ) and τ ( A n ) . 
Since τ ( B n −1 ) = τ ( C n ) , we have τ ( E n ) = 2 τ ( A n ) + τ ( C n ) and

ence τ ( E n −1 ) = 2 τ ( A n −1 ) + τ ( C n −1 ) . 

Substituting into the second relation, we obtain τ ( A n ) =
 τ ( A n −1 ) + 2 τ ( C n −1 ) , therefore τ ( A n ) − 2 τ ( A n −1 ) = 2 τ ( C n −1 ) ,

ince τ ( C n −1 ) − 5 τ ( C n −2 ) + 4 τ ( C n −3 ) = 0 , we have 2 τ ( C n −1 ) −
 (2) τ ( C n −2 ) + 4 (2) τ ( C n −3 ) = 0 , [ τ ( A n ) − 2 τ ( A n −1 )] − 5 [ τ ( A n −1 )

2 τ ( A n −2 )] + 4 [ τ ( A n −2 ) − 2 τ ( A n −3 )] = 0 , thus τ ( A n ) − 7 τ ( A n −1 )

 14 τ ( A n −2 ) − 8 τ ( A n −3 ) = 0 , which is the final recurrence relation

or τ ( A n ) . 

Now τ ( A n ) has the third order homogeneous recurrence rela-

ion: 

 n − 7 x n −1 + 14 x n −2 − 8 x n −3 = 0 (5)

Thus the characteristic equation corresponding to this recur-

ence relation is r 3 − 7 r 2 + 14 r − 8 = 0 , which has characteristic

oots r = 1 , r = 1 and r = 4 . 

Also τ ( C n ) has the third order homogeneous recurrence rela-

ion: 

 n − 6 y n −1 + 9 y n −2 − 4 y n −3 = 0 (6)

Thus the characteristic equation corresponding to this recur-

ence is s 3 − 6 s 2 + 9 s − 4 = 0 which has characteristic roots r =
 , r = 2 and r = 4 . 

Therefore τ ( E n ) = τ ( A n ) + 2 τ ( C n ) has the general solution

( E n ) = α (2) 2 n + β (2) n + γ . 

Using the initial conditions τ ( E 3 ) = 49 , τ ( E 4 ) = 225 and

( E 5 ) = 961 , we have α = 1 , β = −2 and γ = 1 and hence the re-

ult follows. �

heorem 5. Let E ∗n be the graph obtained from the wheel graph

 n by replacing each internal edge by a path consisting k edges,

hen τ ( E ∗n ) = 

(
2 k + 1 + 

√ 

4 k + 1 

2 

)n 

+ 

(
2 k + 1 − √ 

4 k + 1 

2 

)n 

− 2 k n . 

roof: Consider the five different families of graphs denoted by

 

∗
n , A n , B n , C n and D n , where n denote the number of vertices of

 n . 

We use Eq. (2) together with Theorem 2.2 in [14] to find a sys-

em of recurrence relations 

(E ∗n ) = k τ ( A n ) + τ ( B n −1 ) 
( A n ) = τ ( C n −1 ) + τ (E ∗n −1 ) 
( B n ) = τ ( D n ) + k τ ( B n −1 ) 
( C n ) = k τ ( C n −1 ) + τ ( D n −1 ) 
( D n ) = τ ( C n ) + k τ ( D n −1 ) = k τ ( D n −1 ) + τ ( B n −1 ) . 

The proof can be completed via the same technique used in

heorem 4 . �
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nH nA nB nC nD

Fig. 5. The five families of graphs which we use to find an explicit formula for the complexity in the graph H n . 
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Fig. 6. The flower graph F l (3) 
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heorem 6. Let H n be a graph resulting from a wheel graph W n by

nserting into each edge of W n a new vertex of degree two. Then

or n ≥ 3 , τ ( H n ) = 2 n 

[(
3 + 

√ 

5 

2 

)n 

+ 

(
3 − √ 

5 

2 

)n 

− 2 

]
= 2 n τ ( W n ) .

roof: Consider the following five different families of graphs de-

oted by H n , A n , B n , C n and D n as shown in Fig. 5 , where n denote

he number of vertices of W n . 

We use Theorem 2.2 in [14] on the indicated paths to find a

ystem of recurrence relations 

( H n ) = 2 τ ( A n ) + τ ( B n −1 ) 
( A n ) = 2 τ ( C n −1 ) + τ ( H n −1 ) 
( B n ) = 2 τ ( D n ) + 2 τ ( B n −1 ) 
( C n ) = 2 τ ( C n −1 ) + τ ( D n −1 ) 
( D n ) = 2 τ ( C n ) + 2 τ ( D n −1 ) = 2 τ ( D n −1 ) + τ ( B n −1 ) . 

Consider the last two relations for τ ( C n ) and τ ( D n ) ,

e have: τ ( C n +1 ) = 2 τ ( C n ) + τ ( D n ) = 4 τ ( C n ) + 2 τ ( D n −1 ) =
 τ ( C n ) − 4 τ ( C n −1 ) or τ ( C n +1 ) − 6 τ ( C n ) + 4 τ ( C n −1 ) = 0 , Thus

( C n ) − 6 τ ( C n −1 ) + 4 τ ( C n −2 ) = 0 and τ ( C n −1 ) − 6 τ ( C n −2 ) +
 τ ( C n −3 ) = 0 . 

Subtracting these two equations, we get τ ( C n ) − 7 τ ( C n −1 ) +
0 τ ( C n −2 ) − 4 τ ( C n −3 ) = 0 , which is the final recurrence relation

or τ ( C n ) . Consider the first two relations for τ ( G n ) and τ ( A n ) . 

Since τ ( B n −1 ) = 2 τ ( C n ) , we have τ ( H n ) = 2 τ ( A n ) + 2 τ ( C n ) and

ence τ ( H n −1 ) = 2 τ ( A n −1 ) + 2 τ ( C n −1 ) . 

Substituting into the second relation, we obtain τ ( A n ) =
 τ ( A n −1 ) + 4 τ ( C n −1 ) , therefore τ ( A n ) − 2 τ ( A n −1 ) = 4 τ ( C n −1 ) ,

ince τ ( C n −1 ) − 6 τ ( C n −2 ) + 4 τ ( C n −3 ) = 0 , we have 4 τ ( C n −1 ) −
 (4) τ ( C n −2 ) + 4 (4) τ ( C n −3 ) = 0 , [ τ ( A n ) − 2 τ ( A n −1 )] − 6 [ τ

( A n −1 ) − 2 τ ( A n −2 )] + 4 [ τ ( A n −2 ) − 2 τ ( A n −3 )] = 0 , thus τ ( A n ) −
 τ ( A n −1 ) + 16 τ ( A n −2 ) − 8 τ ( A n −3 ) = 0 , which is the final recur-

ence relation for τ ( A n ) . 

Now τ ( A n ) has the third order homogeneous recurrence rela-

ion: 

 n − 8 x n −1 + 16 x n −2 − 8 x n −3 = 0 (7)

Thus the characteristic equation corresponding to this recur-

ence relation is r 3 − 8 r 2 + 16 r − 8 = 0 which has characteristic

oots r = 2 and r = 3 ± √ 

5 . 

Also τ ( C n ) has the third order homogeneous recurrence rela-

ion: 

 n − 7 y n −1 + 10 y n −2 − 4 y n −3 = 0 . (8)

Thus the characteristic equation corresponding to this recur-

ence relation is s 3 − 7 s 2 + 10 s − 4 = 0 which has characteristic

oots s = 1 and s = 3 ± √ 

5 . 

Thus τ ( H n ) = 2 τ ( A n ) + 2 τ ( C n ) must have the general solu-

ion. 

( H n ) = α (3 + 

√ 

5 ) n + β (3 −
√ 

5 ) n + γ + σ (2) n . 

Substituting the initial conditions τ ( H 3 ) = 128 , τ ( H 4 ) = 720 , 

( H ) = 3872 and τ ( H ) = 20480 in the general solution, we
5 6 
btain 

( H 3 ) = α (3 + 

√ 

5 ) 
3 + β (3 − √ 

5 ) 
3 + γ + σ (2) 

3 = 128 

( H 4 ) = α (3 + 

√ 

5 ) 
4 + β (3 − √ 

5 ) 
4 + γ + σ (2) 

4 = 720 

( H 5 ) = α (3 + 

√ 

5 ) 
5 + β (3 − √ 

5 ) 
5 + γ + σ (2) 

5 = 3872 

( H 6 ) = α (3 + 

√ 

5 ) 
6 + β (3 − √ 

5 ) 
6 + γ + σ (2) 

6 = 20480 . 

This system of equations have a unique solution α = β =
 , γ = 0 and σ = −2 , and hence the result follows. �

heorem 7. Let H 

∗
n be a graph resulting from a wheel graph W n by

nserting k vertices of degree two into each edge of W n . Then for

 ≥ 3 , τ ( H 

∗
n ) = k n τ ( W n ) . 

roof: Consider the five different families of graphs denoted by

 

∗
n , A n , B n , C n and D n , where n denote the number of vertices of

 n . 

We use Theorem 2.2 in [14] to find a system of recurrence re-

ations 

(H 

∗
n ) = k τ ( A n ) + τ ( B n −1 ) 

( A n ) = k τ ( C n −1 ) + τ (H 

∗
n −1 ) 

( B n ) = k τ ( D n ) + kτ ( B n −1 ) 
( C n ) = k τ ( C n −1 ) + τ ( D n −1 ) 
( D n ) = k τ ( C n ) + k τ ( D n −1 ) = k τ ( D n −1 ) + τ ( B n −1 ) . 

The proof can be completed via the same technique used in

heorem 6 . �

The Flower F l (3) 
n , is the graph obtained from the wheel graph

 n with a pendent edge at each vertex of its cycle after joining

ach pendent vertex to its center. See Fig. 6 . 

heorem 8. For n ≥ 3 , the number of spanning trees of the flower

raph F l (3) 
n is given by 

(
7 + 

√ 

33 

2 

)n 

+ 

(
7 − √ 

33 

2 

)n 

− 2 n +1 . 

roof: Consider the following five different families of graphs de-

oted by F l (3) 
n , A n , B n , C n and D n as shown in Fig. 7 , where n de-

ote the number of vertices of W n . 
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Fig. 7. The five families of graphs which we use to find an explicit formula for the complexity in the flower graph F l (3) 
n . 
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We use Eq. (2) together with Theorem 2.5 in [14] on the indi-

cated edges and triangles to find a system of recurrence relations: 

τ (F l (3) 
n ) = 2 τ ( A n ) + 3 τ ( B n −1 ) 

τ ( A n ) = τ ( C n −1 ) + τ (F l (3) 
n −1 

) 
τ ( B n ) = 2 τ ( D n −1 ) + 5 τ ( B n −1 ) 
τ ( C n ) = 2 τ ( C n −1 ) + 3 τ ( D n −1 ) 
τ ( D n ) = τ ( C n ) + 2 τ ( D n −1 ) = 2 τ ( D n −1 ) + 3 τ ( B n −1 ) . 

Consider the last two relations for τ ( C n ) and τ ( D n ) ,

we have τ ( C n +1 ) = 2 τ ( C n ) + 3 τ ( D n ) = 5 τ ( C n ) + 6 τ ( D n −1 ) =
7 τ ( C n ) − 4 τ ( C n −1 ) or τ ( C n +1 ) − 7 τ ( C n ) + 4 τ ( C n −1 ) = 0 , thus

τ ( C n ) − 7 τ ( C n −1 ) + 4 τ ( C n −2 ) = 0 and τ ( C n −1 ) − 7 τ ( C n −2 ) +
4 τ ( C n −3 ) = 0 . 

Subtracting these two equations, we get τ ( C n ) − 8 τ ( C n −1 ) +
11 τ ( C n −2 ) − 4 τ ( C n −3 ) = 0 , which is the final recurrence relation

for τ ( C n ) . Consider the first two relations for τ (F l (3) 
n ) and τ ( A n ) . 

Since 3 τ ( B n −1 ) = τ ( C n ) , we have τ (F l (3) 
n ) = 2 τ ( A n ) + τ ( C n )

and hence τ (F l (3) 
n −1 

) = 2 τ ( A n −1 ) + τ ( C n −1 ) . 

Substituting into the second relation, we obtain

τ ( A n ) = 2 τ ( A n −1 ) + 2 τ ( C n −1 ) , therefore τ ( A n ) − 2 τ ( A n −1 ) =
2 τ ( C n −1 ) . Since τ ( C n −1 ) − 7 τ ( C n −2 ) + 4 τ ( C n −3 ) = 0 , we

have 2 τ ( C n −1 ) − 2 (7) τ ( C n −2 ) + 2 (4) τ ( C n −3 ) = 0 , [ τ ( A n ) −
2 τ ( A n −1 )] − 7 [ τ ( A n −1 ) − 2 τ ( A n −2 )] + 4 [ τ ( A n −2 ) − 2 τ ( A n −3 )] = 0 , 

thus τ ( A n ) − 9 τ ( A n −1 ) + 18 τ ( A n −2 ) − 8 τ ( A n −3 ) = 0 , which is the

final recurrence relation for τ ( A n ) . 

Now τ ( A n ) has the third order homogeneous recurrence rela-

tion: 

x n − 9 x n −1 + 18 x n −2 − 8 x n −3 = 0 (9)

Thus the characteristic equation corresponding to this recur-

rence relation is r 3 − 9 r 2 + 18 r − 8 = 0 which has characteristic

roots r = 2 and r = 

7 ±√ 

33 
2 . 

Also τ ( C n ) have the third order homogeneous recurrence rela-

tion: 

y n − 8 y n −1 + 11 y n −2 − 4 y n −3 = 0 . (10)

Thus the characteristic equation corresponding to this recur-

rence relation is s 3 − 8 s 2 + 11 s − 4 = 0 , which has characteristic

roots s = 1 and s = 

7 ±√ 

33 
2 . 

Therefore τ (F l (3) 
n ) = 2 τ ( A n ) + τ ( C n ) has the general solution

τ (F l (3) 
n ) = α( 7+ √ 

33 
2 ) n + β( 7 −

√ 

33 
2 ) n + γ + σ (2) n . 

Substituting the initial conditions τ (F l (3) 
3 

) = 243 , τ (F l (3) 
4 

) =
1617 , τ (F l (3) 

5 
) = 10443 and τ (F l (3) 

6 
) = 66825 in the general solu-

tion, we obtain 

τ ( F l (3) 
3 

) = α
(

7+ √ 

33 
2 

)3 

+ β
(

7 −√ 

33 
2 

)3 

+ γ + σ (2) 
3 = 234 

τ (F l (3) 
4 

) = α
(

7+ √ 

33 
2 

)4 

+ β
(

7 −√ 

33 
2 

)4 

+ γ + σ (2) 
4 = 1617 

τ (F l (3) 
5 

) = α
(

7+ √ 

33 
2 

)5 

+ β
(

7 −√ 

33 
2 

)5 

+ γ + σ (2) 
5 = 10443 

τ (F l (3) 
6 

) = α
(

7+ √ 

33 
2 

)6 

+ β
(

7 −√ 

33 
2 

)6 

+ γ + σ (2) 
6 = 66825 . 

This system of equations have a unique solution α = β =
1 , γ = 0 and σ = −2 , and hence the result follows. �
heorem 9. Let H 

(3) 
n , be the graph obtained from the wheel graph

 n with k pendent edges at each vertex of its cycle after joining

ach pendent vertex to its center. Then 

τ (H 

(3) 
n ) 

= 2 

k n 

[ ( 

k + 6 + 

√ 

(k + 6) 
2 −16 

4 

) n 

+ 

( 

k + 6 −
√ 

(k + 6) 
2 −16 

4 

) n 

−2 

] 

. 

roof: Consider the five different families of graphs denoted by

 

(3) 
n , A n , B n , C n and D n , where n denote the number of vertices

f W n . 

We use Eq. (2) together with Theorem 2.5 and Lemma 2.10 in

14] to find a system of recurrence relations: 

(H 

(3) 
n ) = 2 

k τ ( A n ) + 2 

k −1 (k + 2) τ ( B n −1 ) 

( A n ) = τ ( C n −1 ) + τ (H 

(3) 
n −1 

) 

( B n ) = 2 

k τ ( D n −1 ) + 2 

k −1 (k + 4) τ ( B n −1 ) 

( C n ) = 2 

k τ ( C n −1 ) + 2 

m −1 (m + 2) τ ( D n −1 ) 

( D n ) = τ ( C n ) + 2 

k τ ( D n −1 ) = 2 

k τ ( D n −1 ) + 2 

k −1 (k + 2) τ ( B n −1 ) .

The proof can be completed via the same technique used in

heorem 8 . �

The Flower F l (4) 
n , is the graph obtained from the wheel graph

 n with a pendent edge at each vertex of its cycle after joining

ach pendent vertex to its center by a path of length 2. See Fig. 8 . 

heorem 10. For n ≥ 3 , the number of spanning trees of the flower

raph F l (4) 
n is given by 3 2 n − 2 × 3 n + 1 . 

roof: Consider the following five different families of graphs de-

oted by F l (4) 
n , A n , B n , C n and D n as shown in Fig. 9 , where n de-

ote the number of vertices of W n . 
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Fig. 9. The five families of graphs which we use to find an explicit formula for the complexity in the flower graph F l (4) 
n . 

 

c

τ

τ
τ
τ
τ

 

h  

1  

τ  

9

 

1  

f

 

a

 

3  

s

2

1  

r

 

t

x  

 

r  

r

 

t

y  

 

r  

r

 

τ

 

6

τ

τ

τ

 

β

T  

g  

j

τ

P  

H  

o

 

[

τ

τ
τ
τ
τ

 

T

 

W  

e

T  

g  

(
P  

F  

o

 

[

τ

τ
τ
τ
τ ) . 

 

T

T  

g  

j  

T

τ

We use Eq. (2) together with Theorem 2.5 in [14] on the indi-

ated edges and squares to find a system of recurrence relations: 

(F l (4) 
n ) = 3 τ ( A n ) + 4 τ ( B n −1 ) 

( A n ) = τ ( C n −1 ) + τ (F l (4) 
n −1 

) 
( B n ) = 3 τ ( D n ) + 7 τ ( B n −1 ) 
( C n ) = 3 τ ( C n −1 ) + 4 τ ( D n −1 ) 
( D n ) = τ ( C n ) + 3 τ ( D n −1 ) = 3 τ ( D n −1 ) + 4 τ ( B n −1 ) . 

Consider the last two relations for τ ( C n ) and τ ( D n ) , we

ave τ ( C n +1 ) = 3 τ ( C n ) + 4 τ ( D n ) = 7 τ ( C n ) + 12 τ ( D n −1 ) =
0 τ ( C n ) − 9 τ ( C n −1 ) or τ ( C n +1 ) − 10 τ ( C n ) + 9 τ ( C n −1 ) = 0 . Thus

( C n ) − 10 τ ( C n −1 ) + 9 τ ( C n −2 ) = 0 and τ ( C n −1 ) − 10 τ ( C n −2 ) +
 τ ( C n −3 ) = 0 . 

Subtracting these two equations, we get τ ( C n ) − 11 τ ( C n −1 ) +
9 τ ( C n −2 ) − 9 τ ( C n −3 ) = 0 , which is the final recurrence relation

or τ ( C n ) . Consider the first two relations for τ (F l (4) 
n ) and τ ( A n ) . 

Since 4 τ ( B n −1 ) = τ ( C n ) , we have τ (F l (4) 
n ) = 3 τ ( A n ) + 2 τ ( C n )

nd hence τ (F l (4) 
n −1 

) = 3 τ ( A n −1 ) + τ ( C n −1 ) . 

Substituting into the second relation, we obtain τ ( A n ) =
 τ ( A n −1 ) + 2 τ ( C n −1 ) , therefore τ ( A n ) − 3 τ ( A n −1 ) = 2 τ ( C n −1 ) ,

ince τ ( C n −1 ) − 10 τ ( C n −2 ) + 9 τ ( C n −3 ) = 0 , we have 2 τ ( C n −1 ) −
 (10) τ ( C n −2 ) + 2 (9) τ ( C n −3 ) = 0 , [ τ ( A n ) − 3 τ ( A n −1 )] − 10 [ τ

( A n −1 ) − 3 τ ( A n −2 )] + 9 [ τ ( A n −2 ) − 3 τ ( A n −3 )] = 0 , thus τ ( A n ) −
3 τ ( A n −1 ) + 39 τ ( A n −2 ) − 27 τ ( A n −3 ) = 0 , which is the final

ecurrence relation for τ ( A n ) . 

Now τ ( A n ) has the third order homogeneous recurrence rela-

ion: 

 n − 13 x n −1 + 39 x n −2 − 27 x n −3 = 0 . (11)

Thus the characteristic equation corresponding to this recur-

ence relation is r 3 − 13 r 2 + 39 r − 27 = 0 , which has characteristic

oots r = 1 , r = 3 and r = 9 . 

Also τ ( C n ) have the third order homogeneous recurrence rela-

ion: 

 n − 11 y n −1 + 19 y n −2 − 9 y n −3 = 0 . (12)

Thus the characteristic equation corresponding to this recur-

ence relation is s 3 − 11 s 2 + 19 s − 9 = 0 , which has characteristic

oots s = 1 , s = 1 and s = 9 . 

Therefore, τ (F l (4) 
n ) = 3 τ ( A n ) + τ ( C n ) has the general solution

( F l (4) 
n ) = α (9) n + β (3) n + γ . 

Substituting the initial conditions τ (F l (4) 
3 

) = 676 , τ (F l (4) 
4 

) =
400 and τ (F l (4) 

5 
) = 58564 in the general solution, we obtain 

(F l (4) 
3 

) = α (9) 
3 + β (3) 

3 + γ = 676 , 

(F l (4) 
4 

) = α (9) 
4 + β (3) 

4 + γ = 6400 , 

(F l (4) 
5 

) = α (9) 
5 + β (3) 

5 + γ = 58564 . 

This system of equations have a unique solution α = γ = 1 and

= −2 and hence the result follows. �

heorem 11. Let H 

(4) 
n , be the graph obtained from the wheel

raph W n with k pendent edges at each vertex of its cycle after
oining each pendent vertex to its center by a path P 3 . Then 

(H 

(4) 
n ) = 3 

k n 

[(
k + 9 + 

√ 

(k + 9) 
2 − 36 

6 

)n 

+ 

(
k + 9 + 

√ 

(k + 9) 
2 −36 

6 

)n 

−2 

]
. 

roof: Consider the five different families of graphs denoted by

 

(4) 
n , A n , B n , C n and D n , where n denote the number of vertices

f W n . 

We use Eq. (2) together with Theorem 2.5 and Lemma 2.10 in

14] to find a system of recurrence relations: 

(H 

(4) 
n ) = 2 

k τ ( A n ) + 2 

k −1 (k + 2) τ ( B n −1 ) 

( A n ) = τ ( C n −1 ) + τ (H 

(4) 
n −1 

) 

( B n ) = 2 

k τ ( D n −1 ) + 2 

k −1 (k + 4) τ ( B n −1 ) 

( C n ) = 2 

k τ ( C n −1 ) + 2 

m −1 (m + 2) τ ( D n −1 ) 

( D n ) = τ ( C n ) + 2 

k τ ( D n −1 ) = 2 

k τ ( D n −1 ) + 2 

k −1 (k + 2) τ ( B n −1 ) . 

The proof can be completed via the same technique used in

heorem 10 �

The Flower F l (m ) 
n , is the graph obtained from the wheel graph

 n with a pendent edge at each vertex of its cycle after joining

ach pendent vertex to its center by a path of length m − 2 . 

heorem 12. For n ≥ 3 , the number of spanning trees of the flower

raph F l (m ) 
n is given by τ

(
F l (m ) 

n 

)
= 

( 

3 m − 2 + 

√ 

m (5 m − 4) 

2 

) n 

+
 

3 m − 2 −
√ 

m (5 m − 4) 

2 

) n 

− 2 (m − 1) n . 

roof: Consider the five different families of graphs denoted by

 l (m ) 
n , A n , B n , C n and D n , where n denote the number of vertices

f W n . 

We use Eq. (2) together with Theorem 2.5 and Lemma 2.10 in

14] to find a system of recurrence relations: 

(F l (m ) 
n ) = (m − 1) τ ( A n ) + m τ ( B n −1 ) 

( A n ) = τ ( C n −1 ) + τ (F l (m ) 
n −1 

) 
( B n ) = (m − 1) τ ( D n −1 ) + (2 m − 1) τ ( B n −1 ) 
( C n ) = (m − 1) τ ( C n −1 ) + m τ ( D n −1 ) 
( D n ) = τ ( C n ) + (m − 1) τ ( D n −1 ) = (m − 1) τ ( D n −1 ) + m τ ( D n −1 

The proof can be completed via the same technique used in

heorem 10 . �

heorem 13. Let H 

(m ) 
n , be the graph obtained from the wheel

raph W n with k pendent edges at each vertex of its cycle after

oining each pendent vertex to its center by a path length m − 2 .

hen 

( H 

(m ) 
n ) = (m −1) k n 

[(
k + 3 (m −1) + 

√ 

(k +3 (m −1)) 
2 −4 (m −1) 

2 

2 (m −1) 

)n 

+ 

(
k +3 (m −1)+ 

√ 

(k +3 (m −1)) 
2 −4 (m −1) 

2 

2 (m −1) 

)n 

− 2 

]
. 
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Fig. 10. The sun flower graph S f 8 . 
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Proof: Consider the five different families of graphs denoted by

H 

(m ) 
n , A n , B n , C n and D n , where n denote the number of vertices

of W n . 

We use Eq. (2) together with Theorem 2.5 and Lemma 2.10 in

[14] to find a system of recurrence relations: 

τ (H 

(m ) 
n ) = (m − 1) 

k τ ( A n ) + [ k m 

k −1 + (m − 1) 
k 

] τ ( B n −1 ) 

τ ( A n ) = τ ( C n −1 ) + τ (H 

(m ) 
n −1 

) 

τ ( B n ) = (m − 1) 
k τ ( D n −1 ) + [(k m 

k −1 + 2 (m − 1) 
k 
] τ ( B n −1 ) 

τ ( C n ) = (m − 1) 
k τ ( C n −1 ) + [ k m 

k −1 + (m − 1) 
k 
] τ ( D n −1 ) 

τ ( D n ) = τ ( C n ) + (m − 1) 
k τ ( D n −1 ) = (m − 1) k τ ( D n −1 ) 

+ [ k m 

k −1 + (m − 1) 
k 

] τ ( B n −1 ) . 

The proof can be completed via the same technique used in

Theorem 10 . �

The sunflower graph S f n , is the graph obtained from W n by

joining a path of length 2 between any two adjacent vertices in

its cycle C n . See Fig. 10 . 

Theorem 14. For n ≥ 3 , the number of spanning trees of the sun

flower graph S f n , is given by (4 + 

√ 

7 ) n + (4 −
√ 

7 ) n − 2 × 3 n . 

Proof: Consider the following five different families of graphs de-

noted by S f n , A n , B n , C n and D n as shown in Fig. 11 , where n de-

note the number of vertices of W n . 

We use Eq. (2) together with Theorem 2.5 in [14] on the indi-

cated edges and triangles to find a system of recurrence relations: 

τ (S f n ) = τ ( A n ) + τ ( B n −1 ) 
τ ( A n ) = 6 τ ( C n −1 ) + 3 τ (S f n −1 ) 
τ ( B n ) = 2 τ ( D n ) + 3 τ ( B n −1 ) 
τ ( C n ) = 3 τ ( C n −1 ) + τ ( D n −1 ) 
τ ( D n ) = 2 τ ( C n ) + 3 τ ( D n −1 ) = 3 τ ( D n −1 ) + τ ( B n −1 ) . 

Consider the last two relations for τ ( C n ) and τ ( D n ) , we

have τ ( C n +1 ) = 3 τ ( C n ) + τ ( D n ) = 5 τ ( C n ) + 3 τ ( D n −1 ) = 8 τ ( C n ) −
9 τ ( C n −1 ) or τ ( C n +1 ) − 8 τ ( C n ) + 9 ( C n −1 ) = 0 , Thus τ ( C n ) −
8 τ ( C n −1 ) + 9 ( C n −2 ) = 0 and τ ( C n −1 ) − 8 τ ( C n −2 ) + 9 τ ( C n −3 ) = 0 . 

Subtracting these two equations, we get τ ( C n ) − 9 τ ( C n −1 ) +
17 τ ( C n −2 ) − 9 τ ( C n −3 ) = 0 , which is the final recurrence relation

for τ ( C n ) . Consider the first two relations for τ (S f n ) and τ ( A n ) . 

Since τ ( B n −1 ) = 2 τ ( C n ) , we have τ (S f n ) = τ ( A n ) + 2 τ ( C n ) and

hence τ (S f n −1 ) = τ ( A n −1 ) + 2 τ ( C n −1 ) . 

Substituting into the second relation, we obtain τ ( A n ) =
3 τ ( A n −1 ) + 12 τ ( C n −1 ) , therefore τ ( A n ) − 3 τ ( A n −1 ) = 12 τ ( C n −1 ) ,

since τ ( C n −1 ) − 8 τ ( C n −2 ) + 9 τ ( C n −3 ) = 0 , we have 12 τ ( C n −1 ) −
12 (8) τ ( C n −2 ) + 12 (9 ) τ ( C n −3 ) = 0 , [ τ ( A n ) − 3 τ ( A n −1 )] − 8 [ τ
( A n −1 ) − 3 τ ( A n −2 )] + 9 [ τ ( A n −2 ) − 3 τ ( A n −3 )] = 0 , thus τ ( A n ) −
11 τ ( A n −1 ) + 33 τ ( A n −2 ) − 27 τ ( A n −3 ) = 0 , which is the final

recurrence relation for τ ( A n ) . 
Now τ ( A n ) has the third order homogeneous recurrence rela-

ion: 

 n − 11 x n −1 + 33 x n −2 − 27 x n −3 = 0 (13)

Thus the characteristic equation corresponding to this recur-

ence relation is r 3 − 11 r 2 + 33 r − 27 = 0 , which has characteristic

oots r = 3 and r = 4 ±
√ 

7 . 

Also τ ( C n ) have the third order homogeneous recurrence rela-

ion: 

 n − 9 y n −1 + 17 y n −2 − 9 y n −3 = 0 . (14)

Thus the characteristic equation corresponding to this recur-

ence relation is s 3 − 9 s 2 + 17 s − 9 = 0 , which has characteristic

oots s = 1 and s = 4 ±
√ 

7 . 

Therefore τ (S f n ) = τ ( A n ) + 2 τ ( C n ) has the general solution

( S f n ) = α (4 + 

√ 

7 ) n + β (4 −
√ 

7 ) n + γ + σ (3) n . 

Substituting the initial conditions τ (S f 3 ) = 242 , τ (S f 4 ) =
792 , τ (S f 5 ) = 12482 and τ (S f 6 ) = 84700 in the general solution,

e obtain 

(S f 3 ) = α (4 + 

√ 

7 ) 
3 + β (4 + 

√ 

7 ) 
3 + γ + σ (3) 

3 = 242 

(S f 4 ) = α (4 + 

√ 

7 ) 
4 + β (4 + 

√ 

7 ) 
4 + γ + σ (3) 

4 = 1792 

(S f 5 ) = α (4 + 

√ 

7 ) 
5 + β (4 + 

√ 

7 ) 
5 + γ + σ (3) 

5 = 12482 

(S f 6 ) = α (4 + 

√ 

7 ) 
6 + β (4 + 

√ 

7 ) 
6 + γ + σ (3) 

6 = 84700 . 

This system of equations have a unique solution α = β = 1 , γ =
 and σ = −2 and hence the result follows. �

heorem 15. Let Q n , be the graph obtained from W n by joining a

ath of length k − 1 between any two adjacent vertices in its cycle

 n . Then 

τ ( Q n ) 

= 

(
3 k −1 + 

√ 

5 k 2 −6 k + 1 

2 

)n 

+ 

(
3 k − 1 − √ 

5 k 2 − 6 k + 1 

2 

)n 

− 2 k n

roof: Consider the five different families of graphs denoted by

 n , A n , B n , C n and D n , where n denote the number of vertices of

 n . 

We use Eq. (2) together with Theorem 2.5 and Lemma 2.10 in

14] to find a system of recurrence relations: 

( Q n ) = τ ( A n ) + τ ( B n −1 ) 
( A n ) = k (k − 1) τ ( C n −1 ) + k τ ( Q n −1 ) 
( B n ) = (k − 1) τ ( D n ) + k τ ( B n −1 ) 
( C n ) = k τ ( C n −1 ) + τ ( D n −1 ) 
( D n ) = (k − 1) τ ( C n ) + k τ ( D n −1 ) = k τ ( D n −1 ) + τ ( B n −1 ) . 

The proof can be completed via the same technique used in

heorem 14 . �

heorem 16. Let Q 

∗
n , be the graph obtained from W n by joining

 −uniform k −skein between any two adjacent vertices in its cycle

 n . Then 

τ (Q 

∗
n ) 

= 2 

(k −1) n [ (k + 3 + 

√ 

2 k + 5 ) n + (k + 3 + 

√ 

2 k + 5 )) n − 2 (k + 2) n ]

roof: Consider the five different families of graphs denoted by

 n , A n , B n , C n and D n , where n denote the number of vertices of

 n . 

We use Eq. (2) together with Theorem 2.5 and Lemma 2.10 in

14] to find a system of recurrence relations: 
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nSf nA nB nC nD

Fig. 11. The five families of graphs which we use to find an explicit formula for the complexity in the sun flower graph S f n . 
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(Q 

∗
n ) = τ ( A n ) + τ ( B n −1 ) 

( A n ) = 2 

2 k −1 (k + 2) τ ( C n −1 ) + 2 

k −1 (k + 2) τ (Q 

∗
n −1 ) 

( B n ) = 2 

k τ ( D n ) + 2 

k −1 (k + 2) τ ( B n −1 ) 

( C n ) = 2 

k −1 (k + 2) τ ( C n −1 ) + τ ( D n −1 ) 

( D n ) = 2 

k τ ( C n ) + 2 

k −1 (k + 2) τ ( D n −1 ) = 2 

k −1 (k + 2) τ ( D n −1 ) 
+ τ ( B n −1 ) . 

The proof can be completed via the same technique used in

heorem 14 . �

heorem 17. Let Q 

∗∗
n , be the graph obtained from W n by joining

 −uniform k −skein between any two adjacent vertices in its cycle

 n . Then 

(Q 

∗∗
n ) = k (m −1) n 

[(
3 k + 2 m + 

√ 

(3 k + 2 m ) 
2 − 4 (k + m ) 

2 

2 

)n 

+ 

(
3 k + 2 m −

√ 

(3 k + 2 m ) 
2 − 4 (k + m ) 

2 

2 

)n 

− 2 (k + m ) 
n 

]
roof: Consider the five different families of graphs denoted by

 

∗
n , A n , B n , C n and D n , where n denote the number of vertices of

 n . 

We use Eq. (2) together with Theorem 2.5 and Lemma 2.10 in

14] to find a system of recurrence relations: 

(Q 

∗∗
n ) = τ ( A n ) + τ ( B n −1 ) 

( A n ) = k 2 m −1 (m + k ) τ ( C n −1 ) + k m −1 (m + k ) τ (Q 

∗∗
n −1 ) 

( B n ) = k m τ ( D n ) + k m −1 (m + k ) τ ( B n −1 ) 
( C n ) = k m −1 (m + k ) τ ( C n −1 ) + τ ( D n −1 ) 
( D n ) = k m τ ( C n ) + k m −1 (m + k ) τ ( D n −1 ) = k m −1 (m + k ) τ ( D n −1

+ τ ( B n −1 ) . 

The proof can be completed via the same technique used in

heorem 14 . �

heorem 18. Let M n , be the graph obtained from W n by joining

 m 

− e between any two adjacent vertices in its cycle C n . Then 

( M n ) = m 

(m −3) n [ (m + 1 + 

√ 

2 m + 1 ) n + (m + 1 + 

√ 

2 m + 1 )) n 

− 2 m 

n ] . 

roof: Consider the five different families of graphs denoted by

 n , A n , B n , C n and D n , where n denote the number of vertices of

 n . 

We use Eq. (2) together with Theorem 2.5 and Lemma 2.3 in

14] to find a system of recurrence relations: 

( M n ) = τ ( A n ) + τ ( B n −1 ) 
( A n ) = 2 m 

2 m −5 τ ( C n −1 ) + m 

m −2 τ ( M n −1 ) 
( B n ) = 2 m 

m −3 τ ( D n ) + m 

m −2 τ ( B n −1 ) 
( C n ) = m 

m −2 τ ( C n −1 ) + τ ( D n −1 ) 
( D n ) = 2 m 

m −3 τ ( C n ) + m 

m −2 τ ( D n −1 ) = m 

m −2 τ ( D n −1 ) 
+ τ ( B n −1 ) . 

The proof can be completed via the same technique used in

heorem 14 . �
The very remarkable result is that when we compute the num-

er of spanning trees of a graph and we obtain a system of recur-

ence relations, we obtain the same number of spanning trees of

ther graph with different system of recurrence relations as shown

n the following Theorems: 

heorem 19. Let X n be the graph obtained from the wheel graph

 n by adding parallel edge to each edge in the internal edges of

 n . Then for n ≥ 3 , τ ( X n ) = τ ( G n ) = (2 + 

√ 

3 ) n + (2 − √ 

3 ) n − 2 . 

roof: Consider the following five different families of graphs de-

oted by X n , A n , B n , C n and D n as shown in Fig. 12 , where n de-

ote the number of vertices of W n . 

We use Eq. (2) together with Theorem 2.2 in [14] on the indi-

ated edges to find a system of recurrence relations: 

( X n ) = τ ( A n ) + 2 τ ( B n −1 ) 
( A n ) = τ ( C n −1 ) + τ ( X n −1 ) 
( B n ) = τ ( D n ) + 3 τ ( B n −1 ) 
( C n ) = τ ( C n −1 ) + τ ( D n −1 ) 
( D n ) = τ ( C n ) + τ ( D n −1 ) = τ ( D n −1 ) + 2 τ ( B n −1 ) . 

Consider the last two relations for τ ( C n ) and τ ( D n ) ,

e have τ ( C n +1 ) = τ ( C n ) + 2 τ ( D n ) = 3 τ ( C n ) + 2 τ ( D n −1 ) =
 τ ( C n ) − τ ( C n −1 ) or τ ( C n +1 ) − 4 τ ( C n ) + τ ( C n −1 ) = 0 . Thus τ ( C n ) −
 τ ( C n −1 ) + τ ( C n −2 ) = 0 and τ ( C n −1 ) − 4 τ ( C n −2 ) + τ ( C n −3 ) = 0 . 

Subtracting these two equations, we get τ ( C n ) − 5 τ ( C n −1 ) +
 τ ( C n −2 ) − τ ( C n −3 ) = 0 , which is the final recurrence relation for

( C n ) . Consider the first two relations for τ ( X n ) and τ ( A n ) . 

Since 2 τ ( B n −1 ) = τ ( C n ) , we have τ ( X n ) = τ ( A n ) + τ ( C n ) and

ence τ ( X n −1 ) = τ ( A n −1 ) + τ ( C n −1 ) . 

Substituting into the second relation, we obtain τ ( A n ) =
( A n −1 ) + 2 τ ( C n −1 ) , therefore τ ( A n ) − τ ( A n −1 ) = 2 τ ( C n −1 ) ,

ince τ ( C n −1 ) − 4 τ ( C n −2 ) + τ ( C n −3 ) = 0 , we have 2 τ ( C n −1 ) −
 (4) τ ( C n −2 ) + 2 τ ( C n −3 ) = 0 , [ τ ( A n ) − τ ( A n −1 )] − 4 [ τ ( A n −1 ) −
( A n −2 )] + [ τ ( A n −2 ) − τ ( A n −3 )] = 0 , thus τ ( A n ) − 5 τ ( A n −1 ) +
 τ ( A n −2 ) − τ ( A n −3 ) = 0 , which is the final recurrence relation for

( A n ) . 

Now both τ ( A n ) and τ ( C n ) have the third order homogeneous

ecurrence relation: 

 n − 5 x n −1 + 5 x n −2 − x n −3 = 0 (15) 

Thus the characteristic equation is r 3 − 5 r 2 + 5 r − 1 = 0 which

as characteristic roots r = 2 ± √ 

3 and r = 1 . Thus the general so-

ution of τ ( X n ) is τ ( X n ) = α (2 + 

√ 

3 ) n + β (2 − √ 

3 ) n + γ . 

Which the same general solution as τ ( G n ) in Theorem 2 with

he same initial conditions τ ( X 3 ) = 50 , τ ( X 4 ) = 192 and τ ( X 5 ) =
22 . The proof is complete. �

heorem 20. Let X ∗n be the graph obtained from the wheel graph

 n by adding k parallel edges to each edge in the internal edges

f W n . Then for n ≥ 3 , 

( X 

∗
n ) = τ ( G 

∗
n ) 

= 

( 

k + 2 + 

√ 

k (k + 4) 

2 

) n 

+ 

( 

k + 2 −
√ 

k (k + 4) 

2 

) n 

− 2 . 
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nX nA nB nC nD

Fig. 12. The five families of graphs which we use to find an explicit formula for the complexity in the graph X n . 

nW nA nB nC nD

Fig. 13. The five families of graphs which we use to find an explicit formula for the complexity in the graph Y n . 
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Proof: Consider the five different families of graphs denoted by

X ∗n , A n , B n , C n and D n , where n denote the number of vertices of

 n . 

We use Eq. (2) together with Theorem 2.2 in [14] to find a sys-

tem of recurrence relations: 

τ (X 

∗
n ) = τ ( A n ) + kτ ( B n −1 ) 

τ ( A n ) = τ ( C n −1 ) + τ (X 

∗
n −1 ) 

τ ( B n ) = τ ( D n ) + (k + 1) τ ( B n −1 ) 
τ ( C n ) = τ ( C n −1 ) + k τ ( D n −1 ) 
τ ( D n ) = τ ( C n ) + τ ( D n −1 ) = τ ( D n −1 ) + k τ ( B n −1 ) . 

The proof can be completed via the same technique used in

Theorem 19 . �

Theorem 21. Let Y n be the graph obtained from the wheel graph

 n by adding parallel edge to each edge in the cycle of W n . Then

for n ≥ 3 , τ ( Y n ) = τ ( E n ) = 2 2 n − 2 n +1 + 1 . 

Proof: Consider the following five different families of graphs de-

noted by Y n , A n , B n , C n and D n as shown in Fig. 13 , where n de-

note the number of vertices of W n . 

We use Eq. (2) together with Theorem 2.2 in [14] on the indi-

cated edges to find a system of recurrence relations: 

τ ( Y n ) = τ ( A n ) + τ ( B n −1 ) 
τ ( A n ) = 2 τ ( C n −1 ) + 2 τ ( Y n −1 ) 
τ ( B n ) = τ ( D n ) + 2 τ ( B n −1 ) 
τ ( C n ) = 2 τ ( C n −1 ) + τ ( D n −1 ) 
τ ( D n ) = τ ( C n ) + 2 τ ( D n −1 ) = 2 τ ( D n −1 ) + τ ( B n −1 ) . 

Consider the last two relations for τ ( C n ) and τ ( D n ) , we

have τ ( C n +1 ) = 2 τ ( C n ) + τ ( D n ) = 3 τ ( C n ) + 2 τ ( D n −1 ) = 5 τ ( C n ) −
4 τ ( C n −1 ) or τ ( C n +1 ) − 5 τ ( C n ) + 4 ( C n −1 ) = 0 , thus τ ( C n ) −
5 τ ( C n −1 ) + 4 τ ( C n −2 ) = 0 , τ ( C n −1 ) − 5 τ ( C n −2 ) + 4 τ ( C n −3 ) = 0 . 

Subtracting these two equations, we get τ ( C n ) − 6 τ ( C n −1 ) +
9 τ ( C n −2 ) − 4 τ ( C n −3 ) = 0 , which is the final recurrence relation for

τ ( C n ) . Consider the first two relations for τ ( Y n ) and τ ( A n ) . 

Since τ ( B n −1 ) = τ ( C n ) , we have τ ( Y n ) = τ ( A n ) + τ ( C n ) and

hence τ ( Y n −1 ) = τ ( A n −1 ) + τ ( C n −1 ) . 

Substituting into the second relation, we obtain τ ( A n ) =
2 τ ( A n −1 ) + 4 τ ( C n −1 ) , therefore τ ( A n ) − τ ( A n −1 ) = 4 τ ( C n −1 ) ,

since τ ( C n −1 ) − 5 τ ( C n −2 ) + 4 τ ( C n −3 ) = 0 , we have 4 τ ( C n −1 ) −
4 (5) τ ( C n −2 ) + 4 (4) τ ( C n −3 ) = 0 , [ τ ( A n ) − 2 τ ( A n −1 )] − 5 [ τ ( A n −1 )

− 2 τ ( A n −2 )] + 4 [ τ ( A n −2 ) − 2 τ ( A n −3 )] = 0 , thus τ ( A n ) − 7 τ ( A n −1 )

+ 14 τ ( A n −2 ) − 8 τ ( A n −3 ) = 0 , which is the final recurrence relation

for τ ( A n ) . 
We obtain τ ( A n ) and τ ( C n ) have the same recurrence relations

5) and (6) respectively and so τ ( Y n ) = τ ( A n ) + τ ( B n −1 ) has the

ame general solution of τ ( E n ) in Theorem 4 . 

Since the initial conditions τ ( Y 3 ) = 49 , τ ( Y 4 ) = 225 and

( Y 5 ) = 961 are also the same as τ ( E n ) . 

The proof is complete. �

heorem 22. Let Y ∗n be the graph obtained from the wheel graph

 n by adding k parallel edges to each edge in the cycle of W n . Then

or n ≥ 3 , 

( Y ∗n ) = τ ( E ∗n ) = 

(
2 k + 1 + 

√ 

4 k + 1 

2 

)n 

+ 

(
2 k + 1 − √ 

4 k + 1 

2 

)n 

− 2 k n . 

roof: Consider the five different families of graphs denoted by

 

∗
n , A n , B n , C n and D n , where n denote the number of vertices of

 n . 

We use Eq. (2) together Theorem 2.2 in [14] to find a system of

ecurrence relations: 

( Y ∗n ) = τ ( A n ) + τ ( B n −1 ) 
( A n ) = kτ ( C n −1 ) + k τ ( Y ∗n −1 ) 
( B n ) = τ ( D n ) + k τ ( B n −1 ) 
( C n ) = k τ ( C n −1 ) + τ ( D n −1 ) 
( D n ) = τ ( C n ) + k τ ( D n −1 ) = k τ ( D n −1 ) + τ ( B n −1 ) . 

The proof can be completed via the same technique used in

heorem 21 . �

. Spanning tree entropy 

After having explicit Formulas for the number of spanning trees

f wheel graph W n and the graphs generated by W n , we can calcu-

ate its spanning tree entropy which is a finite number and a very

nteresting quantity characterizing the network structure, defined

s in [15,16] as: 

( G ) = lim 

n →∞ 

ln τ (G ) 

| V (G ) | . (16)
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This limit is known as the asymptotic tree number entropy,

symptotic growth constant, or thermodynamical limit. 

( W n ) = lim 

n →∞ 

ln 

[ (
3+ √ 

5 
2 

)n 

+ 

(
3 −√ 

5 
2 

)n 

− 2 

] 
n + 1 

= ln 

(
3 + 

√ 

5 

2 

)
≈ 0 . 9624 . 

( G n ) = Z( X n ) = lim 

n →∞ 

ln [ (2 + 

√ 

3 ) 
n + (2 − √ 

3 ) 
n − 2] 

2 n + 1 

= ln 

(√ 

2 + 

√ 

3 

)
≈ 0 . 6585 . 

( E n ) = Z( Y n ) = lim 

n →∞ 

ln [ 4 

n − 2 × 2 

n + 1] 

2 n + 1 

= ln (2) ≈ 0 . 6931 . 

( H n ) = lim 

n →∞ 

ln [ (3 + 

√ 

5 ) 
n + (3 − √ 

5 ) 
n − 2 × 2 

n ] 

3 n + 1 

= ln 

(
3 
√ 

3 + 

√ 

5 

)
≈ 0 . 5519 . 

(F l (3) 
n ) = lim 

n →∞ 

ln 

[ (
7+ √ 

33 
2 

)n 

+ 

(
7 −√ 

33 
2 

)n 

− 2 

n +1 

] 
2 n + 1 

= ln 

( √ 

7 + 

√ 

33 

2 

) 

≈ 0 . 9260 . 

(F l (4) 
n ) = lim 

n →∞ 

ln [ 9 

n − 2 × 3 

n + 1] 

3 n + 1 

= ln ( 
3 
√ 

9 ) ≈ 0 . 7324 . 

(S f n ) = lim 

n →∞ 

ln [ (4 + 

√ 

7 ) 
n + (4 − √ 

7 ) 
n − 2 × 3 

n ] 

2 n + 1 

= ln ( 
√ 

4 + 

√ 

7 ) ≈ 0 . 9470 . 

. Conclusions 

In this work, we have proposed a new method for counting the

umber of spanning trees of a wheel graph. Using this method, one
an obtain the number of spanning trees of any graph generated

y the wheel graph. Also we investigate the asymptotic limit of

hese graphs. An advantage of our technique lies in the avoidance

f laborious computation of Laplacian spectra that is needed for a

eneric method for determining spanning trees. 
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