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The purpose of this note is to study and explore some collineation vector fields on standard static space-
times Iy x M(also called f— associated SSST). Conformal vector fields, Ricci and matter collineations are
studied. Many implications for the existence of these collineations on f—associated SSSTs are obtained.
Moreover, Ricci soliton structures on f— associated SSSTs admitting a potential conformal vector field are
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1. An introduction

Warped product manifolds are extensively studied as a method
to generate general exact solutions to Einstein's field equation
[1-3]. A standard static spacetime (also called f—associated SSST)
is often pictured in the form of a Lorentzian warped product man-
ifold Irx M [4,5]. An f— associated standard static spacetime is, to
some extent, a generalization of some well-known classical space-
times such as the Einstein static universe and Minkowski space-
time [1,6].

The study of spacetime symmetries is essential for solving Ein-
stein field equation and for providing further insight into conser-
vative laws of dynamical systems (see [7] an important reference
for symmetries of classical spacetimes). Collineation vector fields,
in general, enable physicists to portray the geometry of a space-
time [8-10]. The presence of a non-trivial collineation vector field
on a spacetime is sufficient to guarantee some kind of symme-
try. Vector fields which preserve a certain feature or quantity of a
spacetime along their local flow lines are called collineations. The
Lie derivative of aforesaid feature or quantity vanishes in direction
of a collineation vector field. The most important collineations are
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those preserving metric, curvature and Ricci curvature by virtue
of their essential role in general relativity. An extensive work has
been done in the last two decades studying collineations and their
generalizations on classical 4—dimensional spacetimes.

The main purpose of this work is to study and explore some
collineation vector fields on f-associated standard static space-
times. Many answers are given to the following questions: Un-
der what condition(s) is a vector field on an f-—associated stan-
dard static spacetime a certain collineation or a conformal vec-
tor field? What does the base factor submanifold M inherit
from an f-associated standard static spacetime Irx M admitting
a collineation or a conformal vector field? Ricci soliton structures
on f— associated standard static spacetimes admitting a potential
conformal vector field are considered.

The distribution of this article is as follows. In Section 2, the
basic definitions and related formulas of both f—associated stan-
dard static spacetimes and collineation vector fields are consid-
ered. Section3 carries a study of collineation vector fields on
f—associated standard static spacetimes. Finally, we study Ricci
soliton structures on f—associated standard static spacetimes ad-
mitting conformal vector fields in Section4.

2. Preliminaries

A standard static spacetime (also called f—associated SSST) is
a Lorentzian warped product manifold M = Iy x M furnished with
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the metric § = — f2dt2 @ g, where (M, g) is a Riemannian manifold,
fi: M— (0, oo) is smooth and I = (t1, t;) with —oo <t; < t; < co. We
use the same notation for a vector field X € X(M) and for its lift
to the f—associated SSST M. Likewise, a function w on M will be
identified with wom on M, where 7: I x M— M is the natural pro-
jection map of I x M onto M. Note that we use gradw € X(M) for
the gradient vector field of w on M and for its lift to 36(1\71) [2,3].
The submanifold {t} x M and M are isomorphic for every te M. Ac-
cordingly, we refer to this factor submanifold as M.

Let M = Iy x M be a standard static spacetime equipped with
the metric tensor & = —f2dt? @ g. Then the Levi-Civita connection
D on M is given by

Da, 0 = fegradf @arx = Dxd; = X(In f)d;

DxY = DxY 2D

for any vector fields X,Y € X(M), where D is the Levi-Civita con-
nection on M. The Riemannian curvature tensor R is given by

R(d;. 3)d = R(d. 3)X =R(X,Y)d; =0
R(3.. X)Y = 1H/ (X, Y)d;
R(X.Y)Z=R(X.Y)Z,

R(X, 8;)0; = —fDxgradf

(2.2)

where R is the curvature tensor of M and H/ (X, Y) = g(Dxgradf,Y)
is the Hessian of f. Finally, the Ricci curvature tensor, Ric, of the
f— associated SSST M is as follows

Ric(d;, 0;) = fAf Ric(X, ;) =0
Ric(X,Y) =Ric(X,Y) — }Hf(X, Y),

(2.3)
where Af denotes the Laplacian of f on M.
The Lie derivative £, in direction of ¢ is given by
(:8)(X.Y) = g(Dx{.Y) +g(X. Dy¢) (24)

for any X, Y € x(M).

Now, we will recall the definitions of conformal vector fields
and some collineations on an arbitrary pseudo-Riemannian man-
ifold (M, g D) with metric g and the Levi-Civita connection D
on M. A vector field ¢ € X(M) is called a conformal vector field
if £,g= pg for some smooth function p:M — R, where £; is
the Lie derivative in direction of ¢. In particular, { € X(M) is
called homothetic if p is constant and Killing if o = 0. The sym-
metry of Eq. (2.4) implies that ¢ is a Killing vector field if and
only if g(Dx¢,X) =0 for any vector field X € X(M). A pseudo-
Riemannian n— dimensional manifold has at most n(n+1)/2 in-
dependent Killing vector fields and at most (n+1)(n+2)/2 in-
dependent conformal vector fields. The symmetry generated by a
Killing vector field ¢ on M is called isometry. A pseudo-Riemannian
manifold which permits a maximum aforementioned symmetry
has a constant curvature. Also, ¢ is called a concircular vector
field if Dx¢ = pX for any X € X(M)[11]. A concircular vector field
¢ € X(M) on M is a conformal vector field with conformal factor
2p . A concircular vector field is also a parallel vector field if p = 0.
Moreover, for a constant factor p, we have R(X,Y)¢ = 0. A vector
field ¢ on a pseudo-Riemannian manifold (M, g) is called a cur-
vature collineation if the Lie derivative of the curvature tensor R
vanishes in the direction of { € X(M), that is, £,R = 0. Similarly,
M is said to admit a Ricci curvature collineation if there is a vec-
tor field ¢ € X(M) such that £, Ric = 0, where Ric is the Ricci cur-
vature tensor. One may notice that every Killing field is a curva-
ture collineation and every curvature collineation is a Ricci curva-
ture collineation. The converse is not generally true. A vector field
¢ € X(M) is called a conformal Ricci collineation if

(L Ric)(X,Y) = pg(X.Y)

for some smooth function p on M. Finally, a spacetime M is said
to admit a matter collineation if there is a vector field ¢ € X(M)
such that £, T =0, where T is the energy-momentum tensor. For
(n+1)— dimensional spacetime, the Einstein field equation is
given by
r

2
where k; is called the multidimensional gravitational constant, r is
the scalar curvature and A is the cosmological constant [12]. Sup-
pose that ¢ is a Killing vector field, then £,T = 0, i.e., { is a matter
collineation field. Note that a matter collineation is not necessarily
Killing.

Ric — =g = k,T,

3. Symmetries of a standard static spacetime

In this section, we explore several types of collineations on an
f— associated SSST 1\71:If x M equipped with the metric tensor
g= —f2dt? @ g. Necessary and sufficient conditions are derived for
a standard static spacetime to admit a conformal vector field or a
collineation.

3.1. Conformal vector fields

Assume that hog, x0¢, yor € X(I) and ¢,X,Y € X(M), then
(£:8)(X.7) = (Lc8) (X.Y) — 2xyf2(h+ ¢ (In ). (3.1)

where 7 =hd; +¢, X=x0+X and Y =yd +Y. This formula
(3.1) is a particular case of a notable one on warped product man-
ifolds. The following result yields immediately from Eq. (3.1).

Theorem 1. Let M =1 ¢ x M be a standard static spacetime equipped
with the metric tensor § = —f2dt? @ g Then a time-like vector field
¢ =hd; € X(M) is a Killing vector field on M if and only if h = 0.
Moreover, assume that ¢ (f) = 0. Then a space-like vector field { = ¢
on M is Killing if and only if ¢ € (M) is a Killing vector field on M.

Corollary 1. Let M =1 ¢ x M be a standard static spacetime equipped
with the metric tensor g = —f2dt? @ g. Then a time-like vector field

¢ =hd e X(M) is a matter collineation on M if h = 0. Also, a space-
like vector field ¢ = ¢ € X(M) is a matter collineation on M if ¢ €
X (M) is a Killing vector field on M and ¢ (f) = 0.

Theorem 2. A vector field ¢ = hd; + ¢ on a standard static spacetime
M = I; x M is a conformal vector field if and only if ¢ is a conformal

vector field on M with conformal factor p = Z(h +¢(nf)).

Proof. Let { = hd; + ¢ be a conformal vector field on M = I xM
with factor p, then Eq. (3.1) implies that

—pfxy + pEX.Y) = (Lc8)(X.Y) = 2xyf2(h+ £ (In f)).
Thus
(£:8)(X.Y) = pg(X.Y)

—pfxy = 72xyf2(l'1 +¢(n f))

and consequently ¢ is a conformal vector field on M with confor-
mal factor 5 = 2(h+ ¢ (In f)). The converse is direct. O

It is noted that the metric §=—f2dt2@® g on M can be ex-
pressed as a conformal metric to a product one on [ x M. The met-
ric g may be rewritten as follows

g=1(-dc+ %g) e

where §=—dt?+§ and §= fl—zg. Now, we examine the effects
of replacing ¢ on M by §=—dt?+§. Similar discussions on
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4—dimensional spacetimes and on some warped spacetimes are
provided in [7, Chapter 11] and [13,14] respectively. Suppose that
¢ =hd +¢ is a conformal vector field on (M, g) with conformal
factor p, then

L;g=1[2¢(Inf)+plg.

Thus, ¢ is a conformal vector field on (M,g) with factor p =
p+2¢ (In f). Likewise, a conformal vector field ¢ on (M, g) with
conformal factor p is a conformal vector field on (M,g), where
p = p+2¢(Inf). The above discussions and results in [15, Theo-
rem 1] imply the following.

Theorem 3. Let M =1 + x M be a standard static spacetime equipped

with the metric tensor § = —f2dt> @ g and let §= —dt2 + & and § =
;—zg. Then,

1. a Killing vector field ¢ on (M, §) is a Killing vector field on (M, §),

2. (M. &) admits a homothetic vector field if and only if (M. §) ad-
mits a homothetic vector field,

3. each conformal vector field on (M, g) is a conformal vector field

on (M, ).
The following result is a direct consequence of the above result.

Theorem 4. Let ¢ € X(M) be a homothetic vector field on (M, g) with
factor ¢ and let ¢ (f) = 0. Then ¢ = c(at + b)d; + 2a¢ is a homothetic
vector field on (M g) with factor 2ac . Moreover, ¢ is a Killing vector

field on (M, g) ifa=0 or c=0.

The study of Killing vector fields of constant length is re-
markable in that they correspond to isometries of constant dis-
placement. Consequently, these vector fields are in relation with
Clifford-Wolf translation in Riemannian manifolds [16]. In the fol-

lowing, Killing vector fields of constant length on a standard static
spacetime M = I x M are considered.

Theorem 5. A Killing vector field ¢ =hd; +¢ on a standard static
spacetime M = Iz x M has a constant length if and only if ¢ satisfies

D ¢ +h?fgradf = 0 and hir+ 2h¢ (Inf) = 0 (3.2)

Corollary 2. Let { =hd;+¢ be a Killing vector field of constant
length on a standard static spacetime M = I x M. Then the flow lines
of ¢ are geodesics on M if and only if f is constant or h = 0.

Theorem 6. Let g_ = ho; + ¢ be a Killing vector field on a standard
static spacetime M = Iy x M, where f is constant, and let a(s), s € R,

be a geodesic on (M, §) with tangent vector field X = x9; + X. Then
h is constant and ¢ € X(M) is a Jacobi vector field along the integral
curves of X.

Theorem 7. Let E = ho; + ¢ be a conformal vector field along a curve
a(s) with unit tangent vector U = ud; + U on a standard static space-
time M = Iy x M. Then the conformal factor p ofg’ is given by

p =2[-u?(hf? + f£ () + 8Dyt . U)].

Now, the structure of concircular vector fields on a standard
static spacetimes is considered.
Theorem 8. A vector field ¢ e %(M) on a standard static spacetime
M =1y x M is a concircular vector field if and only if ¢ is a concircu-
lar vector field on M with factor p = h and f is constant.

Proof. It is clear that
Dyt = (xh+hX(In f) +x¢ (In f))d; + xhfgrad f + Dx¢

for any vector field X = xd; + X € 36( ) Suppose that f is constant
and ¢ is a concircular vector field on M with factor p = h, then
Dxé' = p)_(,

ie, ¢ = ho 4 ¢ is a concircular vector field on a standard static
spacetime M = Iy x M.
Conversely, we assume that p is a scalar function. Then

Dy¢ — pX = (xh+hX(lnf) +x¢(Inf) —xp)d
+xhfgradf + Dx¢ — pX

for any vector field X = x3; + X ¢ x( ) Suppose that ;“ is concir-
cular on M, then

xh+hX(In f) +x¢ (In f) —xp = 0,
xhfgradf +Dx¢ — pX = 0.
If f is constant, we get that
x(h— p) =0,
Dx¢ — pX =0,
i.e., ¢ is a concircular vector field on M with factor p = h. O

3.2. Ricci collineations

Let us consider Ricci collineations on a standard static space-
time.

Proposition 1. Let ¢ = hd; + ¢ be a vector field on a standard static
spacetime M = I x M, then

(£¢Ric) (X, Y) = (£cRic) (X, Y) + (2xyh) fAf +xy¢ (fAf)
~¢(FHC )+ H (6 XLY )+ HU [ YD)

for any X, Y € x(M).
Proof. Let { = ho; + ¢ € X(M) , then

(Z:Ric) (. V) = £ (Ric(X. ¥)) — Ric([¢.X].¥) - Ric(X. [, 7])

- E(Rlc(x Y)— 7Hf(x Y)+xyfAf> +2(xyh) faf

—Ric(X.[¢.Y]) + %Hf(X, [£.YD

1os
fH ([¢.X1],Y)

= (L¢Ric)(X,Y) + (2xyh)fAf+xy§(fAf)
f f f
§<fH X, Y)>+fH (¢.X], Y)+fH X.[¢.Y]D

—Ric([¢,X],Y) +

for any vector fields X,Y € x(M). O
The above proposition leads directly to the following results.

Theorem 9. Let { = hd; e 36( ) be a vector field on a standard static
spacetime M = Iy x M. Then, ¢ is a Ricci collineation on M if and only
if h =0 or Af =0.

Theorem 10. Let { = ¢ < X(M) be a vector field on a standard static

spacetime M = If x M and assume that Hf = 0. Then, ¢ is a Ricci
collineation on M if and only if ¢ is a Ricci collineation on M.

4. Ricci soliton on standard static spacetimes

A smooth vector field ¢ on a pseudo-Riemannian manifold (M,
g) is said to define a Ricci soliton if

%(Qg) (X,Y) +Ric(X,Y) = Ag(X.Y),

where Ric is the Ricci curvature, £, denotes the Lie derivative
of the metric tensor g and A is a constant [17,18]. In this sec-
tion, we consider Ricci solitons on standard static spacetimes. Let
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(M.g.£. 1) be a Ricci soliton, where M = Iy x M is a standard static
spacetime and ¢ = hd; + ¢ € x(M). It is clear that a potential field
¢ is conformal on (M. g) if and only if (M. g) is an Einstein mani-
fold.

Theorem 11. Let (M, g, Z, %) be a Ricci soliton where M = I x M is
a standard static spacetime and { = hd; + ¢ € x(M) and assume that
Hf =0. Then (M, g ¢, A) is a Ricci soliton.

Proof. Let (1\71, Zc. A) be a Ricci soliton, then

E(ﬁég) (X.¥) +Ric(X.¥) = Ag(X. V).

where X = x0; + X and Y = yd; + Y are vector fields on M. By using
Egs. (3.1) and (2.3), we get

1 . 1
5(ch)(}<, Y) + Ric(X,Y) — TH X, Y) = Ag(X.Y).
Suppose now that Hf =0, then

1
2
Thus (M, g ¢, A) is a Ricci soliton. O

(£:8)(X.Y) +Ric(X.Y) = Ag(X. Y).

Let (M. ¢.1) be a Ricci soliton, where M =1y x M is a stan-
dard static spacetime and £ = hd; + ¢ ¢ %(M). Then

S (£:8) (X.¥) +Ric(X. 7) = 1§(X. V).

Thus
%(z:;g)(x, Y) +Ric(X,Y) — %Hf(x, Y) = Ag(X,Y), (4.1)
hf+¢(f)—of =Af. (4.2)

Suppose that gradf is a concircular vector field with factor p, then

1

5 (£:8) (6 Y) +Rie(X, V) = (A + ?)g(x, Y).

Theorem 12. Let (1\71, g fk) be a Ricci soliton, where M =1y x M
is a standard static spacetime, and assume that gradf is a concircu-

lar vector field with factor p. Then (M, g ¢, A+ ?) is a Ricci soliton

whenever % is constant.

Theorem 13. Let (1\71, g, ;:A) be a Ricci soliton, where M =1Ip x M
is a standard static spacetime, Hf =0 and { = hd; + ¢ € x(M) is a
conformal vector field on M with factor 2p. Then (M, g) is Ricci flat
and A = p.

Proof. Let (M.Z {.1) be a Ricci soliton where M=1I;x M is a
standard static spacetime and ¢ = hd; + ¢ e 36(1\71) be a conformal
vector field on M. Then

Ric(X, V) = 0. — p)&(X. 7)

and hence Af = — (A — p)f and

Ric(X,Y) — }Hf(X, Y)=(A-p)gXY).

Assuming that Hf = 0, we have Ric(X,Y)=0. O
Corollary 3. Let (M, g, Z, 1) be a Ricci soliton, where M = I x M is a

standard static spacetime, Hf = 0 and { = hd; + ¢ € x(M) is a Killing
vector field on M. Then (1\71, Zc, 1) is a steady Ricci soliton, ie., A = 0.

Corollary 4. Let (M, &, Z, 1) be a Ricci soliton, where M = Iy x M is a
standard static spacetime and ¢ = hd; + ¢ € X(M), and assume that
Hf =0 and (M, g) is Ricci flat. Then ¢ is conformal with factor 2.

Proof. Let (M. ¢..) be a Ricci soliton where M =1; x M is a
standard static spacetime and ¢ = hd; + ¢ € X(M). Then

SEDR.T) +RieR.¥) = 15K, V)

for any vector fields X, Y e x(M). Eqs. (2.3) imply that
(£:8) (X, V) =248(X.Y),

i.e, ¢ is a conformal vector field with factor 2A. O

Theorem 14. Let ¢ = hd; + ¢ € X(M) be a vector field on a standard
static spacetime M = Ir x M. Then (M. g, Z, A) is a Ricci soliton if

1. ¢ is a conformal vector field on M with conformal factor 2p,
2. (M, g) is Einstein manifold with factor u,

3. Hf =0,

4 h+¢(nfy=p+pu=A

Proof. Let { =hd;+¢ € x(M) , then Eqgs. (3.1) and (2.3) imply
that

S(Z:2)(R.¥) + Ric(R. ) = 1 (£c8) 0X.Y) + Rie(X.Y)

—xyf*(h+¢(nf))
+xyfAf — %Hf(X, Y).

Since ¢ is a conformal vector field with conformal factor 2, H =
0 and (M, g) is Einstein manifold with factor wu,

S(2:8) (R.¥) +Ric(X. V) = (0 + )X, ¥) ~xyf(h + £ (In f)).

The last condition implies that

1 Ny = oS S
j(ﬁfg) (X.¥) +Ric(X, V) = 2g(X.Y)
and the proof is complete. O

A similar discussion leads to the following result.

Theorem 15. Let ¢ = ho; + ¢ € X(M) be a vector field on a standard
static spacetime M = I x M. Then (M.Z.¢. 1) is a Ricci soliton if

1. (M, g ¢, A) is a Ricci soliton,
2. H =0,
3. h+¢(nf)=A.
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