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1. An introduction 

Warped product manifolds are extensively studied as a method

to generate general exact solutions to Einstein’s field equation

[1–3] . A standard static spacetime (also called f−associated SSST)

is often pictured in the form of a Lorentzian warped product man-

ifold I f × M [4,5] . An f− associated standard static spacetime is, to

some extent, a generalization of some well-known classical space-

times such as the Einstein static universe and Minkowski space-

time [1,6] . 

The study of spacetime symmetries is essential for solving Ein-

stein field equation and for providing further insight into conser-

vative laws of dynamical systems (see [7] an important reference

for symmetries of classical spacetimes). Collineation vector fields,

in general, enable physicists to portray the geometry of a space-

time [8–10] . The presence of a non-trivial collineation vector field

on a spacetime is sufficient to guarantee some kind of symme-

try. Vector fields which preserve a certain feature or quantity of a

spacetime along their local flow lines are called collineations. The

Lie derivative of aforesaid feature or quantity vanishes in direction

of a collineation vector field. The most important collineations are
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hose preserving metric, curvature and Ricci curvature by virtue

f their essential role in general relativity. An extensive work has

een done in the last two decades studying collineations and their

eneralizations on classical 4 −dimensional spacetimes. 

The main purpose of this work is to study and explore some

ollineation vector fields on f−associated standard static space-

imes. Many answers are given to the following questions: Un-

er what condition(s) is a vector field on an f−associated stan-

ard static spacetime a certain collineation or a conformal vec-

or field? What does the base factor submanifold M inherit

rom an f−associated standard static spacetime I f × M admitting

 collineation or a conformal vector field? Ricci soliton structures

n f− associated standard static spacetimes admitting a potential

onformal vector field are considered. 

The distribution of this article is as follows. In Section 2 , the

asic definitions and related formulas of both f−associated stan-

ard static spacetimes and collineation vector fields are consid-

red. Section 3 carries a study of collineation vector fields on

f−associated standard static spacetimes. Finally, we study Ricci

oliton structures on f−associated standard static spacetimes ad-

itting conformal vector fields in Section 4 . 

. Preliminaries 

A standard static spacetime (also called f−associated SSST) is

 Lorentzian warped product manifold M̄ = I f × M furnished with
. This is an open access article under the CC BY-NC-ND license. 
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he metric ḡ = − f 2 d t 2 � g, where ( M, g ) is a Riemannian manifold,

 : M → (0, ∞ ) is smooth and I = (t 1 , t 2 ) with −∞ ≤ t 1 < t 2 ≤ ∞ . We

se the same notation for a vector field X ∈ X (M) and for its lift

o the f−associated SSST M̄ . Likewise, a function ω on M will be

dentified with ω◦π on M̄ , where π : I f × M → M is the natural pro-

ection map of I × M onto M . Note that we use grad ω ∈ X (M) for

he gradient vector field of ω on M and for its lift to X 

(
M̄ 

)
[2,3] .

he submanifold { t } × M and M are isomorphic for every t ∈ M . Ac-

ordingly, we refer to this factor submanifold as M . 

Let M̄ = I f × M be a standard static spacetime equipped with

he metric tensor ḡ = − f 2 d t 2 � g. Then the Levi–Civita connection
¯
 on M̄ is given by 

D̄ ∂ t ∂ t = f grad f D̄ ∂ t X = D̄ X ∂ t = X ( ln f ) ∂ t 
D̄ X Y = D X Y 

(2.1) 

or any vector fields X, Y ∈ X (M) , where D is the Levi–Civita con-

ection on M . The Riemannian curvature tensor R̄ is given by 

R̄ ( ∂ t , ∂ t ) ∂ t = R̄ ( ∂ t , ∂ t ) X = R̄ ( X, Y ) ∂ t = 0 

R̄ ( X, ∂ t ) ∂ t = − f D X grad f R̄ ( ∂ t , X ) Y = 

1 
f 
H 

f ( X, Y ) ∂ t 

R̄ ( X, Y ) Z = R ( X, Y ) Z, 

(2.2) 

here R is the curvature tensor of M and H 

f ( X, Y ) = g ( D X grad f, Y )
s the Hessian of f . Finally, the Ricci curvature tensor, R̄ ic , of the

f− associated SSST M̄ is as follows 

R̄ ic ( ∂ t , ∂ t ) = f� f R̄ ic ( X, ∂ t ) = 0 

R̄ ic ( X, Y ) = Ric ( X, Y ) − 1 
f 
H 

f ( X, Y ) , 

(2.3) 

here � f denotes the Laplacian of f on M . 

The Lie derivative L ζ in direction of ζ is given by 

L ζ g 
)
(X, Y ) = g(D X ζ , Y ) + g(X, D Y ζ ) (2.4)

or any X, Y ∈ X ( M ) . 

Now, we will recall the definitions of conformal vector fields

nd some collineations on an arbitrary pseudo-Riemannian man-

fold ( M, g, D ) with metric g and the Levi-Civita connection D

n M . A vector field ζ ∈ X ( M ) is called a conformal vector field

f L ζ g = ρg for some smooth function ρ : M → R , where L ζ is

he Lie derivative in direction of ζ . In particular, ζ ∈ X ( M ) is

alled homothetic if ρ is constant and Killing if ρ = 0 . The sym-

etry of Eq. (2.4) implies that ζ is a Killing vector field if and

nly if g(D X ζ , X ) = 0 for any vector field X ∈ X ( M ) . A pseudo-

iemannian n − dimensional manifold has at most n ( n + 1 ) / 2 in-

ependent Killing vector fields and at most ( n + 1 ) ( n + 2 ) / 2 in-

ependent conformal vector fields. The symmetry generated by a

illing vector field ζ on M is called isometry. A pseudo-Riemannian

anifold which permits a maximum aforementioned symmetry

as a constant curvature. Also, ζ is called a concircular vector

eld if D X ζ = ρX for any X ∈ X ( M ) [11] . A concircular vector field

∈ X ( M ) on M is a conformal vector field with conformal factor

 ρ . A concircular vector field is also a parallel vector field if ρ = 0 .

oreover, for a constant factor ρ , we have R ( X, Y ) ζ = 0 . A vector

eld ζ on a pseudo-Riemannian manifold ( M, g ) is called a cur-

ature collineation if the Lie derivative of the curvature tensor R

anishes in the direction of ζ ∈ X ( M ) , that is, L ζ R = 0 . Similarly,

 is said to admit a Ricci curvature collineation if there is a vec-

or field ζ ∈ X ( M ) such that L ζ Ric = 0 , where Ric is the Ricci cur-

ature tensor. One may notice that every Killing field is a curva-

ure collineation and every curvature collineation is a Ricci curva-

ure collineation. The converse is not generally true. A vector field

∈ X ( M ) is called a conformal Ricci collineation if 

L ζ Ric 
)
( X, Y ) = ρg ( X, Y ) 
or some smooth function ρ on M . Finally, a spacetime M is said

o admit a matter collineation if there is a vector field ζ ∈ X ( M )
uch that L ζ T = 0 , where T is the energy-momentum tensor. For

( n + 1 ) − dimensional spacetime, the Einstein field equation is

iven by 

ic − r 

2 

g = k n T , 

here k n is called the multidimensional gravitational constant, r is

he scalar curvature and λ is the cosmological constant [12] . Sup-

ose that ζ is a Killing vector field, then L ζ T = 0 , i.e., ζ is a matter

ollineation field. Note that a matter collineation is not necessarily

illing. 

. Symmetries of a standard static spacetime 

In this section, we explore several types of collineations on an

f− associated SSST M̄ = I f × M equipped with the metric tensor

¯ = − f 2 d t 2 � g. Necessary and sufficient conditions are derived for

 standard static spacetime to admit a conformal vector field or a

ollineation. 

.1. Conformal vector fields 

Assume that h∂ t , x∂ t , y∂ t ∈ X (I) and ζ , X, Y ∈ X (M) , then 

L̄ ζ̄ ḡ 
)(

X̄ , Ȳ 
)

= 

(
L ζ g 

)
( X, Y ) − 2 xy f 2 

(
˙ h + ζ ( ln f ) 

)
, (3.1) 

here ζ̄ = h∂ t + ζ , X̄ = x∂ t + X and Ȳ = y∂ t + Y . This formula

3.1) is a particular case of a notable one on warped product man-

folds. The following result yields immediately from Eq. (3.1) . 

heorem 1. Let M̄ = I f × M be a standard static spacetime equipped

ith the metric tensor ḡ = − f 2 d t 2 � g. Then a time-like vector field
¯ = h∂ t ∈ X ( M̄ ) is a Killing vector field on M̄ if and only if ˙ h = 0 .

oreover, assume that ζ ( f ) = 0 . Then a space-like vector field ζ̄ = ζ
n M̄ is Killing if and only if ζ ∈ X (M) is a Killing vector field on M. 

orollary 1. Let M̄ = I f × M be a standard static spacetime equipped

ith the metric tensor ḡ = − f 2 d t 2 � g. Then a time-like vector field
¯ = h∂ t ∈ X ( M̄ ) is a matter collineation on M̄ if ˙ h = 0 . Also, a space-

ike vector field ζ̄ = ζ ∈ X ( M̄ ) is a matter collineation on M̄ if ζ ∈
 (M) is a Killing vector field on M and ζ ( f ) = 0 . 

heorem 2. A vector field ζ̄ = h∂ t + ζ on a standard static spacetime
¯
 = I f × M is a conformal vector field if and only if ζ is a conformal

ector field on M with conformal factor ρ̄ = 2 
(

˙ h + ζ ( ln f ) 
)
. 

roof. Let ζ̄ = h∂ t + ζ be a conformal vector field on M̄ = I f × M

ith factor ρ̄, then Eq. (3.1) implies that 

ρ̄ f 2 xy + ρ̄g ( X, Y ) = 

(
L ζ g 

)
( X, Y ) − 2 xy f 2 

(
˙ h + ζ ( ln f ) 

)
. 

hus 

L ζ g 
)
( X, Y ) = ρ̄g ( X, Y ) 

−ρ̄ f 2 xy = −2 xy f 2 
(

˙ h + ζ ( ln f ) 
)

nd consequently ζ is a conformal vector field on M with confor-

al factor ρ̄ = 2 
(

˙ h + ζ ( ln f ) 
)
. The converse is direct. �

It is noted that the metric ḡ = − f 2 d t 2 � g on M̄ can be ex-

ressed as a conformal metric to a product one on I × M . The met-

ic ḡ may be rewritten as follows 

¯
 = f 2 

(
−d t 2 + 

1 

f 2 
g 

)
= f 2 ˜ g , 

here ˜ g = −d t 2 + ̂  g and ˆ g = 

1 
f 2 

g. Now, we examine the effects

f replacing ḡ on M by ˜ g = −d t 2 + ̂  g . Similar discussions on
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4 −dimensional spacetimes and on some warped spacetimes are

provided in [7, Chapter 11] and [13,14] respectively. Suppose that

ζ̄ = h∂ t + ζ is a conformal vector field on 

(
M̄ , ̃  g 

)
with conformal

factor ˜ ρ, then 

L̄ ζ̄ ḡ = [ 2 ζ ( ln f ) + ˜ ρ] ̄g . 

Thus, ζ̄ is a conformal vector field on 

(
M̄ , ̄g 

)
with factor ρ̄ =

˜ ρ+ 2 ζ ( ln f ) . Likewise, a conformal vector field ζ on ( M, g ) with

conformal factor ρ is a conformal vector field on ( M, ̄g ) , where

ρ = ˆ ρ + 2 ζ ( ln f ) . The above discussions and results in [15, Theo-

rem 1] imply the following. 

Theorem 3. Let M̄ = I f × M be a standard static spacetime equipped

with the metric tensor ḡ = − f 2 d t 2 � g and let ˜ g = −d t 2 + ̂  g and ˆ g =
1 
f 2 

g. Then, 

1. a Killing vector field ζ on 
(
M, ̂  g 

)
is a Killing vector field on 

(
M̄ , ̃  g 

)
,

2. 
(
M̄ , ̃  g 

)
admits a homothetic vector field if and only if 

(
M, ̂  g 

)
ad-

mits a homothetic vector field, 

3. each conformal vector field on 
(
M̄ , ̃  g 

)
is a conformal vector field

on 
(
M̄ , ̄g 

)
. 

The following result is a direct consequence of the above result.

Theorem 4. Let ζ ∈ X ( M ) be a homothetic vector field on ( M, g ) with

factor c and let ζ ( f ) = 0 . Then ζ̄ = c ( at + b ) ∂ t + 2 aζ is a homothetic

vector field on 
(
M̄ , ̄g 

)
with factor 2 ac . Moreover, ζ̄ is a Killing vector

field on 
(
M̄ , ̄g 

)
if a = 0 or c = 0 . 

The study of Killing vector fields of constant length is re-

markable in that they correspond to isometries of constant dis-

placement. Consequently, these vector fields are in relation with

Clifford-Wolf translation in Riemannian manifolds [16] . In the fol-

lowing, Killing vector fields of constant length on a standard static

spacetime M̄ = I f × M are considered. 

Theorem 5. A Killing vector field ζ̄ = h∂ t + ζ on a standard static

spacetime M̄ = I f × M has a constant length if and only if ζ satisfies

D ζ ζ + h 

2 f grad f = 0 and h ̇

 h + 2 hζ ( ln f ) = 0 . (3.2)

Corollary 2. Let ζ̄ = h∂ t + ζ be a Killing vector field of constant

length on a standard static spacetime M̄ = I f × M. Then the flow lines

of ζ are geodesics on M if and only if f is constant or h = 0 . 

Theorem 6. Let ζ̄ = h∂ t + ζ be a Killing vector field on a standard

static spacetime M̄ = I f × M, where f is constant, and let α( s ), s ∈ R ,

be a geodesic on ( M̄ , ̄g ) with tangent vector field X̄ = x∂ t + X. Then

h is constant and ζ ∈ X ( M ) is a Jacobi vector field along the integral

curves of X. 

Theorem 7. Let ζ̄ = h∂ t + ζ be a conformal vector field along a curve

α( s ) with unit tangent vector Ū = u∂ t + U on a standard static space-

time M̄ = I f × M. Then the conformal factor ρ̄ of ζ̄ is given by 

ρ̄ = 2 

[
−u 

2 
(

˙ h f 2 + f ζ ( f ) 
)

+ g ( D U ζ , U ) 
]
. 

Now, the structure of concircular vector fields on a standard

static spacetimes is considered. 

Theorem 8. A vector field ζ̄ ∈ X 

(
M̄ 

)
on a standard static spacetime

M̄ = I f × M is a concircular vector field if and only if ζ is a concircu-

lar vector field on M with factor ρ = 

˙ h and f is constant. 

Proof. It is clear that 

D̄ X̄ ζ̄ = 

(
x ̇ h + hX ( ln f ) + xζ ( ln f ) 

)
∂ t + xh f grad f + D X ζ

for any vector field X̄ = x∂ t + X ∈ X 

(
M̄ 

)
. Suppose that f is constant

and ζ is a concircular vector field on M with factor ρ = 

˙ h , then 

D̄ ¯ ζ̄ = ρX̄ , 
X 
.e., ζ̄ = h∂ t + ζ is a concircular vector field on a standard static

pacetime M̄ = I f × M. 

Conversely, we assume that ρ is a scalar function. Then 

¯
 X̄ ζ̄ − ρX̄ = 

(
x ̇ h + hX ( ln f ) + xζ ( ln f ) − xρ

)
∂ t 

+ xh f grad f + D X ζ − ρX 

or any vector field X̄ = x∂ t + X ∈ X 

(
M̄ 

)
. Suppose that ζ̄ is concir-

ular on M̄ , then 

 ̇

 h + hX ( ln f ) + xζ ( ln f ) − xρ = 0 , 

xh f grad f + D X ζ − ρX = 0 . 

f f is constant, we get that 

x 
(

˙ h − ρ
)

= 0 , 

 X ζ − ρX = 0 , 

.e., ζ is a concircular vector field on M with factor ρ = 

˙ h . �

.2. Ricci collineations 

Let us consider Ricci collineations on a standard static space-

ime. 

roposition 1. Let ζ̄ = h∂ t + ζ be a vector field on a standard static

pacetime M̄ = I f × M, then 

L̄ ζ̄ R̄ ic 
)(

X̄ , Ȳ 
)

= 

(
L ζ Ric 

)
( X, Y ) + 

(
2 xy ̇ h 

)
f � f + xyζ ( f � f ) 

−ζ
(

1 

f 
H 

f ( X, Y ) 

)
+ 

1 

f 
H 

f ( [ ζ , X ] , Y ) + 

1 

f 
H 

f ( X, [ ζ , Y ] )

or any X̄ , ̄Y ∈ X ( M̄ ) . 

roof. Let ζ̄ = h∂ t + ζ ∈ X 

(
M̄ 

)
, then 

L̄ ζ̄ R̄ ic 
)(

X̄ , Ȳ 
)

= ζ̄
(
R̄ ic 

(
X̄ , Ȳ 

))
− R̄ ic 

([
ζ̄ , X̄ 

]
, Ȳ 

)
− R̄ ic 

(
X̄ , 

[
ζ̄ , Ȳ 

])

= ζ̄
(

Ric ( X, Y ) − 1 

f 
H 

f ( X, Y ) + xy f � f 

)
+ 2 

(
xy ̇ h 

)
f� f

−Ric ( X, [ ζ , Y ] ) + 

1 

f 
H 

f ( X, [ ζ , Y ] ) 

−Ric ( [ ζ , X ] , Y ) + 

1 

f 
H 

f ( [ ζ , X ] , Y ) 

= 

(
L ζ Ric 

)
( X, Y ) + 

(
2 xy ̇ h 

)
f � f + xyζ ( f � f ) 

−ζ
(

1 

f 
H 

f ( X, Y ) 

)
+ 

1 

f 
H 

f ( [ ζ , X ] , Y ) + 

1 

f 
H 

f ( X, [ ζ , Y ] )

or any vector fields X̄ , ̄Y ∈ X ( M̄ ) . �

The above proposition leads directly to the following results. 

heorem 9. Let ζ̄ = h∂ t ∈ X 

(
M̄ 

)
be a vector field on a standard static

pacetime M̄ = I f × M. Then, ζ̄ is a Ricci collineation on M̄ if and only

f ˙ h = 0 or � f = 0 . 

heorem 10. Let ζ̄ = ζ ∈ X 

(
M̄ 

)
be a vector field on a standard static

pacetime M̄ = I f × M and assume that H 

f = 0 . Then, ζ̄ is a Ricci

ollineation on M̄ if and only if ζ is a Ricci collineation on M. 

. Ricci soliton on standard static spacetimes 

A smooth vector field ζ on a pseudo-Riemannian manifold ( M,

 ) is said to define a Ricci soliton if 

1 

2 

(
L ζ g 

)
( X, Y ) + Ric ( X, Y ) = λg ( X, Y ) , 

here Ric is the Ricci curvature, L ζ denotes the Lie derivative

f the metric tensor g and λ is a constant [17,18] . In this sec-

ion, we consider Ricci solitons on standard static spacetimes. Let
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M̄ , ̄g , ζ̄ , λ
)

be a Ricci soliton, where M̄ = I f × M is a standard static

pacetime and ζ̄ = h∂ t + ζ ∈ X 

(
M̄ 

)
. It is clear that a potential field

¯ is conformal on 

(
M̄ , ̄g 

)
if and only if 

(
M̄ , ̄g 

)
is an Einstein mani-

old. 

heorem 11. Let 
(
M̄ , ̄g , ζ̄ , λ

)
be a Ricci soliton where M̄ = I f × M is

 standard static spacetime and ζ̄ = h∂ t + ζ ∈ X 

(
M̄ 

)
and assume that

 

f = 0 . Then ( M, g, ζ , λ) is a Ricci soliton. 

roof. Let 
(
M̄ , ̄g , ζ̄ , λ

)
be a Ricci soliton, then 

1 

2 

(
L̄ ζ̄ ḡ 

)(
X̄ , Ȳ 

)
+ R̄ ic 

(
X̄ , Ȳ 

)
= λḡ 

(
X̄ , Ȳ 

)
, 

here X̄ = x∂ t + X and Ȳ = y∂ t + Y are vector fields on M̄ . By using

qs. (3.1) and (2.3) , we get 

1 

2 

(
L ζ g 

)
(X, Y ) + Ric ( X, Y ) − 1 

f 
H 

f ( X, Y ) = λg ( X, Y ) . 

uppose now that H 

f = 0 , then 

1 

2 

(
L ζ g 

)
(X, Y ) + Ric ( X, Y ) = λg ( X, Y ) . 

hus ( M, g, ζ , λ) is a Ricci soliton. �

Let 
(
M̄ , ̄g , ζ̄ , λ

)
be a Ricci soliton, where M̄ = I f × M is a stan-

ard static spacetime and ζ̄ = h∂ t + ζ ∈ X 

(
M̄ 

)
. Then 

1 

2 

(
L̄ ζ̄ ḡ 

)(
X̄ , Ȳ 

)
+ R̄ ic 

(
X̄ , Ȳ 

)
= λḡ 

(
X̄ , Ȳ 

)
. 

hus 

1 

2 

(
L ζ g 

)
(X, Y ) + Ric ( X, Y ) − 1 

f 
H 

f ( X, Y ) = λg ( X, Y ) , (4.1) 

˙ 
 f + ζ ( f ) − � f = λ f . (4.2) 

uppose that grad f is a concircular vector field with factor ρ , then 

1 

2 

(
L ζ g 

)
(X, Y ) + Ric ( X, Y ) = 

(
λ + 

ρ

f 

)
g ( X, Y ) . 

heorem 12. Let 
(
M̄ , ̄g , ζ̄ , λ

)
be a Ricci soliton, where M̄ = I f × M

s a standard static spacetime, and assume that grad f is a concircu-

ar vector field with factor ρ . Then 

(
M, g, ζ , λ + 

ρ
f 

)
is a Ricci soliton

henever ρ
f 

is constant. 

heorem 13. Let 
(
M̄ , ̄g , ζ̄ , λ

)
be a Ricci soliton, where M̄ = I f × M

s a standard static spacetime, H 

f = 0 and ζ̄ = h∂ t + ζ ∈ X 

(
M̄ 

)
is a

onformal vector field on M̄ with factor 2 ρ . Then ( M, g ) is Ricci flat

nd λ = ρ . 

roof. Let 
(
M̄ , ̄g , ζ̄ , λ

)
be a Ricci soliton where M̄ = I f × M is a

tandard static spacetime and ζ̄ = h∂ t + ζ ∈ X 

(
M̄ 

)
be a conformal

ector field on M̄ . Then 

¯
 ic 
(
X̄ , Ȳ 

)
= ( λ − ρ) ̄g 

(
X̄ , Ȳ 

)

nd hence � f = −( λ − ρ) f and 

ic ( X, Y ) − 1 

f 
H 

f ( X, Y ) = ( λ − ρ) g ( X, Y ) . 

ssuming that H 

f = 0 , we have Ric ( X, Y ) = 0 . �

orollary 3. Let 
(
M̄ , ̄g , ζ̄ , λ

)
be a Ricci soliton, where M̄ = I f × M is a

tandard static spacetime, H 

f = 0 and ζ̄ = h∂ t + ζ ∈ X 

(
M̄ 

)
is a Killing

ector field on M̄ . Then 
(
M̄ , ̄g , ζ̄ , λ

)
is a steady Ricci soliton, i.e., λ = 0 .
orollary 4. Let 
(
M̄ , ̄g , ζ̄ , λ

)
be a Ricci soliton, where M̄ = I f × M is a

tandard static spacetime and ζ̄ = h∂ t + ζ ∈ X 

(
M̄ 

)
, and assume that

 

f = 0 and ( M, g ) is Ricci flat. Then ζ̄ is conformal with factor 2 λ. 

roof. Let ( M̄ , ̄g , ζ̄ , λ) be a Ricci soliton where M̄ = I f × M is a

tandard static spacetime and ζ̄ = h∂ t + ζ ∈ X ( M̄ ) . Then 

1 

2 

( L̄ ζ̄ ḡ )( ̄X , Ȳ ) + R̄ ic ( ̄X , Ȳ ) = λḡ ( ̄X , Ȳ ) 

or any vector fields X̄ , ̄Y ∈ X 

(
M̄ 

)
. Eqs. (2.3) imply that 

L̄ ζ̄ ḡ 
)(

X̄ , Ȳ 
)

= 2 λḡ 
(
X̄ , Ȳ 

)
, 

.e., ζ̄ is a conformal vector field with factor 2 λ. �

heorem 14. Let ζ̄ = h∂ t + ζ ∈ X 

(
M̄ 

)
be a vector field on a standard

tatic spacetime M̄ = I f × M. Then 
(
M̄ , ̄g , ζ̄ , λ

)
is a Ricci soliton if 

1. ζ is a conformal vector field on M with conformal factor 2 ρ , 

2. ( M, g ) is Einstein manifold with factor μ, 

3. H 

f = 0 , 

4. ˙ h + ζ ( ln f ) = ρ + μ = λ. 

roof. Let ζ̄ = h∂ t + ζ ∈ X 

(
M̄ 

)
, then Eqs. (3.1) and (2.3) imply

hat 

1 

2 

(
L̄ ζ̄ ḡ 

)(
X̄ , Ȳ 

)
+ R̄ ic 

(
X̄ , Ȳ 

)
= 

1 

2 

(
L ζ g 

)
( X, Y ) + Ric ( X, Y ) 

− xy f 2 
(

˙ h + ζ ( ln f ) 
)

+ xy f� f − 1 

f 
H 

f ( X, Y ) . 

ince ζ is a conformal vector field with conformal factor 2 ρ , H 

f =
 and ( M, g ) is Einstein manifold with factor μ, 

1 

2 

(
L̄ ζ̄ ḡ 

)(
X̄ , Ȳ 

)
+ R̄ ic 

(
X̄ , Ȳ 

)
= ( ρ + μ) g ( X, Y ) − xy f 2 

(
˙ h + ζ ( ln f ) 

)
. 

he last condition implies that 

1 

2 

(
L ζ̄ ḡ 

)(
X̄ , Ȳ 

)
+ R̄ ic 

(
X̄ , Ȳ 

)
= λḡ 

(
X̄ , Ȳ 

)

nd the proof is complete. �

A similar discussion leads to the following result. 

heorem 15. Let ζ̄ = h∂ t + ζ ∈ X 

(
M̄ 

)
be a vector field on a standard

tatic spacetime M̄ = I f × M. Then 
(
M̄ , ̄g , ζ̄ , λ

)
is a Ricci soliton if 

1. ( M, g, ζ , λ) is a Ricci soliton, 

2. H 

f = 0 , 

3. ˙ h + ζ ( ln f ) = λ. 
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