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a b s t r a c t 

Topological Data Analysis is an emerging field at the intersection of algebraic topology and statistical in- 

ference aimed at describing the shapes objects represented as point cloud data in the multidimensional 

space. Since the range of applications of shape analysis is enormous, new tests have given birth to the 

field of TDA. In this habilitation study three TDA-oriented tests are discussed. A new test based on met- 

ric functions is proposed. A small simulation study among the preceding tests has been employed via 

Monte Carlo simulation. All the mentioned tests in the vignette are activated by real world data within 

educational field. 
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1. Introduction 

In a wide variety of disciplines, it is of great practical impor-

tance to measure, sketch and compare the shapes between dif-

ferent objects. Dryden and Mardia [1] defined the shapes of cer-

tain objects as all the geometric information that remains when

location, scale and rotational effects are filtered out. If the size in-

formation is also of interest, then the scale will be omitted from

the definition. Here the size of the information will be taken into

consideration. In other words, we can claim that two objects have

the same shape if by the translation, shifting or rotation opera-

tions the two objects will coincided, see [2] . The fundamental field

concerning with studying the geometric properties of the objects

is topology. Indeed, topology has been present in mathematics for

quite a long time without anticipating applications to real-world

applications until the beginning of this century. As, Carlsson in

[3] proposed his survey article which produced another new area

of research known as computational topology that enables the re-

searchers to extract the quantitative and qualitative information

that describe the point cloud data’s shapes. 

Computational topology is a set of algorithmic methods devel-

oped to understand topological invariants such as loops and holes

in high-dimensional data sets. The specialized approach that em-

ploys the statistical tools to compute and analyze the topological

features is called TDA. Generally speaking, TDA refers to a collec-
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ion of methods and tools that enable the researchers for finding

nd studying the topological invariants structure in data. The input

f these procedures typically takes the form of a point cloud data

hich is usually represented as a large finite dataset sampled from

 geometrical object in a n-dimensional metric space, possibly with

ome noise. The output is a collection of data summaries and dia-

rams that are used to estimate the statistical features of the data.

esnick [4] divided TDA tools into two parts: the first one is the

escriptors TDA which are the procedures that aim at describing,

ummarizing, discovering, and visualizing point cloud data. How-

ver, the second is TDA inference which uses the probability the-

ry to investigate or test the statistical features of the sample data

e.g. mean, variance…etc.). 

In the last few years, community topology has witnessed im-

ortant progress in supporting complex data analysis. In conse-

uence, TDA plays a crucial role in a variety of different fields

ange from industry [5] shape classification Chazal et al. in [6,

] , clustering and histology images for breast cancer analysis [8] .

n addition, TDA has received recently much attention by statis-

icians which gives a birth to a competitor approach in the data

ining. For instance, Singh et al in [9] proposed a new classifi-

ation tool based on simplicial complexes figures called Mapper,

ent et al. in [10] introduced k-tree level sets which can be uti-

ized in the classification and comparison purposes, Turner [11] de-

ned the means and medians for the persistent homology dia-

rams, from [12] derived confidence band for the persistence dia-

ram that allows us to separate topological signal from topological

oise, Chazal in [13] proposed sub-sampling methods for analyzing

he shape of sets and functions from point cloud data in the case

f the sample is too large. 
. This is an open access article under the CC BY-NC-ND license. 
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1 The optimum column means that the column that has least distance. 
The major motivation beyond the present study is to provide a

eview for the three tests based on TDA using for testing the simi-

arities between the objects. Further, propose a new test based on

etric functions can be employed for the same purpose. In ad-

ition, conducting a power comparison study between the tests

ased on TDA and the proposed tests a benchmarking test. This

rticle is structured as follows: the next section will give a snap-

hot of TDA tools. The third section includes all the tests that can

e employed for testing the closeness between the objects. The fol-

owed section is devoted for the Monte Carlo results. The final sec-

ion presents the results concerned to the real life applications. 

. Topological Data Analysis 

The general framework of TDA for computing topological fea-

ures from point cloud data usually contains two necessary steps:

onstructing simplicial complexes and applying TDA techniques on

he simplicial complexes frequently are the persistent homology,

arcodes and the persistent landscape. The main textbook for this

ection is Edelsbrunner and Harer [14] . 

A simplicial complex S is a set consisting of a finite collec-

ion of p-simplices (simple pieces), where a 0-simplex is a ver-

ex, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex

s a tetrahedron, and so on. In more precise way, the simplicial

omplex divided the space into smaller and topologically simpler

ieces, which when assembled back together carry the same aggre-

ate topological information as the original space. These simplices

hould satisfy two conditions. First, for every set σ in S , every non-

mpty subset τ ⊂ σ also belongs in S . For instance, if tetrahedron

bcd is in S , then the triangles abc, abd, acd, bcd, the edges ab, ac,

b and the vertices a, b, c, d are also in S . Second, two p-simplices

re either empty or they intersect in a lower dimensional simplex.

n order to obtain simplicial complex sets, Vietoris–Rips filter is ad-

ocated in this study. 

Homology is a tool from algebraic topology that measures the

eatures of a topological space such as an annulus, sphere, torus,

r more complicated surface. In particular, homology can distin-

uish these spaces from one another by quantifying their con-

ected components, loops, voids, and so forth. One interesting

eather associated with the homology group is the Betti num-

ers, as they provide meaningful information about the complex.

oughly speaking, the p th Betti number βp is the number of p th

imensional independent holes in the homology groups, so that

0 is the number of connectedcomponents, β1 is the number of

oops, β2 is the number of enclosed voids and so on. Persistent

omology is the primary algebraic topology tool was developed

y Edelsbrunner et al. [29] used in the TDA methods in order to

rack long persist features. It provides a way to measure the lifes-

an of a topological feature, which is the persistence of the feature,

hereas short-lived features may be ignored as noise. 

A convenient way to visualize persistent homology is through

 graphical representation called a barcode which can summarize

he information encoded in the persistence diagram in a different

ision. There is a distinct barcode for each homology space from

hich we infer the Betti number. In other words, the length of ev-

ry line in the Barcodes diagrams refers to the distance between

he time of death j and the time of born i , the number of the lines

ssociated to dimension zero equals to β0 , while the number of

he lines associated to dimension one equals to β1 and so on. 

Another graphical way that can summarize the information

ontained in the persistent homology diagram is the persistent

andscape proposed by Bubenik [15] . Persistent Landscape can be

onsidered as a rotated version of barcode plot. The main ad-

antage of the Persistent Landscapes is it allows us to calculate

nd summarize the data with the standard statistics indicators e.g.

eans, median, variance…etc, as opposite to either persistence di-
gram or barcode plot. To define the landscape, construct a trian-

le whose base corresponds to a persistence intervals and the top

ertex by tenting each persistence point using the following func-

ion: 

s ( ε ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

ε − i ε ∈ 

[
i, 

i + j 

2 

]

j − ε ε ∈ 

(
i + j 

2 

, j 

]
0 otherwise 

here ɛ is the filtered simplicial complex time and s takes 1 to n,

 is the number of the points in the persistent diagram. It should

e noted that �s ( ɛ ) obtained separately to each p -dimension. For-

ally, λs ( ɛ ) is the s th largest value of �s ( ɛ ) taken into considera-

ion the homology dimension. When s = 1 , of course, λs ( ɛ ) can be

nterpreted as the maximal possible distance of an interval cen-

ered about ɛ . Fig. 1 applied all the TDA’s tools, mentioned above,

o a sample drawn from tours. 

. Statistical shape analysis 

Shape analysis is an active subject of academic research in the

oth of mathematical and applied sciences. It has extensive appli-

ations in many fields as it is great practical importance to carry

ut hypotheses tests that distinguish between objects under uncer-

ainty. A plenty of tests have been suggested in the literature (see

2] ). However, three different tests will be focused in this context.

ssume that you have K-objects and that we would like to test the

ull hypothesis that all the objects are similar and have the same

hape versus the alternative hypothesis that states that at least one

bject differs than the others. This can be achieved by the follow-

ng tests which are so called k-sample tests. 

.1. Statistical inference using persistent homology 

Gamble in [2] produced a new test which can be depend-

ble for testing the similarity between two persistent homol-

gy diagrams using Wasserstein distance. Robinson and Turner in

16] generalized the test of Gamble in the multivariate case; as if

t is required to test between two sets of persistent homology. In

he present paper, it will generalize from [2] , test into K samples.

he test statistic that can be utilized to test between K persistent

omology diagrams P in the light of Gamble and Heo may be ex-

ressed as: 

 R = 

1 (
k 
2 

) k ∑ 

i =2 

i −1 ∑ 

j=1 

W 

(
P i , P j 

)

here W ( P i , P j ) is the Wasserstein distance between P i and P j . Obvi-

usly, T R can be considered as the average of all pair wise Wasser-

tein distances. Robinson in [2] recommended using the Hungarian

lgorithm to compute the Wasserstein distance. 

Given p 1 , 1 , p 2 , 1 . . . p n 1 , 1 
and p 1 , 2 , p 2 , 2 . . . p n 2 , 2 

are the points

orresponding to P 1 and P 2 respectively.The Hungarian algorithm

equired, first, that the two persistent homology have to be the

ame size, this is done via adding n 2 points to the first sample

nd n 1 points to the second sample, which yields we have n 1 + n 2 

oints for the both persistent homology. The added points are copy

f a diagonal that are the perpendicular distances. Then, construct-

ng the cost matrix where its entries are the squared Euclidean dis-

ances. Next, match every row with the optimum column. 1 Finally,

he Wasserstein distance is the sum up for the optimum distances,
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Fig. 1. Top left is tours sample data. Top middle the persistent homology. Top right the bare code. The bottom is the persistent landscape at dimension 0, 1 and 2. 
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which means that the Hungarian algorithm gives us the minimum

cost value. 2 

Since the sampling distribution for T R is unknown, a lot of

statistical nonparametric can be used to estimate an empirical

distribution for the test statistics, e.g. bootstrapping, jackknifing,

or a permutation test. Necessary condition for implementing this

methodology is that the drawn samples are representative of their

populations; since our datasets are randomly generated, there is no

reason to suspect the condition does not hold. According to Robin-

son [16] , the permutation test is preferred to judge on the signifi-

cance of T R . 

The permutation approach is a nonparametric tool implying

that permuting (rearranging) the data by shuffling their labels in

the sample, and then calculate T R on each permutation. The collec-

tion of T R from the permuted data constructs the null distribution.

In other words, If the two compared groups are statistically indis-

tinguishable, then random permutations applied to the observed

data do not make a difference; in that case, the observed test

statistic lies within the permutations values. On the other hand,

if the two groups statistically different, then random permutations

make a difference; in that case the observed test statistic takes an

extreme value i.e. it is located in the tail of the null distribution.

The stages of obtaining the P -value using the permutation test in

the case K = 3 as follows: 

Data : P 1 , P 2 and P 3 with three sample sizes n 1 , n 2 and n 3 respectively. Mis the 

number of the permutation samples. 

Results : P-value for T R 
Compute T R from the original sample data. 

for i = 1 : M

Randomly shuffle the group labels into disjoint sets of size 

n 1 , n 2 and n 3 ; 

Compute T R for each permutation sample and save the values in E i ; 

end . 

P-value is the # of times that E i greater than T R divided by M. 

3.2. Statistical inference using barcode sets 

On another hand, Máté in [17] proposed another test for test-

ing the similarity between certain configurations. Alternatively,

they decided to depend on barcode diagrams instead of persistent
2 Wasserstein distance is computed separately for points in dimensions zero, one 

and two…etc. 

 

e  

s

oints to build their test using Jaccard index as follows: 

 

∗
M 

= 

1 (
k 
2 

) k ∑ 

i =2 

i −1 ∑ 

j=1 

J ∗
(
B i , B j 

)

here B i is the barcode diagram of the sample i and J ∗( B i , B j ) is

he Jaccard measure between B i and B j that is defined as the size

f the intersection divided by the size of the union of the barcode

iagram taking the following formula: 

 

∗(B i , B j 

)
= 

∣∣B i ∩ B j 

∣∣∣∣B i ∪ B j 

∣∣
Jaccard measure is more suitable for testing the similarity as its

alue lies between zero and one, as upper values means the close-

ess while lower values refer to the dissimilarity. In consequences,

he range of T M 

lies in [0,1]. A serious dilemma faced during imple-

enting J ∗( B i , B j ) to the barcode sets that it cannot straightforward

o apply J ∗( B i , B j ) to the barcode diagrams. As, it isn’t necessary

hat the two barcode diagrams have the same number of the bar-

ode sets. Further, each barcode diagram has multi-barcode sets,

hich is required to find a condition for a perfect matching crite-

ion between the barcode diagrams. Therefore Máté modified J ∗( B i ,

 j ) in the following way: 

 

(
B i , B j 

)
= 

1 

| B i | + 

∣∣B j 

∣∣
[ ∑ 

t 

sup 

h 

∣∣B it ∩ B jh 

∣∣∣∣B it ∪ B jh 

∣∣ + 

∑ 

h 

sup 
t 

∣∣B it ∩ B jh 

∣∣∣∣B it ∪ B jh 

∣∣
] 

here B it and B jh are barcode sets within the barcode diagram of

he sample i and j respectively, and | B i | is the number of sets in

he barcode diagram of the sample i . Clearly, J ( B i , B j ) can perfectly

pply to the barcode diagrams and in the same time still ranged

n the interval [0,1]. Hence, T ∗M 

will be become in terms of J ( B i , B j )

s: 

 M 

= 

1 (
k 
2 

) k ∑ 

i =2 

i −1 ∑ 

j=1 

J 
(
B i , B j 

)

It should be noted that T M 

will be operated separately for ev-

ry homology dimension. The phases of calculating the T M 

can be

ummarized in the case of K = 3 as follows: 
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Data : B 1 , B 2 and B 3 with barcode sets B 1 t , B 2 t and B 3 t respectively. 

Results : T M statistical test. 

Compute T M = 

J ( B 1 , B 2 )+ J ( B 1 , B 3 )+ J ( B 2 , B 3 ) 
3 

Compute J( B i , B j ) = [ 
j( B i , B j )+ j( B j , B i ) 

| B i | + | B j | ] 

Compute j( B i , B j ) 

for k = 1: | B i | 
for h = 1: | B j | 

t[k,h] = 

min ( B ik ( end ) , B jh ( end ) ) − max ( B ik ( begin ) , B jh ( begin ) ) 

max ( B ik ( end ) , B jh ( end ) ) − min ( B ik ( begin ) , B jh ( begin ) ) 
%% : end ∧ begin : the end and 

begin of barcode interval 

if t[k,h] < 0 set t[k,h] = 0 

end; end; end 

j( B i , B j )= sum(max(t[k,:])) 

Since obtaining the limiting of T M 

isn’t a trivial issue, permu-

ation test is adopted to obtain the critical values as the same as

one with T R . 

.3. Statistical inference using persistent landscape 

Bubenik in [18] decided to use the average of λs ( ɛ ) in order

o derive anew statistical test 3 that can be reliable to investigate

he difference between two given shapes in the high dimensional

ase. He has proved, using central limit theorem, that λs ( ɛ ) is

symptotically normal with mean η∗
s andvarianceVar( λs ( ɛ )), where

∗
s = 

∑ T 
ε=1 λs (ε) 

T . Since the assumption of equal variances is typically

iolated, thus he stated that in order to test the significance differ-

nces between two given shapes, it suffices to compute Welch’s

est between their persistent landscapes at different values of s

nd different dimensions holes. Likewise, whether it is required to

est the significance differences between K shapes, one can eas-

ly operate Welch’s Test between their persistent landscapes which

akes following equation: 

 Bs = 

A s 

1 + B s 

here A s = 

∑ K 
j=1 W 

j 
s ( η

j 
s − η̄s ) 2 /k − 1 , B s = 

2( k −2 ) 

k 2 −1 

∑ K 
j=1 ( 1 − W 

j 
s ) 

2 /

 − 1 , η̄s = 

∑ K 
j=1 η

j 
s /k , η j 

s = 

∑ K 
j=1 W 

j 
s η

∗ j 
s / 

∑ K 
j=1 W 

j 
s , W 

j 
s =

 /V ar( λ j 
s ( ε) ) and η∗ j 

s is the mean of the persistent landscape

orresponding to the sample j . According to [19] assuming

he normality and the independency conditions, T Bs has un-

er H o approximately F-distribution with degrees of freedoms
 

 k − 1 , 

[ 

3 
k 2 −1 

∑ K 
j=1 

(
1 − W 

j 
s ∑ K 

j=1 W 

j 
s 

)2 

/T − 1 

] −1 
⎤ 

⎦ . 

.4. Statistical inference using metric spaces 

Instead of depending on TDA tools, one can resort directly to

he sample’s points as an indicator of the sample’s shape through

omputing the magnitudes within the observations’ coordinates. In

ther words, we would like to measure how far among the points

loud data internal each sample space. Once we have recorded

hese numbers via any suitable metric function, we can compare

hem among to get a feel for how similar they are. The main ad-

antageous of distance-based estimators that is invariant to rota-

ion and translation operations. Let X 1 , X 2 . . . X k be K-samples with

 i = [ x 1 , x 2 . . . x n i ] and it is requited to test the similarity, this may

e achieved by the following proposed test: 

 P = 

1 (
k 
2 

) k ∑ 

i =2 

i −1 ∑ 

j=1 

R 

(
X i , X j 

)

here 

3 The Test I will be used here. 

m  

i  

l  
R ( X i , X j ) = max ( 
∑ 

D ( X i ) , 
∑ 

D ( X j ) ) / min ( 
∑ 

D ( X i ) , 
∑ 

D ( X j ) ) and

 ( X i ) is a symmetric n i × n i matrix represents all pair wise dis-

ances within the sampleX i with zeros along the diagonal. Actually

he distances can be obtained using unaccountable metric func-

ions. Yet, we will consider the following metrics for points x i =
( x i 1 , x i 2 ) and x j = ( x j1 , x j2 ) as: 

1) Euclidean Distance: d( x i , x j ) = 

√ 

( x i 1 − x j1 ) 
2 + ( x i 2 − x j2 ) 

2 

2) Taxicab Distance: d( x i , x j ) = | x i 1 − x j1 | + | x i 2 − x j2 | 
3) Supremum Distance: d( x i , x j ) = max ( | x i 1 − x j1 | , | x i 2 − x j2 | ) 
For more details about these metric functions see [20] . One can

asily deduce that the ratio of the maximum to the smallest entry

n the R ( X i , X j ) can be used as a statistic for degree of shape differ-

nce. If the configurations are very similar, then the R ( X i , X j ) will

e close to one, larger values of R ( X i , X j ) indicate a greater degree

f dissimilarity. Hence T P can be considered as the average of the

errations for all possible pair wise of R ( X i , X j ). Indeed, one may

hink that the proposed test can be considered as an extension

o the test of Lele and Richtsmeier (1991) in the K-sample with

lightly different. Yet, there are important differences between the

wo tests, as our test didn’t assume the equality of the covariance

atrices for which didn’t rely on the variances of the distances,

urther our test can be computed, without any changing, at any

ata’s dimension levels as opposite to the another test. For more

etails see [21,22] . Since we haven’t any knowledge about the un-

erlying distribution of T P to get the critical values, depending on

he re-sampling methods, one can gain information about T P . Boot-

trap procedure was adopted to estimate the critical values which

riefly described below in the case of K = 3 . 

Data : X 1 , X 2 and X 3 with three sample sizes n 1 , n 2 and n 3 respectively and M

is the number of the repeated samples. 

Results : P-value for T P 
Compute: P-value for T P from the original sample data 

Obtain the pooled sample as stack X 1 , X 2 and X 3 into a new variable X . 

for i = 1 : M

Obtain a simple random sample with replacement of size 
∑ 3 

i =1 n i 
Consider the first n 1 as X 1 , the second n 2 as X 2 and the remaining as X 3 . 

Compute T P for a random sample and save the values in E i ; 

end . 

P-value is the # of times that E i greater than T P divided by M. 

. A small simulation study 

In this part, the practical performance for the above tests is in-

estigated. We compare between the proposed test T P correspond-

ng to different metric functions respectively to these existing tests

 R ,T M 

and T B 1, 2 , where T B 1, 2 is testing based on the average of

he first two largest landscape values. We have applied the men-

ioned tests to the common geometric objects that can be con-

ucted through GEOZOO Package [23] , then recorded the p -values

f each test using TDA [24] and ONEWAYTESTS (see [1] ) packages.

hen the two groups are generated from the same geometric ob-

ects, the p value in this case is denoted as the size of the test.

therwise, the p value is considered as the power of the test. 

Since it maybe intractable to do any theoretical comparisons

bout the performance of the previous tests, thus one has to resort

o compare through Monte Carlo simulation. Monte Carlo simula-

ion is now a much-used scientific tool for problems that are an-

lytically intractable and for which experimentation is too time-

onsuming, costly, or impractical. It depends basically on gener-

ting artificial random sampling many times, 10 0 0 times for in-

tance, in order to estimate the statistical models and the mathe-

atical functions. Even though, simulation also has disadvantages;

t can require huge computing resources, it doesn’t give exact so-

utions, and results are only as good as the model and inputs used.
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Table 1 

Simulated size and the power of the test statistics under the study. 

Sample size Model a Dimension T R T M T B 1, 2 T P 

E T S 

20 Model(1) a = 0 0 .02 .05 .03 .01 .02 .01 

1 .03 – –

a = 

6 √ 
N 

0 .20 .30 .10 .25 .70 .80 

1 .68 – –

Model(2) a = 0 0 .01 .03 .20 .02 .02 .01 

1 .03 – –

a = 

6 √ 
N 

0 .75 .40 .90 .30 .90 .93 

1 .40 – –

Model(3) a = 0 0 .01 .15 .24 .03 .02 .02 

1 .02 .10 .40 

a = 

6 √ 
N 

0 .72 .32 .95 .30 .80 .90 

1 .24 – –

Model(4) a = 0 0 .02 .03 .40 .02 .03 .01 

1 .06 – .30 

a = 

6 √ 
N 

0 .30 .20 .90 .20 .54 .45 

1 .10 – 1.0 

50 Model(1) a = 0 0 .01 .02 .01 .01 .01 .01 

1 .01 .01 –

a = 

6 √ 
N 

0 .30 .40 .20 .55 1.0 1.0 

1 .80 .25 –

Model(2) a = 0 0 .01 .01 .01 .01 .01 .01 

1 .01 .01 .20 

a = 

6 √ 
N 

0 1.0 .87 .85 1.0 1.0 1.0 

1 .85 .30 1.0 

Model(3) a = 0 0 .01 .20 .04 .02 .01 .01 

1 .02 .30 .02 

a = 

6 √ 
N 

0 1.0 .70 1.0 .35 1.0 1.0 

1 .50 .30 1.0 

Model(4) a = 0 0 .01 .01 .30 .01 .01 .01 

1 .01 .07 .20 

a = 

6 √ 
N 

0 .80 .22 1.0 .35 .84 .90 

1 .25 .10 1.0 

Table 2 

The empirical P -values for testing the similarity based on the statistical tests. 

Dimension T R T M T B 1, 2 T P 

E T S 

GPvsMS 0 < .001 < .001 .90 < .001 < .001 < .001 

1 < .001 .06 .33 

Mathematics vs Language 0 .53 .97 .51 .75 .89 .80 

1 .93 .04 .25 
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Comparisons between the statistical tests should be conducted

under various situations which can be summarized as: 

1 Different sam ple sizes: We will operate our simulation under

two different sample sizes which are 20 and 50. 

2 Different dimension holes: At β0 and β1 the size and the power

of each test, except tests based on metric functions, are calcu-

lated which allows us to demonstrate at which dimension the

tests can capture perfectly the topological feathers of the ob-

jects. 

3 In the light of [25] , it will be considered only the case K = 3 ,

where the first and the second objects are generated from: 

a. Model(1): The circle with radius equals one 

b. Model(2): The torus with radius from the center equals two. 

c. Model(3): The klein bottle with inner radius equals one. 

d. Model(4): The standard multivariate normal with three vari-

ables. 

while the third object corresponding to each model is generated

through ( 1 − a ) Model (i ) wher e i = 1 . . . 4 , a takes the both values

zero and 2 / 
√ 

N and N is the gross sample size. 

One can note that when a = 0 , the p value refers to the size of

the test, whilst a > 0, the p value refers to the power of the test.
n the same manner, the alternatives go to the null as the sam-

le size increases. Results based on Monte Carlo simulation are im-

lemented with 10 0 0 replicates and 100 repeated samples at 99%

onfidence interval under the above conditions and corresponding

o the Vietoris–Rips complex which are consistent with the prior

tudies (see [19] ). Final results are organized and reported in the

able 1 . A number of conclusions is drawn from the overall results

nd summarized in the following points: 

1) The results depicted the sample size has strong effect on the

simulated size and the power of the tests, as increasing the

sample size yields the tests’ size tends to the correct nomi-

nal level and the tests’ power increases in spite of the effect

of factor a . Thus it can be recommended to use these tests

at large sample sizes. 

2) It is obvious that the Betti dimension can be considered as

an effect or factor on the behavior of all tests based on TDA.

Generally speaking, the performance of T R and T M 

is better

at β0 . This phenomenon can be explained by the fact that

the number of the points at β0 is greater than the num-

ber of the points at upper dimensions yields that the final

decision based β0 dimension is more accurate compared to

other dimension. Another problematic point related to the
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Fig. 2. The statistical features for the two portuguese schools databases respectively. 
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holes’ upper dimensions is at low sample sizes: the holes

most likely not to appear, which prevents the tests to be

computed based on. 

3) It is easily to notice the superiority of T R to all the tests

based on TDA in terms of either the size or the power. How-

ever T M 

the least statistical poweramong TDA tests. Whereas

T B 1, 2 seems to be anticonservative for α = . 01 . 

4) It can be obviously seen that all the tests based on metric

functions have satisfied type I error, even at small sample

size. Regarding to the power, T P based on Euclidean metric

achieves the lowest level among the proposed tests. 

5) It is observed that T P based on supremum metric is the win-

ner among all the tests in terms of the size and the power.

l  
In contrast, T M 

has clearly poor power in almost simulated

cases, while T B 1, 2 has inflated type I error for which not rec-

ommended at the small samples. 

. Real life applications 

Testing the similarities using TDA has been used in a wide va-

iety of disciplines, as it is very helpful to tool in analyzing and

xploring a large amount of datasets. During the past few decades,

here is increasing recently of using TDA in various fields. In this

tudy, empirical world data set related to student data from two

ublic Portugal secondary schools are analyzed. This data is col-

ected from Gabriel Pereira (GP)(772 students) and Mousinho da
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Fig. 3. The statistical features for the math and portuguese language courses databases respectively. 
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Silveira (MS) schools (272 students) during 20 05–20 06 and con-

sists from several demographic, social and school related attributes

(e.g. student’s gender, alcohol consumption, grades’ students). Fur-

ther, in [26] divided separately these students into two categories:

1- students studied Math course (395), 2- students studied Por-

tuguese language course(649), and used several data mining tech-

niques for forecasting the students’ final grades. 

The present work tends to assess the similarities between GP

and MS schools with respect to the students’ grades. In more pre-

cise way, we would like to determine whether the students’ marks

for the two schools are similar or not. According to the argument

of [27] the two schools have a similar pattern if they are applying
he same common criteria, instructions and procedures to evalu-

te the performance of the students, for which we can guarantee

hat the students into the two schools get equal treatment. Like-

ise, assuming that the mathematical course’s markers are com-

letely independent than the Portugal course’s markers, one can

est the similarities between the mathematical students and the

ortuguese students in terms of grades. 

In our data, students are evaluated three times yearly ranged

rom 0 to 20. In order to make the process of the analysis faster

nd easier, we resort to select 100 landmarks points from each

chool (subject) using the Sequential Maximum Landmark Method

perated by JPLEX package. Figs. 2 and 3 reveal the most important
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tatistical feathers according to each school and course subject re-

pectively. From a first look at Fig. 2 , one can clearly deduce that

he two schools are highly different with respect to the students’

rades. In contradiction, it is easily to notice from the diagrams

f Fig. 3 that the two courses are slightly differing with respect

o the students’ grades. In the light of The P -values appeared in

able 2 , we can conclude that the GP’s graders mark in a differ-

nt way than MS’s graders. Whilst, the mathematical markers are

ssigning grades that are nearly similar than those from the Por-

uguese markers, which means that within each school its mathe-

atical and Portuguese markers are using the same common cri-

eria. 

. Conclusions 

In this article, we have shown the implementations of TDA tools

n testing the similarities among different configurations. A new

est based on metric function is suggested using several distance

unction. A comparison among the tests based on persistent ho-

ology, barcode sets, persistent landscape and the test based on

etric function is conducted at different patterns under two cri-

eria: 1- The size of the test. 2- The power of the test. Our re-

ults indicated that, tests based on persistent homology and met-

ic function have more suitable Type I error and satisfied power

han the others. Generally speaking, at dimension zero tests based

n TDA has satisfied properties and increasing the sample size of

he point cloud data has a positive effect on the whole tests. Fur-

her, we have illustrated the strength of the preceding tests on the

isconsin breast cancer dataset. 

Considering future researches, there is a plenty of work to do.

or instance, comparing between the different methods given in

28] with the above mentioned methods, developing TDA tests

n order to improve its performance, studying in depth cluster-

ng based on TDA and comparing with the other statistical known

ethods…etc. Lastly, we would like to mention that several issues

eserve future attention that we believe that as we will progress

n TDA tools, more researchers will adopt the topological analysis

n their work. 
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