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In this paper, the estimation problem (point and interval) is studied under the exponentiated exponen- 

tial ( EE ) distribution based on an adaptive progressive type-II censoring scheme. In point estimation, the 

maximum likelihood estimates ( MLE ′ s ) and Bayes estimates ( BE ′ s ), based on squared error ( SE ) and linear 

exponential ( LINEX ) loss functions, are computed. Also, the approximate confidence intervals for the pa- 

rameters of EE distribution are obtained. A comparison study is made between the BE ′ s and MLE ′ s using 

the estimated risks ( ER ′ s ) criterion. Finally, point and interval estimations of all parameters are studied 

based on a generated adaptive type-II progressive censoring sample from a real data set as illustrative 

example. 
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. Introduction 

The cumulative distribution function ( CDF ) of a random

ariable X 

 (x ;α, β, ρ) = (1 − ρ e −βx ) α, x > 

1 

β
ln ρ, α, β, ρ > 0 , 

s suggested by Verhulst [15] . Gupta and Kundu [6] used this

istribution with ρ = 1 and called it “generalized exponen-

ial”distribution. Other references for the EE distribution are Raqab

12] , Raqab and Ahsanullah [13] , Jaheen [7] , Kundu and Gupta [8] ,

undu et al. [9] , Abdel-Hamid and AL-Hussaini [1] , AL-Hussaini

2,3] and Ateya [5] among others. A recent book on exponentiated

istributions is that of AL-Hussaini and Ahsanullah [4] . 

The probability density function ( PDF ) and the CDF of EE distri-

ution are given, respectively, by 

f (x ;α, γ ) = αγ e −αx (1 − e −αx ) γ −1 , x > 0 , α, γ > 0 , (1.1) 

nd 

 (x ;α, γ ) = (1 − e −αx ) γ , (1.2) 
∗ Corresponding author. 
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here α is a scale parameter and γ is a shape parameter. Also, the

eliability function takes the form 

(x ;α, γ ) = 1 − (1 − e −αt ) γ . (1.3) 

A new censoring scheme which is a mixture of type-I and type-

I progressive censoring schemes called adaptive progressive type-

I censoring is introduced by Ng et al. [11] . This scheme can be

escribed as follows: 

Let n items be placed on a life-test, and the effective sample

ize m < n be fixed in advance. Moreover, let the progressive cen-

oring scheme R = (R 1 , . . . , R m 

) be set before starting the experi-

ent. Suppose the experimenter fixes a time T , which represents

he time of the experiment, but the test itself may be allowed to

un over time T . Let us denote the m completely observed failure

imes by X i : m : n , i = 1 , . . . , m . If the m th progressively censored fail-

re time occurs before time T , the experiment will be terminated

t time X m : m : n . Otherwise, once the experimental time passes

ime T but the number of observed failures has not reached m , we

ould want to terminate the experiment as soon as possible. 

The paper is organized as follows: The point estimation prob-

em using maximum likelihood and Bayes methods have been

tudied in Sections 2 and 3 , respectively. The interval estimation

roblem (approximate confidence interval, credibility interval and

ighest posterior density interval) is studied in Section 4 . Simula-
. This is an open access article under the CC BY-NC-ND license. 
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tion study is carried out in Section 5 . Real data is introduced as

illustrative example in Section 6 . Finally, some concluding remarks

are introduced in Section 7 . 

2. Maximum likelihood estimation 

Let X i = X R 
i : m : n 

, i = 1 , 2 , . . . , m, be the adaptive progressively

type-II censored sample from EE distribution with censored

scheme R = (R 1 , R 2 , . . . , R m 

) . The realization of the previous cen-

sored sample will be denoted by x R 
i ;m,n,k 

, i = 1 , 2 , . . . , m which can

be written for simplicity as x = (x 1 , . . . , x m 

) . 

Suppose that J is the number of failures observed before time

T , i.e. 

X J: m : n < T < X J+1: m : n , J = 0 , 1 , . . . , m, 

where X 0: m : n = 0 and X m +1: m : n = ∞ , we set R J+1 = . . . = R m −1 = 0

and R m 

= n − m − ∑ J 
i =1 

R i . This formulation leads us to terminate

the experiment as soon as possible if the (J + 1) th failure time is

greater than T for J + 1 < m . 

If the failure times of the n items originally on the test are from

a continuous population with CDF F ( x ; θ) and PDF f ( x ; θ), for J =
j, the likelihood function of the vector of parameters θ given the

vector of observations x is given by (see Ng et al. [11] ) 

L ( θ; x ) = d j 

m ∏ 

i =1 

f (x i ; θ) 

j ∏ 

i =1 

[1 − F (x i ; θ)] R i [1 − F (x m 

; θ)] n −m −∑ j 
i =1 

R i , 

0 < x 1 < x 2 < . . . < x m 

< ∞ , (2.1)

where 

d j = 

m ∏ 

i =1 

[ 
n − i + 1 −

max { i −1 , j} ∑ 

k =1 

R k 

] 
. (2.2)

By substituting from (1.1) and (1.2) in (2.1) , then the likelihood

function is given by 

L (α, γ ; x ) = d j α
m γ m 

[ m ∏ 

i =1 

e −αx i Z 
γ −1 

i 

] [ j ∏ 

i =1 

(1 − Z 
γ
i 
) R i 

] 
(1 − Z 

γ
m 

) C j , 

(2.3)

where 

Z i = 1 − e −αx i , C j = n − m −
j ∑ 

i =1 

R i , i = 1 , 2 , . . . , m. (2.4)

The natural logarithm of the likelihood function (2.3) is given by 

� ≡ ln L (α, γ ; x ) ∝ m ln α + m ln γ − α
m ∑ 

i =1 

x i + (γ − 1) 
m ∑ 

i =1 

ln Z i 

+ 

j ∑ 

i =1 

R i ln (1 − Z 
γ
i 
) + C j ln (1 − Z 

γ
m 

) . (2.5)

When the two parameters α and γ are unknown, the likelihood

equations for these parameters can be written as 

∂� 

∂α
= 

m 

α
−

m ∑ 

i =1 

x i + (γ − 1) 
m ∑ 

i =1 

x i e 
−αx i 

Z i 
− γ

j ∑ 

i =1 

R i 

Z 
γ −1 

i 
x i e 

−αx i 

(1 − Z 
γ
i 
) 

− γC j 
Z 

γ −1 
m 

x m 

e −αx m 

(1 − Z 
γ
m 

) 
= 0 , (2.6)

and 

∂� 

∂γ
= 

m 

γ
+ 

m ∑ 

i =1 

ln Z i −
j ∑ 

i =1 

R i 

Z 
γ
i 

ln Z i 

(1 − Z 
γ
i 
) 

− C j 
Z 

γ
m 

ln Z m 

(1 − Z 
γ
m 

) 
= 0 , (2.7)

where Z i and C j are as given by (2.4) . By solving the system of

Eqs. (2.6) and (2.7) numerically we obtain the MLE ′ s of α and γ . 
. Bayesian estimation 

Suppose that the prior PDF π ( α, γ ) is given by 

(α, γ ) = π1 (γ ) π2 (α | γ ) . (3.1)

uppose that also π1 ( γ ) is Gamma( a 1 , 1/ a 2 ) and π2 ( α| γ ) is

amma( b 1 , γ / b 2 ) with respective densities 

1 (γ ) ∝ γ a 1 −1 e 
− γ

a 2 , (3.2)

nd 

2 (α | γ ) ∝ γ b 1 αb 1 −1 e 
− γα

b 2 . (3.3)

y substituting from (3.2) and (3.3) in (3.1) , we obtain the joint

rior PDF of α and γ as follows 

(α, γ ) ∝ γ a 1 + b 1 −1 αb 1 −1 exp 

{ 

−γ
(

α

b 2 
+ 

1 

a 2 

)} 

. (3.4)

herefore, the joint posterior density of the parameters α and γ
an be obtained from (2.3) and (3.4) , and written as 

∗(α, γ | x ) ∝ αm + b 1 −1 γ m + a 1 + b 1 −1 

× exp 

{
− γ

[
1 

a 2 
+ 

α

b 2 
−

m ∑ 

i =1 

ln Z i 

]
− α

m ∑ 

i =1 

x i −
m ∑ 

i =1 

ln Z i 

}

×
[ j ∏ 

i =1 

(1 − Z 
γ
i 
) R i 

](
1 − Z 

γ
m 

)C j 
, (3.5)

here Z i and C j are as given in (2.4) . 

The BE of an unknown parameter depends on the form of the

oss function. In this paper, The BE ′ s have been considered un-

er two different loss functions, the symmetric SE and the asym-

etric LINEX loss functions. Under the SE loss function, the BE of

he parameter is the posterior mean. The LINEX loss function is

efined as 

Ł(	) = e λ	 − λ	 − 1 , λ � = 0 , (3.6)

here 	 = 

ˆ φ(θ ) − φ(θ ) , the scalar estimation error when φ( θ ) is

stimated by ˆ φ(θ ) , for more details see Varian [14] . The sign of the

onstant λ represents the direction and its magnitude represents

he degree of asymmetry. For λ close to zero, the LINEX is approxi-

ately SE loss function and therefore almost symmetric. Under the

INEX loss function, the Bayes estimate is given by 

ˆ 
BL = − 1 

λ
ln (E φ(e −λφ(θ ) | x )) , (3.7)

here λ is constant. 

Using the Markov Chain Monte Carlo ( MCMC ) technique, the BE

f the function η ≡ η( α, γ ) under SE and LINEX loss functions can

e written, respectively, in the forms 

ˆ BS = 

1 

N − M 

N ∑ 

i = M+1 

η(αi , γi ) , (3.8)

nd 

ˆ BL = − 1 

λ
ln 

[ 
1 

N − M 

N ∑ 

i = M+1 

exp (−λη(αi , γi )) 
] 
, (3.9)

here η(αi , γi ) , i = 1 , 2 , . . . , N are generated from the posterior

DF (3.5) (using The Gibbs and Metropolis-Hatings algorithms) and

 is the burn-in period (that is, a number of iterations before the

tationary distribution is achieved). 

. Interval estimation 

In this section, we will study the approximate confidence inter-

al, credibility interval ( CI ) and highest posterior density interval

 HPD ) for the two parameters α and γ . 
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.1. Approximate confidence interval 

Let x 1 < x 2 < . . . < x m 

denote an adaptive progressively type-II

ensored sample from EE distribution with parameters α and γ . In

his section, the approximate confidence intervals for the param-

ters of EE distribution are obtained based the previous censored

ample. From Eqs. (2.6) and (2.7) , we have 

∂ 2 � 

∂α2 
= − m 

α2 
− (γ − 1) 

m ∑ 

i =1 

x 2 
i 

e −αx i 

Z 2 
i 

− γ
j ∑ 

i =1 

R i x 
2 
i e 

−αx i 
W 2 i (α, γ ; x i ) 

(1 − Z 
γ
i 
) 2 

− γC j x 
2 
m 

e −αx m 
W 2 i (α, γ ; x m 

) 

(1 − Z 
γ
m 

) 2 
, (4.1) 

∂ 2 � 

∂γ 2 
= − m 

γ 2 
−

j ∑ 

i =1 

R i 

Z 
γ
i 
( ln Z i ) 

2 

(1 − Z 
γ
i 
) 2 

− C j 
Z 

γ
m 

( ln Z m 

) 2 

(1 − Z 
γ
m 

) 2 
, (4.2) 

nd 

∂ 2 � 

∂ α∂ γ
= 

m ∑ 

i =1 

x i e 
−αx i 

Z i 
−

j ∑ 

i =1 

R i x i e 
−αx i 

Z 
γ −1 

i 
(1 + γ ln Z i − Z 

γ
i 
) 

(1 − Z 
γ
i 
) 2 

− C j x m 

e −αx m 
Z 

γ −1 
m 

(1 + γ ln Z m 

− Z 
γ
m 

) 

(1 − Z 
γ
m 

) 2 
, (4.3) 

here 

 2 i (α, γ ; x i ) = (1 − Z 
γ
i 
)(−Z 

γ −1 

i 
− Z 

γ −2 

i 
e −αx i ) + γ Z 

γ −2 

i 
e −αx i . (4.4) 

he Fisher information matrix I ( α, γ ) is obtained by taking the ex-

ectation of negative of Eqs. (4.1) –(4.3) . In practice, I −1 (α, γ ) can

e estimated by I −1 ( ̂  α, ˆ γ ) . In case of the large samples, we can use

he approximation ( ̂  α, ˆ γ ) ∼ N((α, γ ) , I −1 
0 

( ̂  α, ˆ γ )) , where I 0 ( ̂  α, ˆ γ ) is

he observed information matrix given by 

 0 ( ̂  α, ˆ γ ) = 

⎡ 

⎢ ⎢ ⎣ 

− ∂ 2 � 

∂α2 
− ∂ 2 � 

∂ α∂ γ

− ∂ 2 � 

∂ α∂ γ
− ∂ 2 � 

∂γ 2 

⎤ 

⎥ ⎥ ⎦ 

( ̂ α, ̂ γ ) 

. (4.5)

he Approximate confidence intervals for α and γ can be obtained,

espectively, by 

ˆ ∓ z τ
2 

√ 

ν11 and ˆ γ ∓ z τ
2 

√ 

ν22 , (4.6) 

here ν11 and ν22 are the elements on the main diagonal of the

ovariance matrix I −1 
0 

( ̂  α, ˆ γ ) and z τ
2 

is the standard normal variate.

.2. Credibility interval 

For a specified value of τ , we define the (1 − τ ) × 100% CI ( L α ,

 α) for α and (1 − τ ) × 100% CI ( L γ , U γ ) for γ , respectively by ∫ ∞ 

L α

π ∗
1 (α | x ) dα = 1 − τ

2 

, 

∫ ∞ 

U α

π ∗
1 (α | x ) dα = 

τ

2 

, 

∫ ∞ 

L γ

π ∗
2 (γ | x ) dγ = 1 − τ

2 

, 

∫ ∞ 

U γ

π ∗
2 (γ | x ) dγ = 

τ

2 

, 

(4.7) 

here π ∗
1 
(α | x ) and π ∗

2 
(γ | x ) are the marginal density functions

f α and γ , respectively. In many cases it will be very difficult

o obtain the marginal PDF from the posterior density function.

o, we will use Gibbs sampler and Metropolis Hastings algorithms

o generate (α1 , γ1 ) , (α2 , γ2 ) , . . . , (αN , γN ) from π ∗( α, γ | x ). Using

hese generated values of α and γ , we have 

∗
1 (α | x ) = 

1 

N 

N ∑ 

i =1 

π ∗(α, γi | x ) , π ∗
2 (γ | x ) = 

1 

N 

N ∑ 

i =1 

π ∗(γ , αi , | x )
(4.8) 
ubstituting from (4.8) in (4.7) , we obtain simple formulas to com-

ute the credibility intervals for α and γ in the following forms 

1 

N 

N ∑ 

i =1 

∫ ∞ 

L α

π ∗(α, γi | x ) dα = 1 − τ

2 

, 

1 

N 

N ∑ 

i =1 

∫ ∞ 

U α

π ∗(α, γi | x ) dα = 

τ

2 

, 

1 

N 

N ∑ 

i =1 

∫ ∞ 

L γ

π ∗(γ , αi , | x ) dγ = 1 − τ

2 

, 

1 

N 

N ∑ 

i =1 

∫ ∞ 

U γ

π ∗(γ , αi , | x ) dγ = 

τ

2 

. (4.9) 

.3. Highest posterior density interval 

A (1 − τ ) × 100% HPD interval for α is obtained by solving the

ollowing two nonlinear equations 

1 

N 

N ∑ 

i =1 

∫ U α

L α

π ∗(α, γi | x ) dα = 1 − τ, 

N 
 

i =1 

π ∗(L α, γi | x ) = 

N ∑ 

i =1 

π ∗(U α, γi | x ) . (4.10) 

imilarly, the (1 − τ ) × 100% HPD interval for γ is obtained by

olving the following two nonlinear equations 

1 

N 

N ∑ 

i =1 

∫ U γ

L γ

π ∗(γ , αi , | x ) dγ = 1 − τ, 

N 
 

i =1 

π ∗(L γ , αi , | x ) = 

N ∑ 

i =1 

π ∗(U γ , αi , | x ) . (4.11) 

. Numerical computations 

In the following, the MLE ′ s and BE ′ s are compared based on a

onte Carlo simulation study. 

1. For a given vector of prior parameters ( a 1 , a 2 , b 1 , b 2 ) we gener-

ate α and γ from the prior densities (3.2) and (3.3) . 

2. For given α and γ obtained in step (1), we generate progressive

adaptive type-II censored samples from the EE distribution with

PDF (1.1) . 

3. The MLE ′ s of α and γ are computed by solving the nonlinear

Eqs. (2.6) and (2.7) by using FSOLVE routine from MATLAB which

solve system of nonlinear equations. 

4. The BE for the vector of parameters η ≡ ( α, γ ) under SE and

LINEX loss functions using MCMC method are given, respec-

tively, by (3.8) and (3.9) . 

5. The squared deviations (θ ∗ − θ ) 2 are computed for different

sample sizes, where ( ∗) stands for an estimate ( ML or Bayes)

and θ stands for the parameters α or γ . 

6. The above steps (2–5) are repeated 10,0 0 0 times. The ER ′ s are

computed by averaging the squared deviations. 

In our study, we have used three different censoring schemes

nd the ER ′ s ) for each scheme are given in Tables 1 and 2 . The

tudied schemes are 

Scheme I R m 

= n − m, R i = 0 for i � = m . 

Scheme II R 1 = n − m, R i = 0 for i � = 1. 

Scheme III R m +1 
2 

= n − m, R i = 0 for i � = 

m +1 
2 ; if m is odd, and

R m 
2 

= n − m, R i = 0 for i � = 

m 

2 ; if m is even. 

Also, the coverage probability (with nominal level 0.95) for the

pproximate confidence intervals has been computed and the re-

ults are summarized in Table 3 . 
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Table 1 

MLE ′ s, BE ′ s and ER ′ s of the estimates of α and γ for prior parameters (a 1 = 2 . 0 , a 2 = 1 . 0 , b 1 = 

2 . 0 , b 2 = 1 . 0) , α = 0 . 7126 and γ = 3 . 6683 . 

T ( n, m ) Scheme Method ˆ α ˆ γ ER ( ̂ α) ER ( ̂ γ ) 

2 (15,5) ML 0.7965 4.5343 0.1328 5.4930 

B SEL 0.6170 2.9790 0.0245 0.6032 

I LINEX λ = −2 0.6569 4.1286 0.0224 0.7354 

λ = 0 . 0 0 01 0.6170 2.9789 0.0245 0.6032 

λ = 2 0.5799 2.3395 0.0298 1.8201 

ML 0.9263 4.9865 0.1448 6.4 4 41 

B SEL 0.6913 3.0806 0.0159 0.5282 

II LINEX λ = −2 0.7403 4.2478 0.0210 1.0342 

λ = 0 . 0 0 01 0.6913 3.0806 0.0159 0.5283 

λ = 2 0.6472 2.4552 0.0161 1.5511 

ML 0.9063 4.8963 0.1547 5.9581 

B SEL 0.6568 3.0406 0.0189 0.5273 

III LINEX λ = −2 0.7011 4.1777 0.0202 0.7739 

λ = 0 . 0 0 01 0.6568 3.0406 0.0189 0.5274 

λ = 2 0.6162 2.4064 0.0218 1.6505 

1 (15,5) ML 0.3321 2.2024 0.2309 4.2543 

B SEL 0.3981 2.5815 0.1300 1.3789 

I LINEX λ = −2 0.4197 3.5631 0.1230 0.6748 

λ = 0 . 0 0 01 0.3981 2.5814 0.1300 1.3790 

λ = 2 0.3781 2.0471 0.1380 2.7199 

ML 0.8219 4.4334 0.1184 4.8088 

B SEL 0.6616 3.0293 0.0211 0.5978 

II LINEX λ = −2 0.7079 4.1819 0.0242 0.9388 

λ = 0 . 0 0 01 0.6616 3.0292 0.0211 0.5979 

λ = 2 0.6199 2.4124 0.0229 1.6607 

ML 0.3863 2.4076 0.2836 4.6513 

B SEL 0.4281 2.6201 0.1333 1.3005 

III LINEX λ = −2 0.4535 3.6010 0.1314 0.6501 

λ = 0 . 0 0 01 0.4281 2.6200 0.1333 1.3006 

λ = 2 0.4046 2.0811 0.1376 2.6162 

2 (50,25) ML 0.5494 3.0 0 09 0.0817 1.2940 

B SEL 0.5273 2.7782 0.0179 0.5135 

I LINEX λ = −2 0.5396 3.3912 0.0149 0.4637 

λ = 0 . 0 0 01 0.5273 2.7782 0.0179 0.5135 

λ = 2 0.5151 2.3752 0.0111 1.0705 

ML 0.9740 5.4984 0.0917 1.9821 

B SEL 0.8150 3.8300 0.0181 0.3025 

II LINEX λ = −2 0.8328 4.7537 0.0139 0.9823 

λ = 0 . 0 0 01 0.8150 3.8299 0.0181 0.3025 

λ = 2 0.7975 3.2467 0.0131 0.3363 

ML 0.9808 5.6649 0.1262 1.3940 

B SEL 0.7898 3.8679 0.0123 0.4241 

III LINEX λ = −2 0.8078 4.8226 0.0164 0.4776 

λ = 0 . 0 0 01 0.7898 3.8679 0.0123 0.4241 

λ = 2 0.7720 3.2467 0.0190 0.3950 

1 (50,25) ML 0.2614 1.7355 0.2119 1.8925 

B SEL 0.3038 2.0562 0.1147 1.1719 

I LINEX λ = −2 0.3094 2.3950 0.1705 0.5435 

λ = 0 . 0 0 01 0.3038 2.0562 0.1147 1.1719 

λ = 2 0.2983 1.8201 0.1088 2.4913 

ML 0.8741 4.7113 0.0550 1.8830 

B SEL 0.7580 3.5656 0.0133 0.2319 

II LINEX λ = −2 0.7748 4.3836 0.0160 0.9501 

λ = 0 . 0 0 01 0.7580 3.5655 0.0133 0.2319 

λ = 2 0.7417 3.0426 0.0113 0.5206 

ML 0.2647 1.7526 0.2100 1.8374 

B SEL 0.3064 2.0697 0.1131 1.2789 

III LINEX λ = −2 0.3121 2.4124 0.1289 0.5838 

λ = 0 . 0 0 01 0.3064 2.0697 0.1131 1.2789 

λ = 2 0.3009 1.8308 0.1072 1.4539 
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6. Application 

To illustrate the use of the estimation methods proposed in this

paper, a real data set from Lawless [10] has been used. These data

represent the breakdown time of an insulating fluid between elec-

trodes at a voltage of 34 kv (min). The 19 times to breakdown are

0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 3.16,

4.85, 2.78, 4.67, 1.31, 12.06, 36.71 and 72.89. These real data are
t

nalyzed using EE ( α, γ ). The K –S, AIC, BIC and P -value have been

omputed in Table 4 . 

From Table 4 , under significance level (0.05) and using

olmogorov–Smirnov table, the critical value for K –S test statistic

s 0.30143 which is greater than the computed K –S test statistics. 

Also, we can see that the P -value corresponding to the K –S test

tatistics for the introduced distribution is greater than the signifi-

ance level (0.05) which also means that the introduced model fits
he real data set well. 
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Table 2 

MLE ′ s, BE ′ s and ER ′ s of the estimates of α and γ for prior parameters (a 1 = 1 . 5 , a 2 = 1 . 5 , b 1 = 

2 , b 2 = 2) , α = 1 . 1889 and γ = 4 . 3973 . 

T ( n, m ) Scheme Method ˆ α ˆ γ ER ( ̂ α) ER ( ̂ γ ) 

2 (15,5) ML 1.2662 5.0701 0.1828 5.0821 

B SEL 1.0477 3.5834 0.0467 0.8728 

I LINEX λ = −2 1.1466 5.3139 0.0384 1.8305 

λ = 0 . 0 0 01 1.0476 3.5833 0.0467 0.8729 

λ = 2 0.9566 2.6666 0.0733 3.0710 

ML 1.3870 5.2302 0.2187 5.1601 

B SEL 1.1236 3.6916 0.0353 0.8049 

II LINEX λ = −2 1.2356 5.4365 0.0472 2.3315 

λ = 0 . 0 0 01 1.1236 3.6915 0.0353 0.8050 

λ = 2 1.0251 2.7930 0.0486 2.6890 

ML 1.2880 5.0351 0.2157 4.7610 

B SEL 1.0658 3.6241 0.0491 0.8249 

III LINEX λ = −2 1.1681 5.3239 0.0473 1.8775 

λ = 0 . 0 0 01 1.0658 3.6240 0.0491 0.8250 

λ = 2 0.9733 2.7227 0.0710 2.8858 

1 (15,5) ML 0.8609 3.5229 0.4095 4.9142 

B SEL 0.8761 3.2766 0.1874 1.4805 

I LINEX λ = −2 0.9571 4.8655 0.1713 1.2123 

λ = 0 . 0 0 01 0.8761 3.2766 0.1874 1.4806 

λ = 2 0.8021 2.4618 0.2174 3.8355 

ML 1.4122 5.3887 0.2728 5.4420 

B SEL 1.1371 3.7241 0.0453 0.7244 

II LINEX λ = −2 1.2507 5.5018 0.0645 2.3857 

λ = 0 . 0 0 01 1.1371 3.7240 0.0453 0.7245 

λ = 2 1.0370 2.8131 0.0535 2.6074 

ML 1.0699 4.1949 0.5225 6.1090 

B SEL 0.9852 3.4369 0.1591 1.1826 

III LINEX λ = −2 1.0798 5.0581 0.1655 1.4933 

λ = 0 . 0 0 01 0.9852 3.4368 0.1591 1.1827 

λ = 2 0.8993 2.5868 0.1739 3.3876 

2 (50,25) ML 1.2637 5.0398 0.0646 1.9845 

B SEL 1.1138 4.0106 0.0226 0.5187 

I LINEX λ = −2 1.1533 5.2518 0.0196 1.7242 

λ = 0 . 0 0 01 1.1138 4.0105 0.0226 0.5187 

λ = 2 1.0747 3.2461 0.0286 1.5019 

ML 1.4679 5.9694 0.1301 1.9005 

B SEL 1.2794 4.5137 0.0262 0.5051 

II LINEX λ = −2 1.3207 5.8919 0.0372 3.5358 

λ = 0 . 0 0 01 1.2794 4.5136 0.0262 0.5051 

λ = 2 1.2395 3.7031 0.0190 0.7346 

ML 1.4386 5.9253 0.1182 2.0762 

B SEL 1.2260 4.4590 0.0170 0.4144 

III LINEX λ = −2 1.2674 5.8025 0.0232 3.0609 

λ = 0 . 0 0 01 1.2260 4.4590 0.0170 0.4144 

λ = 2 1.1854 3.6224 0.0143 0.7995 

1 (50,25) ML 0.6733 2.6025 0.3229 1.8580 

B SEL 0.7149 2.8277 0.2616 2.7430 

I LINEX λ = −2 0.7389 3.5351 0.2430 1.4204 

λ = 0 . 0 0 01 0.7149 2.8277 0.2616 2.7431 

λ = 2 0.6915 2.3894 0.2811 4.1824 

ML 1.5940 6.4673 0.2496 2.0058 

B SEL 1.3671 4.6840 0.0652 0.5229 

II LINEX λ = −2 1.4125 6.1080 0.0871 4.0433 

λ = 0 . 0 0 01 1.3671 4.6839 0.0652 0.5228 

λ = 2 1.3232 3.8291 0.0483 0.5555 

ML 0.8268 3.2126 0.3912 1.8348 

B SEL 0.8412 3.1505 0.2621 2.4133 

III LINEX λ = −2 0.8700 3.9734 0.2551 1.9228 

λ = 0 . 0 0 01 0.8412 3.1504 0.2621 2.4134 

λ = 2 0.8129 2.6346 0.2710 3.5955 
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For more illustration, Fig. 1 shows the fitted CDF and the empir-

cal CDF of EE distribution, respectively, computed at the estimated

arameters where the dotted curve represents the empirical CDF

urve. Also, Fig. 2 shows the histogram of the real data and the fit-

ed PDF of EE distribution, respectively, computed at the estimated

arameters where the dotted curve represents the fitted PDF curve.

We use m = 10 , T = 12 , and R = (3 , 0 , 0 , 2 , 0 , 0 , 1 , 2 , 1 , 0) . In this

ase the adaptive progressive censored sample is (0.19, 2.78, 3.16,

.15, 6.50, 7.35, 8.01, 12.06, 31.75, 32.52). The estimates of the pa-

E  
ameters α and γ are obtained in Table 5 . Moreover, the result of

5% confidence intervals, CI and HPD intervals of α and γ are given

n Tables 6 and 7 . 

. Concluding remarks 

In this paper, the estimation problem (point and interval) is

tudied based on adaptive progressive type-II censoring scheme of

E distribution. Also, a real data set is introduced as illustrative
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Table 3 

Coverage probability for the approximate M L confidence intervals, CI and HPD intervals with prior 

parameters (a 1 = 1 . 0 , a 2 = 1 . 0 , b 1 = 3 . 0 , b 2 = 3 . 0) , α = 5 . 3599 , γ = 2 . 1419 and τ = 0 . 05 . 

T n m Scheme Approximate intervals CI HPD intervals 

αML γ ML αB γ B αB γ B 

2 20 10 I 88.97% 87.43% 99.06% 99.88% 99.4% 99.8% 

II 86.72% 87.36% 98.16% 99.89% 98.1% 99.8% 

III 90.79% 91.05% 98.48% 99.81% 98.01% 99.91% 

1 20 10 I 88.97% 87.43% 99.06% 99.88% 98.88% 99.92% 

II 86.86% 87.43% 98.16% 99.80% 97.40% 99.85% 

III 90.67% 90.71% 98.48% 99.67% 98.23% 99.86% 

2 70 50 I 95.77% 94.66% 96.42% 97.11% 96.52% 97.10% 

II 95.83% 95.34% 96.17% 96.87% 99.99% 98.20% 

III 95.81% 94.03% 96.70% 96.57% 99.78% 83.32% 

1 70 50 I 95.77% 94.66% 96.42% 97.11% 96.52% 97.10% 

II 96.29% 95.62% 96.49% 96.97% 99.91% 98.35% 

III 95.86% 94.19% 97.11% 96.88% 99.81% 82.91% 

Table 4 

MLE ′ s of the parameters, the associated Kolmogorov – Smirnov K –S, AIC and BIC values. 

Model MLE ′ s K –S P -value AIC BIC 

EE ( α, γ ) ˆ α = 0 . 0534985 , ̂  γ = 0 . 682536 0.188626 0.433338 170.192 172.081 

10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

Fig. 1. The fitted CDF and the empirical CDF of EE distribution. 

0 20 40 60 80
0.00

0.05

0.10

0.15

Fig. 2. The histogram of the real data and the fitted PDF of EE distribution. 
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Table 5 

The MLE ′ s of α and γ for prior parameters (a 1 = 1 . 0 , a 2 = 

1 . 0 , b 1 = 1 . 0 , b 2 = 2 . 0) . 

T ( n, m ) Method ˆ α ˆ γ

12 (19,10) ML 0.9339 1.0 0 0 0 

B SEL 0.0504 1.0172 

LINEX λ = −2 0.0509 1.1635 

λ = 0 . 0 0 01 0.0504 1.0172 

λ = 2 0.0499 0.9129 

Table 6 

The Lower and Upper Bounds for the approximate ML confidence interval 

with prior parameters (a 1 = 1 . 0 , a 2 = 1 . 0 , b 1 = 1 . 0 , b 2 = 2 . 0) . 

n m αML γ ML 

L U Length L U Length 

19 10 0.2596 1.6082 1.3487 0.5343 1.4657 0.9313 

Table 7 

The Lower and Upper Bounds for The CI and HPD in- 

tervals, when n = 19 and m = 10 . 

CI HPD intervals 

αB γ B αB γ B 

L 0.0081 0.3641 0.0105 0.3216 

U 0.50 0 0 1.2876 0.50 0 0 1.2143 

Length 0.4919 0.9235 0.4895 0.8927 

e  
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xample. A simulation study is carried out to examine and com-

are the performance of the proposed methods for different sam-

le sizes and different censoring schemes. From the results, we ob-

erve the following. 

1. All of the results obtained in this article can be specialized to: 

(a) When T → ∞ , the usual progressive type-II censoring

scheme has been obtained. 

(b) When T → 0, the usual type-II censoring scheme has been

obtained with the complete sample case by taking (m =
n, R i = 0 , i = 1 , 2 , . . . , m ) . 

2. Tables 1 and 2 show that the BE ′ s of all parameters relative to

asymmetric loss functions ( LINEX ) are sensitive to the value of

the shape parameter λ, also, the BE ′ s based on symmetric and

asymmetric loss functions are better than the MLE ′ s . 
3. In all cases, as λ tends to zero, the ER ′ s of the BE ′ s using the

LINEX loss function are the same using the SEL function. 

4. From Table 3 , we see that the coverage probabilities of the ap-

proximate confidence intervals are close to the desired level of

0.95 for αML and γ ML in case of the large sample size, but not

close to the desired level in case of the small sample size. 

5. Also, from Table 3 , we see that the coverage probabilities of

Bayes confidence intervals and HPD intervals are nearly close

to the desired level of 0.95 for αB and γ B in most cases. 
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