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In this article, the authors obtain some clear assumptions for the asymptotic stability (AS) and bounded- 

ness (B) of solutions of non-linear retarded Volterra integro-differential equations (VIDEs) of first order by 

constructing a new Lyapunov functional (LF). The results obtained are new and differ from those found 

in the literature, and they also contain and improve a result found in the literature under more less re- 

strictive conditions. We establish an example and give a discussion to indicate the applicability of the 

weaker conditions obtained. We also employ MATLAB-Simulink to display the behaviors of the orbits of 

the (VIDEs) considered. 
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. Introduction 

In the last years, a lot of interesting results related to the qual-

tative behaviors of solutions; stability (S), instability (I), (AS), ex-

onential stability (ES), etc., of (VIDEs) have been obtained in the

iterature. For a comprehensive study on qualitative properties of

VIDEs), we refer the readers to the works of [1–39] and theirs ref-

rences. 

We know that qualitative behaviors of solutions have many

mportant roles in the subjects and applications of ordinary dif-

erential equations (ODEs), integral equations (IEs) and integro-

ifferential equations (IDEs) with or without retardations (see, the

ooks [1] and [2] and their references). Therefore, it is worth ex-

mining the qualitative properties of the solutions of the retarded

IDEs). 

We would now like to summarize some related works on the

ubject below. 

In 1983, the authors in [3] investigated the (S) of solutions of

VIDE) of the form 
∗ Corresponding author. 
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′ (t) = A (t) x + 

∫ t 

0 

C(t, s ) x (s ) ds, t ≥ t 0 , (1)

here A (t) and C(t, s ) are n × n − matrices and the solution x is

iven on the interval (0 , t 0 ) . 

In [3] , various kinds of (S) for (VIDE) (1) are defined and equiv-

lence relations between them are established. Several criteria for

S) of solutions are given and the basic idea in [3] is that A (t) is

negative” and dominates the integral term involving C(t, s ) . The

roofs in [3] rely to a very large extent on (LFs). 

After that, in 1985, the authors of [4] dealt with a (VIDE) given

y 

 

′ (t) = A (t ) x (t ) + 

∫ t 

0 

K(t, s ) x (s ) ds + F (t) , (2)

here t ≥ 0 , x ( t 0 ) = x 0 , x is an n −vector, n ≥ 1 , A (t) and K(t, s )
re n × n − matrices defined and continuous on 0 ≤ t < ∞ and 0 ≤
 ≤ t < ∞ , respectively, and the function F : � 

+ → � 

n is continu-

us for all t ∈ � 

+ , � 

+ = [0 , ∞ ) . The authors in [4] commented the

symptotic behaviors (ABs) of solutions of (VIDE) (2) in which A (t)

s not necessarily a stable matrix. An equivalent equation which

nvolves an arbitrary function is derived. Hence, a proper choice of

his function would pave a way for the new coefficient matrix B (t)

corresponding A (t) ) to be stable. The main approach in [4] is by

ay of deriving an equivalence theorem ( Lemma 1 , which is given
. This is an open access article under the CC BY-NC-ND license. 
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below) which has the potential to supply them a stable matrix B (t)

corresponding to A (t) . 

Later, in 1987, the authors in [5] considered (VIDE) of the form

x ′ (t) = A (t ) x (t ) + 

∫ t 

0 

K(t, s ) x (s ) ds + f (t , x (t )) , (3)

where t ≥ 0 , x ( t 0 ) = x 0 , x is an n −vector, n ≥ 1 , n × n − matrices

A (t) and K(t, s ) satisfy the properties mentioned in (VIDE) (2) for

the existence and uniqueness of the solutions, respectively, and f :

� 

+ × � 

n → � 

n is a continuous function with f (t, 0) = 0 on � 

+ . The

authors benefited from the following lemma in [4] to obtain some

stronger specific conditions for certain (ABs) of solutions of (VIDE)

(3) . 

Lemma 1 [4] . Let �(t, s ) be an n × n continuously differentiable

matrix function on 0 ≤ s ≤ t < ∞ . Then (VIDE) (3) corresponds to 

y ′ (t) = B (t ) y (t ) + 

∫ t 

0 

L (t, s ) y (s ) ds + G (t, y ) , y (0) = x 0 , 

in which 

B (t) = A (t) − �(t , t ) , 

L (t, s ) = K(t , s ) + 

∂ 

∂s 
�(t , s ) + �(t, s ) A (s ) + 

∫ t 

s 

�(t, u ) K(u, s ) ds 

and 

G (t, y ) = f (t, y ) + �(t, 0) x 0 + 

∫ t 

0 

�(t, s ) f (s, x (s )) ds. 

Obviously, it is noticeable that Lemma 1 shows that (VIDE)

given by (3) can be transformed to an equivalent (VIDE) with A (t)

and K(t, s ) replaced by other matrices, and which as a special case

introduces the resolvent kernel corresponding to K(t, s ) . A (LF),

similar to that one used by the authors in [3] , is then used to

obtain specific conditions on the (ABs) of solutions of (VIDE) (3) .

Besides, certain special cases of (VIDE) (3) , where f (t, x ) = 0 and

K (t, s ) = K (t − s ) , are also considered and some comments are also

done on the (ABs) of the solutions of the equations considered. 

In this paper, we consider (VIDEs) in the following form with a

constant retardation 

z ′ (t) = B (t ) z(t ) + 

∫ t 

t−τ
D (t, s ) z(s ) ds + F (t , z(t ) , z(t − τ )) + P (t) , 

(4)

where t ≥ 0 , τ > 0 , τ ∈ � , fixed constant retardation with t − τ ≥
0 , z(0) = z 0 , z is an n −vector, n ≥ 1 , B (t) and D (t, s ) are con-

tinuously differentiable n × n −matrix functions on 0 ≤ t < ∞ and

0 ≤ s ≤ t < ∞ , respectively, F : � 

+ × � 

n × � 

n → � 

n and P : � 

+ →
� 

n are continuous functions on their receptive domains with

F (t, 0 , 0) = 0 , � 

+ = [0 , ∞ ) . 

In particular, the motivation of this paper has been inspired by

the results of ([3–5]), the papers and books in the references of

this article and those in the literature. 

To the best of our information, in view of the results of [5] , it

follows that instead of (VIDE) (3) , the construction of an equivalent

integro-differential system which involves an n × n − matrix �(t, s )

continuously differentiable for 0 ≤ s ≤ t < ∞ does not give an ad-

vantage to study the stability of the solutions of (VIDE) (3) , while

we convert this (VIDE) to the another equivalent (VIDE) (see Rama

Mohana Rao and Raghavendra [5] and the assumptions of this pa-

per given below). Here, we will show this case for the problems

to be taken under consideration. That is, we mean that instead of

the transform done in [5] , if we construct a suitable (LF) for (VIDE)

(3) , it can be obtained the stability and boundedness results under

suitable and weaker conditions. This fact illustrate the advantage

of the proposed method. The first important reason for motivation

of this paper is the former fact. 
Next, the investigation of the qualitative properties of solu-

ions of (VIDEs) with time-lag has many important attractions and

laces in theory and applications of these equations in sciences

nd engineering. We would not like to give the details of these

acts here. 

It is also notable that any investigation of the (S) and (B) in

 (VIDE) by (LF) technique, first demands the description or con-

truction of a suitable (LF), which allows to validity of the results

btained. In reality, this investigation can be an arduous task and

he state becomes more difficult when we substitute an (ODE) with

 retarded (IDE). However, once a viable (LF) is defined or con-

tructed, researchers can continue with working with it for a long

ime, getting more information about some qualitative behaviors of

olutions. 

That is, it is difficult to construct suitable (LFs) and via those

LFs) to discuss the qualitative properties of that kind of functional

ntegro-differential equations. In this paper, we carry the result of

 5 , Theorem 4.1]) to a more general (VIDE) with constant time-lag.

n addition, we give an additional result, boundedness of solutions,

or (VIDE) (4) . The second important reason for motivation of this

aper is this fact. 

Briefly, our intention in this paper is to investigate and find

ew specific conditions for the (AS), and (B) of solutions of (VIDE)

4) by constructing a new and suitable (LF), when P (. ) ≡ 0 and

 (. ) � = 0 , respectively. In reality, if we replace 0 (zero) in place of

he term t − τ in (VIDE) (4) , then it seems that (VIDEs) (1) -(3) are

pecial cases of (VIDE) (4) . This fact and constructing a new and

uitable auxiliary (LF) are the contributions of this work to the

opic and the newness of this article. In addition, carrying out the

opic and problems in the literature from the case of without retar-

ation to a general case of with retardation shows another bene-

action, improvement and newness of this paper. 

In view of the information already given, it follows that the

VIDE) discussed by ([3–5]) are without a retardation. However, in

his paper, the (VIDE) to be discussed here is with a constant re-

ardation. 

The results to be obtained here are also differ from that ob-

ained in the literature (see, ([1–4,6–39] and theirs references). 

We obtain here the result of [ 5 , Theorem 4.1] under weaker

onditions. Actually, this is another originality and newness of this

aper. Finally, investigating the (B) of solutions of (VIDE) (4) in the

ase P (. ) � = 0 gives a new and additional result to that of [5] . In

iew of all the mentioned information, it can be checked the new

nd novel properties of the present paper. 

. Asymptotic stability 

Using the perturbations theory and the Lyapunov’s stability the-

rem, the authors [5] proved the following theorem on the (AS) of

he solution x (t) ≡ 0 of (VIDE) (3) . 

In [5] , it is accepted the existence of the following conditions

or (VIDE) (3) . 

A. Assumptions: 

(A 1) There exists a positive continuous function λ(t) for 0 ≤
 < ∞ such that 

 

f (t, x ) ‖ 

≤ λ(t) ‖ 

x ‖ 

with λ(t) tends to zero as t → ∞ . 

(A 2) Let H(t) be an n × n − real, symmetric bounded and con-

inuously differentiable matrix for 0 ≤ t < ∞ . It is also assumed

hat 

 

T [ B 

T (t) H(t) + H(t) B (t) + H 

′ (t)] y ≤ −γ ‖ 

y ‖ 

2 

or y ∈ � 

n , y � = 0 , in which γ > 0 , and γ ∈ � . 

(A 3) There exists an n × n − matrix �(t, s ) continuously differ-

ntiable for 0 ≤ s ≤ t < ∞ satisfying the conditions 
 t 

0 
‖ 

�(u, t) ‖ 

du is defined for all t ∈ � 

+ , � 

+ = [0 , ∞ ) , 
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�(t, 0) ‖ 

→ 0 as t → ∞ , and 

 ∞ 

0 
‖ 

�(t, 0) ‖ 

dt < ∞ . 

(A 4) ‖ B (t) ‖ is bounded and 

∫ ∞ 

0 ‖ L (u, t) ‖ du is defined for all t ∈
 

+ , 
where 

 (t) = A (t) − �(t , t ) , 

 (t, s ) = K(t , s ) + 

∂ 

∂s 
�(t , s ) + �(t, s ) A (s ) + 

∫ t 

s 

�(t, u ) K(u, s ) ds. 

(A 5) H 0 [ ‖ �(t, 0) ‖ + 

∫ t 
0 ‖ L (t, s ) ‖ ds + 

∫ ∞ 

t ‖ L (u, t) ‖ du ] 

 λ0 H 0 

[ ∫ ∞ 

t 
‖ 

�(t, s ) ‖ 

ds + 

∫ ∞ 

t 
‖ 

�(u, t) ‖ 

du 

] 
≤ α0 , 

here α0 ∈ � , α0 > 0 , λ0 = sup 

t≥0 

λ(t) and H 0 = sup 

t≥0 

H(t) . 

heorem A. [5] . Let assumptions (A 1) − (A 5) hold . If B (t) is

ounded and γ > α0 + 2 λ0 H 0 holds , then the trivial solution of

VIDE) (3) is (AS). 

We are now ready to introduce one of the main results of this

aper. 

Let 

 (t) ≡ 0 . 

B. Assumptions 

We assume the following conditions are true : 
(H1) ‖ F (t, z, z(t − τ )) ‖ ≤ f (t) min {‖ z‖ , ‖ z(t − τ ) ‖} 

ith f (t) → 0 as t → ∞ , in which f (t) is a positive and continu-

us function for t ∈ � 

+ , � 

+ = [0 , ∞ ) , and f 0 = sup t≥0 f (t) . 

(H2) Let H(t) be an n × n − real, symmetric, bounded and con-

inuously differentiable matrix for all t ∈ � 

+ . It is assumed that 

z T [ B 

T (t) H(t) + H(t) B (t) + H 

′ (t)] z ≤ −φ0 ‖ 

z ‖ 

2 

for all z ∈ � 

n , z � = 0 , 

n which φ0 > 0 , and φ0 ∈ � . 

(H3) ‖ B (t) ‖ is bounded and 

∫ ∞ 

0 ‖ D (u, t) ‖ du is defined for all

 ∈ � 

+ . 
(H4) H 0 

∫ t 
t−τ ‖ D (t, s ) ‖ ds + H 0 

∫ ∞ 

t−τ ‖ D (u + τ, t) ‖ du ≤ K 0 , 

where K 0 ∈ � , K 0 > 0 , and H 0 = sup 

t≥0 

‖ H(t) ‖ . 
heorem 1. Let assumptions (H1) − (H4) hold . If

 φ0 − 2 f 0 H 0 − K 0 ] ≥ ε > 0 , then the trivial solution of (VIDE) (4) is

AS). 

roof. We construct a (LF) W (. ) = W (t, z(t)) communicated by 

 (. ) = z T (t ) H(t ) z(t ) + λ

∫ t 

0 

∫ ∞ 

t−τ
‖ 

D (u + τ, s ) ‖ 

d u ‖ 

z(s )) ‖ 

2 
d s, (5)

here λ > 0 , λ ∈ � , and we choose this constant later in the proof.

Since the assumptions of Theorem 1 hold, then it can be clear

hat W (. ) is positive definite. 

Differentiating W (. ) with respect to t, we can obtain that 

 

′ (. ) = (z ′ ) T H (t) z + z T H 

′ (t) z + z T H (t) z ′ 

+ λ

∫ ∞ 

t−τ
‖ 

D (u + τ, t) ‖ 

d u ‖ 

z(t) ‖ 

2 −λ

∫ t 

0 
‖ 

D (t, s ) ‖ ‖ 

z(s ) ‖ 

2 
d s 

= z T 
(
H 

′ (t) + B 

T (t ) H(t ) + H(t ) B (t ) 
)
z 

+ z T H(t) 

∫ t 

t−τ
D (t, s ) z(s ) ds + z T H(t) F (t, z, z(t − τ )) 

+ z T H 

T (t) F (t, z, z(t − τ )) + z T H 

T (t) 

∫ t 

t−τ
D (t, s ) z(s ) ds 
+ λ

∫ ∞ 

t−τ
‖ 

D (u + τ, t) ‖ 

du ‖ 

z(t) ‖ 

2 − λ

∫ t 

0 
‖ 

D (t, s ) ‖ ‖ 

z(s ) ‖ 

2 
ds 

≤ z T 
(
H 

′ (t) + B 

T (t ) H(t ) + H(t ) B (t ) 
)
z 

+ 2 H 0 f 0 ‖ 

z ‖ 

2 + 2 H 0 

∫ t 

t−τ
‖ 

D (t, s ) ‖ ‖ 

z(s ) ‖ ‖ 

z(t) ‖ 

ds 

+ λ

∫ ∞ 

t−τ
‖ 

D (u + τ, t) ‖ 

du ‖ 

z(t) ‖ 

2 −λ

∫ t 

0 
‖ 

D (t, s ) ‖ ‖ 

z(s ) ‖ 

2 
ds.

Benefited from assumptions (H1) − (H4) and the estimate

 ab | ≤ 2 −1 ( a 2 + b 2 ) , it can be followed that 

 

′ (. ) ≤ −φ0 ‖ 

z ‖ 

2 + 2 f 0 H 0 ‖ 

z ‖ 

2 

+ H 0 

∫ t 

t−τ
‖ 

D (t, s ) ‖ 

( ‖ 

z(s ) ‖ 

2 + ‖ 

z(t) ‖ 

2 
) ds 

+ λ

∫ ∞ 

t−τ
‖ 

D (u + τ, t) ‖ 

du ‖ 

z(t) ‖ 

2 −λ

∫ t 

0 
‖ 

D (t, s ) ‖ ‖ 

z(s ) ‖ 

2 
ds 

= −φ0 ‖ 

z ‖ 

2 +2 f 0 H 0 ‖ 

z ‖ 

2 + H 0 

∫ t 

t−τ
‖ 

D (t, s ) ‖ ‖ 

z(s ) ‖ 

2 
ds 

+ H 0 

∫ t 

t−τ
‖ 

D (t, s ) ‖ 

ds ‖ 

z(t) ‖ 

2 + λ

∫ ∞ 

t−τ
‖ 

D (u + τ, t) ‖ 

du ‖ 

z(t) ‖ 

2 

−λ

∫ t 

0 
‖ 

D (t, s ) ‖ ‖ 

z(s ) ‖ 

2 
ds. 

Let λ = H 0 . Then, we have 

 

′ (. ) ≤ −
[
φ0 − 2 f 0 H 0 − H 0 

∫ t 

t−τ
‖ 

D (t, s ) ‖ 

ds 

]
‖ z(t) ‖ 

2 

+ 

[
H 0 

∫ ∞ 

t−τ
‖ 

D (u + τ, t) ‖ 

du 

]
‖ 

z(t) ‖ 

2 
. 

By the assumptions (H1) − (H4) and φ0 − 2 f 0 H 0 − K 0 ≥ ε > 0 ,

e can conclude that 

 

′ (. ) ≤ −ε ‖ 

z(t) ‖ 

2 
. 

Thus, in view of the above examination, we can reach the de-

ired result, that is, the trivial solution of (VIDE) (4) is (AS). Hence,

e arrive at the conclusion of Theorem 1 . 

. Boundedness 

Let P (t) � = 0 . 

C. Assumptions 

(H5) 
∫ ∞ 

0 ‖ P (s ) ‖ ds < ∞ and ‖ P (t) ‖ → 0 as t → ∞ . 

heorem 2. We suppose that assumptions (H1) − (H5) hold . Then ,

ll solutions of (VIDE) (4) are bounded . 

roof. In this proof, we use the (LF) W (. ) = W (t, z(t)) given by

5) . In the case of the consideration of assumptions of (H1) − (H5)

nd (5) , we can reach the following: 

 

′ (. ) ≤ −ε ‖ 

z ‖ 

2 + 2 ‖ 

H(t) ‖ ‖ 

P (t) ‖ ‖ 

z ‖ 

≤ 2 ‖ 

P (t) ‖ 

H 0 (1 + ‖ 

z ‖ 

2 ) 

= 2 H 0 ‖ 

P (t) ‖ 

+ 2 ‖ 

P (t) ‖ 

H 0 ‖ 

z ‖ 

2 

≤ 2 H 0 ‖ 

P (t) ‖ 

+ 2 ‖ 

P (t) ‖ 

W (. ) . (6) 

Integrating estimate (6) from zero 0 to t, we get 

 (t, z(t)) ≤ W ( t 0 , z( t 0 )) + 2 H 0 

∫ t 

0 
‖ 

P (s ) ‖ 

ds 

+ 2 

∫ t 

0 
‖ 

P (s ) ‖ 

W (s, z(s )) ds. 

Then, the utilization of the Gronwall’s inequality shows that

 (. ) has an upper positive constant bound. That is, 

 (t, z(t)) ≤ 
0 exp 

(∫ ∞ 

0 
‖ 

P (s ) ‖ 

)
ds, 
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Fig. 1. Trajectory of z(t) for Example 1 . 
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where 


0 = W ( t 0 , z( t 0 )) + 2 H 0 

∫ ∞ 

0 
‖ 

P (s ) ‖ 

ds. 

Hence, it now is notable that 

H 0 ‖ 

z ‖ 

2 ≤ z T (t) H(t) z(t) ≤ W (t, z(t)) ≤ 
0 exp 

(∫ ∞ 

0 
‖ 

P (s ) ‖ 

)
ds. 

Thus, by assumption (H5) , we can come the desired result, that

is, the solutions of (VIDE) (4) are bounded. Hence, we can reach

the conclusion of Theorem 2 . 

Example 1. For the case n = 1 , as a specific subcase of (VIDE) (4) ,

we consider non-linear (VIDE) with a constant retardation, 

z ′ = −
(

10 + 

1 

1 + t 

)
z −

∫ t 

t−1 

exp (−t + s ) z(s ) ds 

+ 

1 

10 

exp (−t)( | z | exp (−| z | − | z(t − 1) | ) + 

1 

1 + t 2 
, 

for t − 1 ≥ 0 , x ∈ � . 

When we compare this equation with (VIDE) (4) and consider

the assumptions of Theorems 1 and 2 , it follows the existence of

the relations below: 

B (t) = −10 − 1 

1 + t 
, t ≥ 0 , 

D (t, s ) = − exp (−t + s ) , 

F (t, z, z(t − τ )) = 

1 

10 

exp (−t)( | z | exp (−| z | − | z(t − 1) | )) , 
P (t) = 

1 

1 + t 2 
, 

| B (t) | = 

∣∣∣−10 − 1 

1 + t 

∣∣∣ ≤ 11 , 

that is, 

| B (t) | is bounded , 

| F (t, z, z(t − τ )) | ≤ 1 

10 

| z | exp (−t) 

f (t) = 

1 

exp (−t) , f (t) → 0 as t → ∞ , 

10 
f 0 = 

1 

10 

. 

Let H(t) = 1 . Then H 0 = 1 , H 

′ (t) = 0 . 

 

T [ H 

′ (t) + H(t ) B (t ) + B 

T (t ) H(t )] z ≤ −20 | z | 2 for all z ∈ � , z � = 0

0 = 20 , 

 ∞ 

0 
| D (u, t) | du = 

∫ ∞ 

0 

exp (−u + t) du is defined , 

 0 

∫ t 

t−1 
| D (t, s ) | ds + H 0 

∫ ∞ 

t−1 
| D (u + τ, t) | du 

 

∫ t 

t−1 

exp (−t + s ) d s + 

∫ ∞ 

t−1 

exp (−u − 1 + t) d u 

 2 − 1 

e 
< 1 , 7 = K 0 , 

0 − 2 f 0 H 0 − K 0 = 20 − 1 

5 

− 1 , 7 = 18 , 01 = ε > 0 . 

The desired result, that is, the (AS) of the trivial solution, for

he (VIDE) considered is shown by the following graph (see Fig. 1 ).

Over and above, the (B) of the solutions for the (VIDE) consid-

red is shown by the following graph (see Fig. 2 ). 

Hence, all the assumptions, (H1) − (H 4) and (H 1) − (H5) of

heorems 1 and 2 , respectively, can be held. Thus, we can con-

lude that the trivial solution is (AS) and all solutions are bounded

or the homogenous case and non-homogeneous case of the equa-

ion considered, respectively. 

. Discussion 

We pay our attention to a type of non-linear (VIDEs) of first or-

er with constant retardation. The (AS) and (B) behaviors of solu-

ions (VIDEs) are examined by the aid of the Lyapunov’s functional

pproach, when P (t) ≡ 0 and P (t) � = 0 in (VIDE)(4), respectively. The

laim made by the authors is illustrated as the following: 

1 0 ) The results obtained, Theorem 1 has an extension and im-

provement and Theorem 2 gives an additional result to that

of [ 5 , Theorem 4.1], respectively. 
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Fig. 2. Trajectory of z(t) for Example 1 . 
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2 0 ) It is clear that our equation, (VIDE) (4) , includes the (VIDE)

investigated by the authors in [3–5] if we take zero “0 ′′ in-

stead of neglect the delay term t − τ. In addition, we carry

out the result of [ 5 , Theorem 4.1] from case of without a

retardation to the case of with a retardation. This case is

an improvement, extension and contribution to the works of

the authors in [3–5] . 

3 0 ) It can be seen that the conditions of Theorem 1 are less re-

strictive than those obtained in [ 5 , Theorem 4.1]). In fact,

when we compare the assumptions of Theorem 1 with that

of ([ 5 , Theorem 4.1], we see that Theorem 1 does not include

assumption (A 3) in [5] , that is, the assumption, 

(A 3) There exists an n × n − matrix �(t, s ) which is continuously

differentiable for 0 ≤ s ≤ t < ∞ such that satisfying the con-

ditions ∫ t 

0 
‖ 

�(u, t) ‖ 

du is defined for all t ∈ � 

+ , � 

+ = [0 , ∞ ) , 

‖ 

�(t, 0) ‖ 

→ 0 as t → ∞ , and ∫ ∞ 

0 
‖ 

�(t, 0) ‖ 

dt < ∞ . 

In addition, our assumption (H4) of Theorem 1 is less restric-

tive than that (A 5) of [5, Theorem 4.1]. In fact, if we take zero

“0 ′′ instead of the delay term t − τ, this idea can be easily

seen when we compare the assumption 

H 0 

∫ t 

t−τ
‖ 

D (t, s ) ‖ 

ds + H 0 

∫ ∞ 

t−τ
‖ 

D (u + τ, t) ‖ 

du ≤ K 0 

of Theorem 1 with the assumption 

H 0 

[
‖ 

�(t, 0) ‖ 

+ 

∫ t 

t−τ
‖ 

L (t, s ) ‖ 

ds + 

∫ t 

t−τ
‖ 

L (u, t) ‖ 

du 

]

+ λ0 H 0 

[∫ ∞ 

t−τ
‖ 

�(t, s ) ‖ 

ds + φ0 

∫ ∞ 

t−τ
‖ 

�(u, t) ‖ 

du 

]
≤ α0 , 

L (t, s ) = K(t , s ) + 

∂ 

∂s 
�(t , s ) + �(t, s ) A (s ) 

+ 

∫ t 

s 

�(t, u ) K(u, s ) ds , 

of [ 5 , Theorem 4.1], Theorem A. 
4 0 ) Assumption B (t) = A (t) − �(t , t ) of [ 5 , Theorem 4.1] leads

that B (t) = A (t) in Theorem 1 . Because we do not need the

term �(t , t ) . This case shows the advantage of the method

of used in this paper without using perturbation theory. 

5 0 ) On the other hand, the assumptions of Theorem 1 are very

clear, elegant and comprehensible. That is, the assumptions

of Theorem 1 have very simple forms and the applicability

and correctness of them can be easily checked and verified.

In spite of this fact, probably, it may be difficult to say the

same statements for the assumptions of [ 5 , Theorem 4.1]. 

6 0 ) We arrive at items 1 0 ) − 5 0 ) since we use a different (LF) here

than that used in [ 5 , Theorem 4.1]. 

As a result of the investigation of this paper, when the above in-

ormation is taken into consideration as a whole, it can be clearly

een that the importance of the work done, its quality and its con-

ribution to the literature. Furthermore, in the literature, there are

o examples in most of the scientific investigations related to this

aper (see, the references of this paper), and if any result is given

ith an example in the literature, the graphics of the solutions are

ot included therein (see, [1-39] ). These facts indicate the attrac-

iveness and awareness of this work. 

. Conclusion 

In this paper, we consider a class of non-linear (VIDE) of first

rder. We study the (AS) and (B) of solutions of the (VIDEs) con-

idered via construction of a new (LF). By the way, we prove two

ew theorems relative to the (AS) and (B) of solutions. The first

ne includes weaker conditions than that in [ 5 , Theorem 4.1] and

mproves that result for a more general case with constant retarda-

ion. The next one has a new contribution to the results of [5] and

hat in the literature since the (B) of solutions did not discuss by

he authors in [5] and those found in the literature. We also give

n example which satisfies the assumptions of both of the theo-

ems in the special cases. We also draw the orbits of the solutions

or the example considered by MATLAB-Simulink so that the veri-

cations of the results hold (see Fig. 1 and Fig. 2 ). The results ob-

ained can be useful for the researchers investigating the specific

roperties of solutions of functional differential equations models
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in applications, and they may have contributions to science and

engineering. 
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