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Recently, Ammar [1] has discussed the transient behavior of a multiple vacations queue with impatient
customers. In this paper, a similar technique is used to derive a new elegant explicit solution for an
M/M/1 vacation queue with impatient customers and a waiting server, where the server is allowed to take
a vacation whenever the system is empty after waiting for a random period of time. If the server does
not return from the vacation before the expiry of the customer impatience time, the customer abandons
the system forever. Moreover, the formulas of mean and variance expressed in terms of the obtained
possibilities for this model.
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1. Introduction

In recent years, the study of vacation queues has had a great
effect on the queueing theory. This has been because of their
wide applications in many areas, especially in the computer com-
munication and flexible manufacturing systems. Since Levy and
Yechiali [2] have presented a paper about server vacations, many
researchers have studied queueing systems with vacations. For the
background of such vacations systems (see the excellent overviews
of in [3,4] and the monographs in [5,6].

The investigation of queueing models with impatient customers
is very helpful and imperative as such systems often arise in
many real life problems, see e.g., [7,8]. Therefore, many researchers
have studied queueing systems with impatient customers. For re-
lated literature, interested readers may refer to [9] and references
therein. The studies of queueing systems with impatient customers
classified according to the causes of the impatience behavior. Thus,
in literatures we accentuation the models that are created by im-
patient customers due to server vacations.

Recently, Altman and Yechiali [10] have showed a compre-
hensive analysis of some queueing models such as M/M/1, M/G/1
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and M/M/cqueue with server vacations and customer impatience,
where customers became impatient only when the servers were on
vacation. They discussed both single and multiple vacation cases,
and obtained various closed-form results. Altman and Yechiali
[11] have investigated the infinite server queue with vacations and
impatient customers. They have acquired the probability generat-
ing function of the number of units in the model and computed
values of key performance measures. Perel and Yechiali [12] have
studied M/M/cqueues in a 2-phase (fast and slow) Markovian ran-
dom environment, with impatient customers. Yue et al. [13] have
analyzed an M/M/1 queueing system with working vacation and
impatient customers. They obtained the probability generating
function of the number of units in the model when the server is
in a working vacation and a service period. Yue et al. [14] extend
the model in [10] by considering a variant of the multiple vacation
policy which includes both a single vacation and multiple vaca-
tions, they have derived the probability generating functions of the
steady state probabilities and obtained the closed form expressions
of the system sizes when the server is in different states. Adan
et al. [15] have addressed queueing systems with vacations and
synchronized reneging.

Padmavathy et al. [16] have studied the steady state behav-
ior of vacation queues with impatient customers and a waiting
Server.
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In spite of the great interest in studying of queuing systems
with vacations, a few works have dealt with the transient solution
of these systems. Kalidass et al. [17] have discussed the transient
behavior of an M/M/1 multiple vacation queue and the possibilities
of catastrophes. Sudhesh and Francis Raj [18] have obtained the
time dependent system size probabilities of a M/M/1 queue with
working vacation. Indra and Sweety [19] have derived the transient
solution of an unreliable M/G/1 vacations queue.

Recently, Ammar [1] has investigated the transient solution of a
M/M/1 multiple vacations queue and impatient customers.

As we mentioned earlier in all the previous studies, the server
leaves the system just as the system is empty of customers, but in
the practical life the server waits a certain period of time even if
the system is empty, especially, if we are dealing with human be-
havior. This conduct of the server was initially presented in [20].
Based on [20] Yechiali [21] has extended the analysis to batch ar-
rival queue.

Therefore, the main aim of this article is to study the M/M/1
vacation queue with impatient customers and a waiting server. We
have obtained in closed form the transient probabilities, mean and
variance. This work may be regarded as an extension to work in
[22] where the transient probabilities of the system are derived
without impatient customers.

2. System model

We consider a M/M/1 vacation queue with customer’s impa-
tience and a waiting server. The assumption of the model are as
follows:

a) Customers arriving according to a Poisson process with rate A
and the server has an independently and identically distributed
exponential service time distribution with mean service disci-
pline is FCFS and there is infinite room for customers to wait.

b) When the busy period is ended the server waits a random du-
ration of time before beginning on a vacation. This waiting du-
ration follows the exponentially distributed with the density
function as follows:

w(t)=ne ™ t>0, n=0

where 7 is the waiting rate of a server.
¢) It is assumed that the interval of vacation has an exponential
distribution with the density function as follows:

vit)=ye? t>0, y=>0

where y is the vacation rate of a server.

d) When the server is on a vacation, each customer sets up an
impatience timer independently of the other customers in the
system, which is assumed to be exponentially distributed with
the density function as follows:

s(ty=Ee 5 t>0, £>0

where £ is the impatience rate of a server.
e) If the impatience timer expires while the server is on a vaca-
tion, the customer abandons the queue, never to return.

3. Transient behavior

Let N(t)be the number of units in the system at time ¢, and X(t)
denote the system state at timet. If X(t)=1, the server is work-
ing and serving units, whilst if X(t)=0, the server is on vacation.
Then {X(t), N(t), t > O}is a continuous time Markov chain. Let
Py(t)=P[X(t)=i, N(t)=j] denote the system state in the transient
probabilities. These probabilities satisfy the forward Kolmogorov
differential-difference equations are given by:

Py (t) = —=(A 4+ ¥)Poo (t) + &EPy1 (t) + nPro(t) (3.1)

Py (€) = APon-1(t) — (A +1n& + ¥ )Pon () + (N + 1)EPy s (1),

n=123,... (3.2)
Ply(t) = —(A +n)Pio(t) + Py (t) + ¥ Poo(t) (3.3)
P{n(t) = )\Pl,n—l (t) - ()L + M)Pln(t) + Mpl,nﬂ (t) + VPOn(t)s

n=12,3,... (3.4)

and suppose that initially there is no unit in the system.

3.1. Time dependent probabilities

3.1.1. Evaluation for Pyy(t)

We obtain expression for Py,(t)by employing the continued
fraction and well-known identities of confluent hypergeometric
function. In the sequel, g(s)denotes the Laplace transform of g(t)..

Now, by taking the Laplace transforms on (3.2), we get.

Pon(s) A

Pon-1(s) s+k+y+n$—(n+1)§%

The above equation can be written as a continued fraction as
follows,

Pon(s) _ A
Pon1(s) s+A+y-+nk—

(n+1DEXL
(n+2)EAn

StA+y+(n+2)E—

SHA+Y+(+1)E—

(n+3)E0
Stri+y+(n+3)E—...

(3.5)

By means of the properties of confluent hypergeometric function.
The Eq. (3.5) will take the following form

Pn(s) _ A R+T S 4T )
Pona(s) & CE+mFm L +n )

(3.6)
Invoking of the above equation we can obtain for n=1, 2, 3,

P (A)” 1 F+1 % 4n+ 15 2)
onlS) =\ ¢ -
" §) T G+ 1) G +nnR (1 S +1; 2)
= ®n(s)Poo(s)
Then
Pon(s) = ®n(t) * Poo(t)

where ®,(t) is the inverse transform of ®,(s) and the formula of
it given in Section 3.7, and where * denotes convolution.

Poo(s)

(3.7)

3.1.2. Evaluation for Py,(t)
We will evaluate the probability P;,(t),
Define

n>1

P(zt) =) Pa(t)2" i=0, 1.

n=1

The system of Eqs. (3.3) and (3.4) yield

% _ [X(z— 1)- u(l - %)]a(z, £) + [u(l - %) - n]
x Po(t) + yPo(z,t)
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Integrating
Pi(z,t) = e~ Lzt )=+l " [(M - g):l
z
t
X/ Py (v)e~ (G2 5)-Gtm) =) gy
0

t
+y/ Py (2, v)e— (2 )=t =) gy
0

=/A/lL, then

(3.9)

It is well known that if « = 2,/Ap and B

exp [(Xz—i— %)t]a = i (B2)"I(at),

n=—o0

where I,,(.) is the modified Bessel function.

Comparing the coefficients of z" on right and left hand sides in
(3.9), we get for n=1, 2, 3,...
Pin(t) = e *H B (at) + (0 — ) B

t
></ PioW)(a (t — v))e~ P+ gy
0
t
—ppr! / Pio(W) 1 ( (t — v))e” Oy

+7// ZPOk(v)ﬁ” “ln_r(a(t = v))e” *H0 N dudy

(3.10)

Taking the Laplace transform of the above equations and sim-
plifying, we have

n
N 1 — /2 — 2
Pun(s) = Pt
pz_az I,L
n
- p—yp—a?) 4
N (uz n)2< " )Pw(s)
prF—o
u . p2_a2 n+1A
- 2 Pyo(s)
pr—o

n—k
p—p*—o?
+ r - gPOk(S)( oM )
Y Pn(s) p- p—oﬂ)r
+ ZPr()
w2

where p=s+A+pu

As Pj(z, t) does not contain terms with negative powers of z
the right-hand side of (3.10) with nreplaced by —n must be zero.
Thus,

0 = e MR (at) + (u—n)B"
t
x / Po W)l (@ ( — v))e= O+ gy
0

(3.11)

t
_up / Pro (W)l (@ (£ — v))e~ O+ dy

v [ ZPo, ()BTl (E — ))e D dudy

(3.12)

using I_p(x)=Iy(x).

For n=0,
0 = e MmN () + ( — ) B ™"
t
X / Pio (U)Io (Ol (t — U))ei()LJrM)(tiv)dU
0

t
—pp / Pro@) (e (¢ — v))e P+ dy
0

t o0
+y f S Po()B (et — v))e O EDdydy  (313)
0
The Laplace transform of Eq. (3.13) given as follows
r
p—Vp—o?
()
\/7{1 + (= m)Pro(s) — v/ P2 — 2Py (s)
p?—a?
3 (=P - e} (314)

Substituting (3.14) in (3.11), and considerably simplifying the
working, we obtain

n
N n _ 2 _ 0(2
Pns) = L (” L )
p?—a? K
n
n pz az ~
R : 77)/32 ( > Bio(s)
VP —-a
M[BTH»] p _ pz _ az mH N
— o Pyo(s)
P2 -

n—k
p- p—tx
O]
B ()

;’L){uw MBo(s) — /P2 — 2P0 s)

1 .
5 (p -vpt- 052>P10(5)}
which on inversion yields an explicit expression for us the follow-
ing equation Py,(t) given by
Pin(t) = B"(In-1(t) — Inya (t))e= 0t
+ (=B P (t) * In(at)e” 0
B Py (t) # Inyq (t)e "
+ @y (8) # Io (et )= P
— (=1)Pio(t)  Pn(t) x Io(crt)eHH 4 Dy (t) % Pro(t)
+ %Cbn(t) # Pio(t) * Iy (at e~ G-+t

n-1

+y Y B Py (Ol (at) e P
k=0

(3.15)

Thus we have expressed Pq,(t) in terms of Py,(t) and Pqo(t).

3.1.3. Evaluation for Pyy(t)
Comparing the coefficients of z=! on both sides of Eq.
(3.12) and using I_p(x)=Iy(x), we get

0 = e 0 BTy aut) + (1 — B!
t
x f Po ) (@ (t — v))e- -+ gy
0
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t
K / PioW)Ip(a(t — v))e~ A=y

+y / ZPoz W) B~ *DL (et — v))e PHWE dydy

(3.16)

Taking Laplace transform of (3.16) and simplifying, we get
1 o w—n r r+1

2)LM Z (_1)r+1< 2)\'“ ) <p _ /pz —Ol2>

torg Z(— (G ) (p- Vi —a?)

k
4 p—+/p*—a?
XZPOk(S) T
k=0

Inverting (3.17) we obtain the expression of P1y(t) as follows

Pyp(t) = ﬁ Z (_1)r+1 (Oé(,&—ﬂ)) [ (at) — Ir+2(at)]e‘(““)[

Prio(s) =

r+1

(3.17)

2

Y CAC))
Z( D ( e )
X[(Ir(af) — Lo (at))e” ()Hr/.L)[]

5 BTEPo(t) [y (@) — Tyq () Jle 30
k=0

(3.18)

3.14. Evaluation for Pyy(t)
On applying Laplace transform to the system Eq. (3.1), we have

EPo1(s) +1Pro(s) (3.19)

Now, using (3.7) and (3.17) in (3.19) and after some mathemat-
ical manipulation, we obtain

zm ZZ(_ i ( )(nu)mj

m=0 j=0

1 m+1
J DT
X%‘ (S+)L+y> CD1(S)

o . e m—j+1
S () (- )|

- p——
G p—yp—o?

X O] _
Z;, k(5)< B )

which on inversion yields an explicit expression for Pyg(t) as

ZZ(—) <><zw) gle e i a0

r *(m—j+1)
*|:Z (—])r+1 (W) (I (act) — 1r+2(at))e(k+y)tj|

r=0

(S+A+Y)Po(s) =

Pyo(s) =

X

Poo(t) =

r=0

#(m—j)
x [Z BT q (@t) — T (ct) e~ 470 (Dk(t):| (3.20)

where *(m—j+1) denotes (m—j+ 1)-fold convolution and *(m—j)
denotes (m—j)-fold convolution.

Thus, Egs. (3.7), (3.15), (3.18) and (3.20) taken together complete
the transient solution.

3.2. Performance measures

3.2.1. Mean
Let E(V(t)) be the average number of customers in the model at
time t, then E(V(t)) is given by the expression

o)

E(V(t)) = m(t) = Y n(Pon(t) + Prn(t))
n=1
m'(t) = > n(Pon(t) + P'1a(t))
n=1

From Egs. (3.2)-(3.4) and after considerable mathematical ma-
nipulations, the above equation will lead to the following differen-
tial equation

m'(t) = A — @+ uPio(t) + Y Pon(t) —§ > nPon(t)

n=1 n=1

Therefore,

m(t) = (A - ’””“/o Pio(y) dy

o) t 0 t
+/L21:f0 Po,l(y)dy—sgnfo Pon (v)dy

where Pgy,(t) and Pyp(t) are given in (3.7) and (3.18).

(3.21)

3.2.2. Variance
Let Var(V(t)) be the variance number of customers in the model
at time t, then Var(V(t)) is given by the expression

Var(V(t)) = E[V2(t)] - [E(V(t)]?
Var(V(t)) = u(t) — [m(t)]?
where

u(®) =E[V2(©)] = Y n* (Plon(t) + P (1))

n=1

From Egs. (3.2)-(3.4) and after considerable mathematical ma-
nipulations, the above equation will lead to the following differen-
tial equation

W) = A+ )+ 200 — pym(t) — 28 Y n*Pon(t)

n=1

+EY NP (t) + 214 MPon(t) — Y Pon(t) — uPro(t)

n=1 n=1 n=1

Therefore,

Var(w(t)) = (h+ )t + 20 — ) /0 m(y)dy

- o0 X t o0 t
2€§n /OPOn(y>dy+s§n/0 Pon (v)dy

=) t x t
v yon [ Py n Y [ Pody
n=1 0 n=1 0
t
~ 1 [ Py~ [m(o)P (322)
3.3. Expression for ®p(t)
1F(n+1; HTV +n+1; 32)

A\ 1
(bn = - St . S+ B —
(s) <$> M G5+ 1) CE+niR (1 S+ 15 )
(3.7.1)
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The Eq. (3.7.1) takes the form

n+m
F+1; 3 +n+1; 2) i ( >( ol
11 v TE 0 E :En

— (372
[T CF2 + ) = +y +JE) 5.72)
By resolving into partial fractions, we have
R+ S 4n+ 1 2) = im) (A
mer (") (F)
n+m (_1)]'—1
7.
L G DM DG 7+ ) 673
Also,
s+y - > ="
F(1; 1, — )= _
] ]( £ T ) ,,12:%1'[,-:1(5+)/+J$)
= i =)"dm(s), m=1,2,3,...
m=0
where,
dm = —_m . . e~
© m; [T (s +y +J§)
_ D" _
_g(r—l)!(m—r)!(s—i—y—i—ré) =123
Using the equality given in [23], we get
-1 0
[la (1; STV 4 ‘*)] =Y gn(s)Am, (3.74)
s é': m=0
where go(s)=1 and for m=1, 2, 3,...
d] (5) 1
da(s) di(s) 1
d3 (S) dz(S) d] (5)
gm(s) = . . .
dn-1(5)  dm2(s) dm3(s) di(s) 1
dn(s)  dmp-1(s)  dp-2(s) da(s)  di(s)
=Y (-1)d;(5)gm_; ().
j=1

By substituting (3.7.3) and (3.7.4) in (3.7.1), we obtain,

@y (s) = A" Z Ak (" - ") ( : ) Go) 3 gn (A"

m=1

On inversion,

@, (t)—A"ZA "("*")( : ) i (£) * ngaw“

where

dm(t)=iL ot m=1,2,3,...
L (r=DlIm-r)! ’ e
m

gn(t) =Y (=1)71dj(t) xgn_j(t), m=23 4,

j=1

di(t) =g (t)
4. Conclusion

In this paper, we discussed the transient solution of an M/M/1
queue with impatient customers and server vacations under a

waiting server. We have derived closed form explicit expressions
analytically for the system size probabilities, mean and variance by
employing Laplace transforms, continued fractions and generating
functions. These expressions can be easily evaluate numerically if
desired.

A. Appendix: confluent hypergeometric function

We display the definition of confluent hypergeometric function
and some properties of this function. The confluent hypergeomet-
ric function is denoted by {F;(a; c; z) and is defined by the power
series

a(a+1) 2
c 1| N CES W

(a)k
Z (©) k! (21)

provided that ¢ does not equal 0, —1, —2,.... Here (@)y is the rising
factorial function (the Pochhammer symbol), which is defined by:

I'lax +k)
(o)n = W
We observe that
1F(0;¢;2) =1.

The quotient of two hypergeometric functions may be ex-
pressed as continued fractions. The following identity from
Lorentzen and Waadeland [24].
i@+ 1c+1;2) ¢

1F(a; ¢ 2) B

11-‘1(acz)—1+

(a+1)z (a+2)z
c—z+c—z+14+4c—-2z2+2+
which can be rewritten as
1F(a; ¢; 2) _
Fa+1;c+1;2) €-2)=

)

(a+1)z (a+2)z
c—z+1+c—z+2+

(2.2)

References

[1] S.I. Ammar, Transient analysis of an M/M/1 queue with impatient behavior and
multiple vacations, Appl. Math. Comput. 260 (2015) 97-105.

[2] Y. Levy, U. Yechiali, Utilization of idle time in an M/G/1 queueing system, Man-
age. Sci. 22 (1975) 202-211.

[3] B. Doshi, Queueing systems with vacations - a survey, Queueing Syst. 1 (1986)
29-66.

[4] H. Takagi, in: Queueing Analysis: A Foundation of Performance Evaluation,
North-Holland, Amsterdam, 1991, p. 1.

[5] N. Tian, Z. Zhang, Vacation Queueing Models-Theory and Applications,
Springer-Verlag, New York, 2006.

[6] J.C. Ke, C.H. Wu, Z.G. Zhang, Recent development in vacation queueing models:
a short survey, Int. J. Oper. Res. 7 (2010) 3-8.

[7] S. Benjaafar, ]J. Gayon, S. Tepe, Optimal control of a production-inventory sys-
tem with customer impatience, Oper. Res. Lett. 38 (2010) 267-272.

[8] T. Bonald, ]. Roberts, Performance modeling of elastic traffic in overload, in:
ACM Sigmetrics Performance Evaluation Review, 29, 2001, pp. 342-343.

[9] CH. Wu, ].C. Ke, Computational algorithm and parameter optimization for a
multi-server system with unreliable servers and impatient customers, ]. Com-
put. Appl. Math. 235 (2010) 547-562.

[10] E. Altman, U. Yechiali, Analysis of customers’ impatience in queues with server
vacation, Queueing Syst. 52 (2006) 261-279.

[11] E. Altman, U. Yechiali, Infinite server queues with systems’ additional task and
impatient customers, Probab. Eng. Inf. Sci. 22 (2008) 477-493.

[12] N. Perel, U. Yechiali, Queues with slow servers and impatient customers, Eur. J.
Oper. Res. 201 (2010) 247-258.

[13] D. Yue, W. Yue, G. XU, Analysis of customers impatience in an M/M/1 queue
with working vacations, ]. Ind. Manag. Optim. 8 (2012) 895-908.

[14] D. Yue, W. Yue, Z. Saffer, X. Chen, Analysis of an M/M/1 queueing system
with impatient customers and a variant of multiple vacation policy, in: The
7th International Conference on Queueing Theory and Network Applications
(QTNA2012), Kyoto, Japan, August 2012, pp. 1-3.

[15] L. Adan, A. Economou, S. Kapodistria, Synchronized reneging in queueing sys-
tems with vacations, Queueing Syst. 62 (2009) 1-33.

[16] R. Padmavathy, K. Kalidass, K. Ramanath, Vacation queues with impatient cus-
tomers and a waiting server, Int. J. Latest Trends Softw. Eng. 1 (2011) 10-19.

[17] K. Kalidass, J. Gnanaraj, S. Gopinath, K. Ramanath, Transient analysis of an
M/M/1 queue with a repairable server and multiple vacations, Int. J. Math.
Oper. Res. 6 (2014) 193-216.


http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0001
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0001
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0002
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0002
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0002
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0003
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0003
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0004
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0004
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0005
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0005
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0005
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0006
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0006
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0006
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0006
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0007
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0007
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0007
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0007
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0008
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0008
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0008
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0009
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0009
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0009
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0010
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0010
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0010
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0011
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0011
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0011
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0012
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0012
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0012
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0013
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0013
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0013
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0013
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0014
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0014
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0014
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0014
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0014
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0015
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0015
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0015
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0015
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0016
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0016
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0016
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0016
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0017
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0017
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0017
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0017
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0017

342 S.I. Ammar/Journal of the Egyptian Mathematical Society 25 (2017) 337-342

[18] R. Sudhesh, L. Francis Raj, Computational analysis of stationary and transient
distribution of single server queue with working vacation, in: Global Trends in
Computing and Communication Systems, 269, 2012, pp. 480-489.

[19] Indra, B Sweety, The transient solution of an unreliable M/G/1 queue with va-
cations, Int. J. Inf. Manage. Sci. 21 (2010) 391-406.

[20] J. Boxma, S. Schlegel, U. Yechiali, A note on an M/G/1 queue with a waiting
server timer and vactions, Am. Math. Soc. Translations 207 (2002) 25-35 Series
2.

[21] U. Yechiali, On the M*/G/1 queue with a waiting server and vacations, Sankhya
66 (2004) 1-17.

[22] K. Kalidass, K. Ramanath, Time dependent analysis of M/M/1 queue with
server vacations and a waiting server, in: The 6th International Conference on
Queueing Theory and Network Applications (QTNA2011), Seoul, Korea, 2011,
pp. 23-26.

[23] I Gradshteyn, AJ. Ryzhik, D. Zwillinger, Table of Integrals, Series, and Products,
seventh ed., Academic Press is an imprint of Elsevier, 2007.

[24] L. Lorentzen, H. Waadeland, Continued fractions with applications, Studies in
Computational Mathematics, Elsevier, Amsterdam, 1992 3.


http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0018
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0018
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0018
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0019
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0019
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0019
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0020
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0020
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0020
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0020
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0021
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0021
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0022
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0022
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0022
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0023
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0023
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0023
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0023
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0024
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0024
http://refhub.elsevier.com/S1110-256X(16)30065-7/sbref0024

	Transient solution of an M/M/1 vacation queue with a waiting server and impatient customers
	1 Introduction
	2 System model
	3 Transient behavior
	3.1 Time dependent probabilities
	3.1.1 Evaluation for P0n(t) 
	3.1.2 Evaluation for P1n(t) 
	3.1.3 Evaluation for P10(t) 
	3.1.4 Evaluation for P00(t) 

	3.2 Performance measures
	3.2.1 Mean
	3.2.2 Variance

	3.3 Expression for n(t) 

	4 Conclusion
	A Appendix: confluent hypergeometric function
	 References


