Contents lists available at ScienceDirect

Journal of the Egyptian Mathematical Society

journal homepage: www.elsevier.com/locate/joems

Short Communication

Note on "approximation space on novel granulations"

A. Kandil^a, Amr Zakaria^{b,*}

^a Department of Mathematics, Faculty of Science, Helwan University, Egypt ^b Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt

ARTICLE INFO

ABSTRACT

examples.

Article history: Received 22 September 2016 Revised 2 January 2017 Accepted 11 February 2017 Available online 18 March 2017

2000 MSC: 54F05

Keywords: Lower approximation Upper approximation Rough set Minimal neighborhoods

1. Introduction

Definition 1 [2]. Let *U* be a nonempty set and *R* be a binary relation on *U*. The *minimal neighbourhood* of $x \in U$ is defined as:

 $\langle x \rangle_R = \cap \{ pR : x \in pR \},\tag{1}$

where $pR = \{q \in U : (p,q) \in R\}$.

Proposition 4 of [1] asserted that for any reflexive binary relation on a nonempty set U and $X \subseteq U$ the following pair of *lower and upper approximations*

$$\underline{apr}(X) = \bigcup_{\langle x \rangle_R \subseteq X} \langle x \rangle_R, \tag{2}$$

$$\overline{apr}(X) = \bigcap \{ U - \langle x \rangle_R | X \subseteq U - \langle x \rangle_R \}.$$
(3)

satisfy the following properties:

 $\begin{array}{l} (L_1) \ \underline{apr}(X) = [\overline{apr}(X^c)]^c, \\ (U_1) \ \overline{apr}(X) = [\underline{apr}(X^c)]^c, \\ (U_3) \ \overline{apr}(X \cup Y) = \overline{apr}(X) \cup \overline{apr}(Y), \\ (U_4) \ \overline{apr}(X \cap Y) \subseteq \overline{apr}(X) \cap \overline{apr}(Y), \\ (U_5) \ X \subseteq Y \Rightarrow \overline{apr}(X) \subseteq \overline{apr}(Y), \\ (U_6) \ \overline{apr}(U) = U, \\ (U_7) \ X \subseteq \overline{apr}(X). \end{array}$

These properties are wrong in general. Moreover, counterexamples are mentioned to prove our claim.

* Corresponding author.

2. Counter-example

In this note, we show that an alleged properties stated in [1] are invalid in general, by giving a counter-

The following example shows that (L_1) , (U_1) , (U_3) , (U_4) , (U_5) , (U_6) and (U_7) of [Proposition 4, 1] are wrong, in general.

© 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Example 2. Let $U = \{a, b, c, d\}$ and $R = \Delta \cup \{(a, b), (a, d), (b, d), (c, d), (d, b)\}$, where Δ is the identity relation on *U*. Hence $\langle a \rangle_R = \{a, b, d\}, \langle b \rangle_R = \{b, d\}, \langle c \rangle_R = \{c, d\}$ and $\langle d \rangle_R = \{d\}$.

- (*L*₁) Let $X = \{a, b\}$. Then $[\overline{apr}(X^c)]^c = [\overline{apr}(\{c, d\})]^c = \emptyset^c = U$ and $apr(\{a, b\}) = \emptyset$. Hence $apr(X) = [\overline{apr}(X^c)]^c$ is incorrect.
- (U_1) Let X = U. Then $[\underline{apr}(X^c)]^c = U$, but $\overline{apr}(X) = \emptyset$. Thus $\overline{apr}(X) \neq [\underline{apr}(X^c)]^c$.
- (*U*₃) Let $X = \{\overline{d}\}$ and $Y = \{a, c\}$. This implies that $\overline{apr}(X) = \emptyset$, $\overline{apr}(Y) = \{a, c\}$. Hence $\overline{apr}(X \cup Y) = \emptyset$ and $\overline{apr}(X) \cup \overline{apr}(Y) = \{a, c\}$. As a result, $\overline{apr}(X \cup Y) \neq \overline{apr}(X) \cup \overline{apr}(Y)$.
- (*U*₄) Let $X = \{c\}$ and $Y = \{c, d\}$, then $\overline{apr}(X) = \{c\}$, $\overline{apr}(Y) = \emptyset$ and $\overline{apr}(X \cap Y) = \{c\}$. Thus $\overline{apr}(X \cap Y) \nsubseteq \overline{apr}(X) \cap \overline{apr}(Y)$.
- (*U*₅) Let $X = \{a\}$ and $Y = \{a, d\}$. Then $\overline{apr}(X) = \{a\}$ and $\overline{apr}(Y) = \emptyset$. Hence $X \subseteq Y$, but $\overline{apr}(X) \notin \overline{apr}(Y)$.
- $(U_6) \ \overline{apr}(U) = \emptyset$. Therefore, $\overline{apr}(U) = U$ is invalid.
- (U_7) Let $X = \{b, d\}$. Then $\overline{apr}(X) = \emptyset$. Thus $X \nsubseteq \overline{apr}(X)$. Consequently, $X \subseteq \overline{apr}(X)$ is wrong.

http://dx.doi.org/10.1016/j.joems.2017.02.003

1110-256X/© 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

CrossMark

E-mail address: amr.zakaria@edu.asu.edu.eg (A. Zakaria).

Acknowledgment

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

References

- A.A. Allam, M.Y. Bakeir, E.A. Abo-Tabl, Approximation space on novel granula-tions, J. Egypt. Math. Soc. 20 (2012) 92–97.
 A.A. Allam, M.Y. Bakeir, E.A. Abo-Tabl, New approach for basic rough set concepts, in: RSFDGrC 2005, vol. 3641, Springer-Verlag GmbH, LNCS, 2005, pp. 64–73.