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1. Introduction 

First, we will introduce some basic topological concepts. 

Definition 1.1. A nowhere dense set X in a topological space is a

set whose closure has empty interior, i.e. int ( X ) = ∅ . 

Definition 1.2. A nonempty set C ⊂ R is a Cantor set if C

is nowhere dense and perfect (i.e. C = C ′ , where C ′ := { p ∈
R ; p is an accumulation point of C} is the derived set of C ). 

Definition 1.3. A condensation point t of a subset A of a topolog-

ical space, is any point t , such that every open neighborhood of t

contains uncountably many points of A . 

We denote by Q the set of rational numbers. The symbol Z is

used to denote the set of integers, Z 

+ = { 1 , 2 , . . . } denotes the pos-

itive integers and N = { 0 , 1 , 2 , . . . } is the set of all natural numbers.

The cardinality of a set B is denoted by | B | . We denote by OR , the

class of all ordinal numbers. Moreover, � represents the set of all

countable ordinal numbers. 

Definition 1.4. Let α ∈ R \ Q . We say that α is a Liouville number

if for all n ∈ N , there exist integer numbers p = p n and q = q n , such
∗ Corresponding author. 

E-mail addresses: borys_yamil@yahoo.com , balvarez@uce.edu.ec , balvarez@ 

impa.br (B. Álvarez-Samaniego), alvarezwilson@hotmail.com (W.P. Álvarez- 

Samaniego), jonathan.ortizc@epn.edu.ec (J. Ortiz-Castro). 

m  

L  

u  

s  

n  

o  

http://dx.doi.org/10.1016/j.joems.2017.02.002 

1110-256X/© 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
hat q > 1 and 

 < 

∣∣∣α − p 

q 

∣∣∣ < 

1 

q n 
. (1.1)

f β ∈ R is not a Liouville number, we say that β is a Diophan-

ine number. The sets of Liouville and Diophantine numbers are,

espectively, denoted by L and D . 

Joseph Liouville, by giving two different proofs, showed the ex-

stence of transcendental numbers for the first time in 1844 [1,2] .

ater, in 1851 [3] more detailed versions of these proofs were

iven. It was also shown in [3] that the real number 

+ ∞ 

 

k =1 

1 

10 

k ! 
, 

hich was already mentioned in [1] , is a transcendental number.

t is worth noting that the techniques used in [1–3] allow proving

hat all Liouville numbers are transcendental. 

Some general properties of the set of Liouville numbers are:

 is a null set under the Lebesgue measure (i.e. λ(L ) = 0 ), it is

 dense G δ set in the real line, L is an uncountable set and,

ore specifically, it has the cardinality of the continuum. Since the

ebesgue measure of the Diophantine numbers is infinity, it is an

ncountable set. By using Theorem 3.1 below, there exists a Cantor

et in D , and since any uncountable closed set in R has the cardi-

ality of the continuum, it follows that D has also the cardinality

f the continuum. Moreover, in view of the density of Q in R , the
. This is an open access article under the CC BY-NC-ND license. 

http://dx.doi.org/10.1016/j.joems.2017.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/joems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2017.02.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:borys_yamil@yahoo.com
mailto:balvarez@uce.edu.ec
mailto:balvarez@impa.br
mailto:alvarezwilson@hotmail.com
mailto:jonathan.ortizc@epn.edu.ec
http://dx.doi.org/10.1016/j.joems.2017.02.002
http://creativecommons.org/licenses/by-nc-nd/4.0/


B. Álvarez-Samaniego et al. / Journal of the Egyptian Mathematical Society 25 (2017) 326–330 327 

s  

t  

u

 

o  

e  

t

P  

m  

f

P  

c  

 

s  

f  

t  

t

f  

C  

|  

t  

∈  

p  

f  

c  

s  

s  

s  

 

d  

n

 

i  

s  

a  

l  

H  

b  

o  

o  

r  

i  

 

a  

d  

D  

s  

s

2

 

a  

f  

t  

n

A  

T

L  

t

P

w

y

f  

b  

c

S

T

L  

f∑
t

P

−

w∣∣∣

T

2

−

w∣∣∣

T

|

w  

H

 

t

P  

(

et of Diophantine numbers is also dense in the real line. In addi-

ion, D is a set of first category, i.e. it can be written as a countable

nion of nowhere dense subsets of R . 

Now, we would like to prove an interesting result, which will

nly be mentioned in this section, related to the fact that the prop-

rty of being a Cantor set is preserved by homeomorphisms when

he homeomorphic image of its domain is a closed subset of R . 

roposition 1.1. Let A, B ⊂ R . Suppose that f : A � −→ B is a homeo-

orphism and B is a closed subset of R . If C ⊂ A is a Cantor set, then

 ( C ) ⊂ B is also a Cantor set. 

roof. From the fact that C ⊂ A is a perfect set, we get that C is

losed subset of R . Moreover, since f −1 is continuous, we have that

( f −1 ) −1 (C) = f (C) is a closed set in B , and since B is a closed sub-

et of R , it follows that f ( C ) is closed in R . Now, we claim that

 ( C ) ⊂ ( f ( C )) ′ . In fact, let y ∈ f ( C ) and ε > 0. So, there is x ∈ C such

hat y = f (x ) . Since f is continuous at x , there exists δ > 0 such

hat 

or all z ∈ A, | z − x | < δ 
⇒ | f (z) − f (x ) | < ε. (1.2)

onsidering that x ∈ C = C ′ , there exists z 0 ∈ C ⊂ A such that 0 <

 z 0 − x | < δ, and by (1.2) we deduce that | f (z 0 ) − f (x ) | < ε. Fur-

hermore, the injectivity of f implies that f ( x ) � = f ( z 0 ). Then, f ( z 0 )

 ( B ( y , ε) �{ y }) ∩ f ( C ). In consequence, y ∈ ( f ( C )) ′ . Hence, f ( C ) is a

erfect set in R . On the other hand, since C � = ∅ , we see that

 ( C ) � = ∅ . Finally, we will show that int ( f (C)) = ∅ . We suppose, by

ontradiction, that there exists y ∈ int( f ( C )). Then, there is r > 0

uch that (y − r, y + r) ⊂ f (C) . Since (y − r, y + r) is a connected

et, we have that f −1 ((y − r, y + r)) ⊂ C ⊂ A is also a connected

et. Let us take u, v ∈ f −1 ((y − r, y + r)) such that u < v . Then,

(u, v ) ⊂ f −1 ((y − r, y + r)) ⊂ C. Thus, int( C ) � = ∅ , which is a contra-

iction. Hence, int ( f (C)) = ∅ . Since f ( C ) is a nonempty perfect and

owhere dense set in R , we conclude that f ( C ) is a Cantor set. �

It is worth mentioning that “every uncountable G δ or F σ set

n a Polish space contains a homeomorphic copy of the Cantor

pace” [4] . In addition, Alexandroff [5] showed that every uncount-

ble Borel-measurable set contains a perfect set. By using these

ast facts, one can also obtain some of the results of this paper.

owever, in Section 2 , we will mainly proceed in a different way,

y constructing an uncountable perfect and nowhere dense subset

f the Liouville numbers. It deserves remark that Bendixson’s The-

rem, which states that every closed subset of the real line can be

epresented as a disjoint union of a perfect set and a countable set,

s used in the proofs of the main results given in Sections 3 and 4 .

This paper is organized as follows. In Section 2 , the existence of

 Cantor set in the set of Liouville numbers is proved. Section 3 is

evoted to show the existence of a Cantor set inside the set of

iophantine real numbers. Finally, in Section 4 , a necessary and

ufficient condition for the existence of a Cantor set contained in a

ubset of R is given. 

. Existence of a Cantor set contained in the Liouville numbers 

We begin this section showing the existence of an uncount-

ble closed set, S , contained in L . Then, we prove that S is a per-

ect set. Finally, since S is a closed set and λ(L ) = 0 , where λ is

he Lebesgue measure on the real line, we conclude that S is also

owhere dense. 

First, let us consider the following set 

 = { x = (x n ) n ∈ N ∈ { 0 , 1 } N : x 2 n + x 2 n +1 = 1 , ∀ n ∈ N } . (2.1)

he next result concerns the cardinality of set A . 

emma 2.1. The set A, given in (2.1) , has the cardinality of the con-

inuum. 
roof. Let f be the function given by 

f : A � −→ { 0 , 1 } N 
x � −→ y, 

here y = (y n ) n ∈ N ∈ { 0 , 1 } N is defined by 

 n = 

{
1 , if x 2 n +1 = 1 , 

0 , if x 2 n = 1 , 

or all n ∈ N . From the definition of function f , one gets that f is

ijective. Then, | A | = | { 0 , 1 } N | . Since c = | R | = | { 0 , 1 } N | , we con-

lude that A has the cardinality of the continuum. �

Using (2.1) , we define the set 

 = 

{ 

+ ∞ ∑ 

n =1 

x n −1 

10 

n ! 
: x = (x n ) n ∈ N ∈ A 

} 

. (2.2) 

he following lemma will be used in the proof of Proposition 2.1 . 

emma 2.2. Let z = (z i ) i ∈ Z + be a sequence such that z i ∈ {−1 , 0 , 1 }
or all i ∈ Z 

+ . If 
+ ∞ 

 

i =1 

z i 
10 

i ! 
= 0 , 

hen z i = 0 for all i ∈ Z 

+ . 

roof. Since 

z 1 
10 

= 

+ ∞ ∑ 

i =2 

z i 
10 

i ! 
, 

e see that 

z 1 
10 

∣∣∣ = 

∣∣∣∣∣+ ∞ ∑ 

i =2 

z i 
10 

i ! 

∣∣∣∣∣ ≤
+ ∞ ∑ 

i =2 

| z i | 
10 

i ! 
≤

+ ∞ ∑ 

i =2 

1 

10 

i ! 

< 

+ ∞ ∑ 

i =2! 

1 

10 

i 
= 

1 
10 2 

1 − 1 
10 

= 

1 

90 

. 

hus, | z 1 | < 

1 
9 < 1 . Hence, we conclude that z 1 = 0 . 

Now, we suppose, by induction, that for n ∈ Z 

+ such that n ≥
, we have that z k = 0 for k ∈ { 1 , 2 , . . . , n − 1 } . From the fact that 

z n 

10 

n ! 
= 

+ ∞ ∑ 

i = n +1 

z i 
10 

i ! 
, 

e get 

z n 

10 

n ! 

∣∣∣ = 

∣∣∣∣∣ + ∞ ∑ 

i = n +1 

z i 
10 

i ! 

∣∣∣∣∣ ≤
+ ∞ ∑ 

i = n +1 

| z i | 
10 

i ! 
≤

+ ∞ ∑ 

i = n +1 

1 

10 

i ! 

< 

+ ∞ ∑ 

i =(n +1)! 

1 

10 

i 
= 

1 
10 (n +1)! 

1 − 1 
10 

= 

10 

9 

· 1 

10 

(n +1)! 
. 

hen, 

 z n | < 

10 

9 

· 10 

n ! 

10 

(n +1)! 
= 

10 

9 

· 10 

n !(1 −(n +1)) 

= 

10 

9 

· 10 

−n (n !) ≤ 10 

9 

· 10 

−4 = 

1 

90 0 0 

< 1 , 

here we have used the fact that −n (n !) ≤ −4 for n ∈ { 2 , 3 , . . . } .
ence, | z n | < 1, and thus we conclude that z n = 0 . �

The next proposition shows that the set S has the cardinality of

he continuum. 

roposition 2.1. Let S and A be the sets respectively defined by

2.2) and (2.1) . Then, | S| = | A | = c. 
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Proof. Let g be the function given by 

g : A � −→ S 

x = (x n ) n ∈ N � −→ 

+ ∞ ∑ 

n =1 

x n −1 

10 

n ! 
. 

By the definition of function g , we see that g is surjective. More-

over, by Lemma 2.2 , it follows that g is injective. Therefore, we con-

clude that g is bijective. Hence, | S| = | A | = c. �

The subsequent result states that S is closed. 

Proposition 2.2. The set S ⊂ R , given in (2.2) , is a closed subset of

R . 

Proof. Let y ∈ R be such that there is a sequence (x n ) n ∈ N in S with

lim 

n → + ∞ 

x n = y . So, for every n ∈ N , we can write 

x n = 

+ ∞ ∑ 

i =1 

x n 
i −1 

10 

i ! 
, 

where (x n 
i 
) i ∈ N ∈ A . Since (x n ) n ∈ N is a convergent sequence, we have

that (x n ) n ∈ N is a Cauchy sequence. Thus, for ε 0 = 

1 
90 > 0 , there is

N 0 ∈ N such that for all m, n ∈ N , 

m, n ≥ N 0 
⇒ | x m − x n | = 

∣∣∣∣∣+ ∞ ∑ 

i =1 

x m 

i −1 
− x n 

i −1 

10 

i ! 

∣∣∣∣∣ < ε 0 . 

Then, for m, n ∈ N such that m, n ≥ N 0 , we get 

| x m 

0 − x n 0 | 
10 

≤
∣∣∣∣∣+ ∞ ∑ 

i =1 

x m 

i −1 
− x n 

i −1 

10 

i ! 

∣∣∣∣∣ + 

∣∣∣∣∣+ ∞ ∑ 

i =2 

x m 

i −1 
− x n 

i −1 

10 

i ! 

∣∣∣∣∣
< ε 0 + 

+ ∞ ∑ 

i =2 

| x m 

i −1 
− x n 

i −1 
| 

10 

i ! 
≤ ε 0 + 

+ ∞ ∑ 

i =2 

1 

10 

i ! 
< ε 0 + 

+ ∞ ∑ 

i =2! 

1 

10 

i 

= ε 0 + 

0 . 1 

2 

1 − 0 . 1 

= 

1 

90 

+ 

1 

90 

= 

1 

45 

. 

Therefore, x n 
0 

= x m 

0 
. Hence, there is x 0 ∈ {0, 1} such that lim 

n → + ∞ 

x n 0 =
x 0 . We proceed now by induction on k . Let k ∈ Z 

+ . Let us suppose

that for all j ∈ { 0 , . . . , k − 1 } , there exist lim 

n → + ∞ 

x n j =: x j ∈ { 0 , 1 } . Us-

ing again the fact that (x n ) n ∈ N is a Cauchy sequence, we see that

for ε k = 

10 
9 · 1 

10 (k +2)! 
> 0 , there is ˜ N k −1 ∈ N such that for m, n ∈ N , 

m, n ≥ ˜ N k −1 
⇒ | x m − x n | = 

∣∣∣∣∣+ ∞ ∑ 

i =1 

x m 

i −1 
− x n 

i −1 

10 

i ! 

∣∣∣∣∣ < ε k . (2.3)

Since for every j ∈ { 0 , 1 , . . . , k − 1 } , there exist lim 

n → + ∞ 

x n j = x j ∈
{ 0 , 1 } we have that there is N j ∈ N such that for all n ∈ N , 

n ≥ N j 
⇒ x n j = x j . (2.4)

Let N k := max { N 0 , N 1 , . . . , N k −1 , ̃
 N k −1 } ∈ N . Thus, for all m, n ∈ N , 

m, n ≥ N k 
⇒ | x m − x n | = 

∣∣∣∣∣ + ∞ ∑ 

i = k +1 

x m 

i −1 
− x n 

i −1 

10 

i ! 

∣∣∣∣∣ < ε k , (2.5)

where in the last inequality we have used (2.3) and (2.4) . Then, for

all m, n ∈ N , 

m, n ≥ N k 
⇒ 

| x m 

k 
− x n 

k 
| 

10 

(k +1)! 

≤
∣∣∣∣∣ + ∞ ∑ 

i = k +1 

x m 

i −1 
− x n 

i −1 

10 

i ! 

∣∣∣∣∣ + 

∣∣∣∣∣ + ∞ ∑ 

i = k +2 

x m 

i −1 
− x n 

i −1 

10 

i ! 

∣∣∣∣∣
< ε k + 

+ ∞ ∑ 

i = k +2 

| x m 

i −1 
− x n 

i −1 
| 

10 

i ! 
≤ ε k + 

+ ∞ ∑ 

i = k +2 

1 

10 

i ! 
< ε k + 

+ ∞ ∑ 

i =(k +2)! 

1 

10 

i 

= ε k + 

0 . 1 

(k +2)! 

1 − 0 . 1 

= 

10 

9 

· 1 

10 

(k +2)! 
+ 

10 

9 

· 1 

10 

(k +2)! 

= 

20 

9 

· 1 

10 

(k +2)! 
, 

here in the second inequality on the right-hand side of the im-

lication above, we have used (2.5) . Thus, for all m, n ∈ N , 

, n ≥ N k 
⇒ | x m 

k − x n k | < 

20 

9 

· 10 

( k +1 ) ! 

10 

( k +2 ) ! 

= 

20 

9 

· 1 

10 

( k +1 ) ! ( k +1 ) 
< 

20 

9 · 10 

4 
< 1 


⇒ x m 

k = x n k . 

(2.6)

t follows from (2.6) that there is x k ∈ {0, 1} such that lim 

n → + ∞ 

x n k =
 k . By the principle of finite induction, we conclude that for all

 ∈ N , 

lim 

 → + ∞ 

x n l =: x l ∈ { 0 , 1 } . (2.7)

oreover, it follows from the last expression that for all l ∈ N ,

here exists N l ∈ N such that for all n ∈ N , 

 ≥ N l 
⇒ x n l = x l . (2.8)

laim 1: x := (x i ) i ∈ N ∈ A . 

Let i ∈ N . We see that for all n ∈ N , 

 

n 
2 i + x n 2 i +1 = 1 . 

y using ( 2.7 ) into the last expression we get 

 2 i + x 2 i +1 = 1 . (2.9)

By ( 2.7 ), x ∈ 2 N , and using ( 2.9 ), we conclude that x ∈ A. 

Claim 2: y = 

∑ + ∞ 

i =1 

x i −1 

10 i ! 
. 

In fact, let ε > 0 . Since 
∑ ∞ 

i =1 
1 

10 i ! 
< + ∞ , there is a = a (ε) ∈

 2 , 3 , . . . } such that 

+ ∞ 

 

i = a 

1 

10 

i ! 
< ε. (2.10)

By ( 2.8 ), there exists P = P (ε) ∈ N , such that for all n ∈ N , 

 ≥ P 
⇒ x n k = x k ∈ { 0 , 1 } , ∀ k ∈ { 0 , 1 , . . . , a − 2 } . (2.11)

So, for all n ∈ N , 

 ≥ P 
⇒ 

∣∣∣∣∣x n − + ∞ ∑ 

i =1 

x i −1 

10 

i ! 

∣∣∣∣∣ = 

∣∣∣∣∣+ ∞ ∑ 

i =1 

x n 
i −1 

10 

i ! 
−

+ ∞ ∑ 

i =1 

x i −1 

10 

i ! 

∣∣∣∣∣
= 

∣∣∣∣∣a −1 ∑ 

i =1 

x n 
i −1 

− x i −1 

10 

i ! 
−

+ ∞ ∑ 

i = a 

x n 
i −1 

− x i −1 

10 

i ! 

∣∣∣∣∣
= 

∣∣∣∣∣+ ∞ ∑ 

i = a 

x n 
i −1 

− x i −1 

10 

i ! 

∣∣∣∣∣
≤

+ ∞ ∑ 

i = a 

| x n 
i −1 

− x i −1 | 
10 

i ! 
≤

+ ∞ ∑ 

i = a 

1 

10 

i ! 
< ε, 

(2.12)

where in the third equality above we have used ( 2.11 ) and in the last

nequality we have used ( 2.10 ). Then, 

lim 

 → + ∞ 

x n = 

+ ∞ ∑ 

i =1 

x i −1 

10 

i ! 
. 

y the uniqueness of the limit in the real line, we conclude that y =
 + ∞ 

i =1 

x i −1 

10 i ! 
. 
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Using Claims 1 and 2, we obtain that y ∈ S. Hence, S is a closed

ubset of R . �

By using a standard proof, we now show the following propo-

ition. 

roposition 2.3. The set S, given in (2.2) , is contained in the set of

iouville numbers, more precisely 

 ⊂ (0 , 1) ∩ L ⊂ L . (2.13)

roof. Let y ∈ S . Thus, there exists (x n ) n ∈ N ∈ A such that y =
 + ∞ 

i =1 

x i −1 

10 i ! 
. Then, 

 < y = 

+ ∞ ∑ 

i =1 

x i −1 

10 

i ! 
< 

+ ∞ ∑ 

i =1 

1 

10 

i ! 
< 

+ ∞ ∑ 

i =1 

1 

10 

i 
= 

1 

9 

< 1 . 

e now consider n ∈ Z 

+ . We define q n , p n ∈ Z as follows 

 n := 10 

n ! > 1 and p n := q n ·
n ∑ 

k =1 

x k −1 

10 

k ! 
. 

herefore, 

y − p n 

q n 

∣∣∣ = 

+ ∞ ∑ 

k = n +1 

x k −1 

10 

k ! 
< 

+ ∞ ∑ 

k = n +1 

1 

10 

k ! 

< 

+ ∞ ∑ 

k =(n +1)! 

1 

10 

k 
= 

1 

10 

(n +1)! 
·

+ ∞ ∑ 

k =0 

1 

10 

k 

= 

1 

10 

(n +1)! 
· 10 

9 

< 

10 

10 

(n +1)! 

≤ 10 

n ! 

10 

(n +1)! 
= 

1 

10 

n !(n +1) −n ! 
= 

1 

10 

n ! ·n = 

1 

q n n 

. 

or the sake of completeness, we will show here that y ∈ R \ Q .

n fact, we suppose, by contradiction, that there are p, q ∈ Z 

+ such

hat p 
q = y = 

∑ + ∞ 

i =1 

x i −1 

10 i ! 
. Since y ∈ (0, 1), we see that 0 < p < q .

hen, p ∈ { 1 , 2 , . . . , q − 1 } . Moreover, there is m ∈ Z 

+ such that 

 < 10 

m ! ·m −1 . (2.14) 

urthermore, the expression 

p 
q = 

∑ + ∞ 

i =1 

x i −1 

10 i ! 
is equivalent to 

p · 10 

m ! = q ·
m ∑ 

k =1 

x k −1 10 

m ! −k ! + q · 10 

m ! ·
+ ∞ ∑ 

k = m +1 

x k −1 

10 

k ! 
. (2.15)

sing (2.15) we see that 
(
q · 10 m ! · ∑ + ∞ 

k = m +1 

x k −1 

10 k ! 

)
∈ Z 

+ . Then, 

 ≤ q · 10 

m ! ·
+ ∞ ∑ 

k = m +1 

x k −1 

10 

k ! 
< q · 10 

m ! ·
+ ∞ ∑ 

k = m +1 

1 

10 

k ! 

< q · 10 

m ! ·
+ ∞ ∑ 

k =(m +1)! 

1 

10 

k 
= 

q · 10 

m ! 

10 

(m +1)! 
·

+ ∞ ∑ 

k =0 

1 

10 

k 

= 

q 

10 

m ! ·m 

· 10 

9 

< 

q 

10 

m ! ·m −1 
< 1 , 

here in the last inequality we have used (2.14) . Last expression

hows that the assumption y ∈ Q leads to a contradiction. Hence,

 ⊂ (0 , 1) ∩ L ⊂ L . �

The succeeding result says that the set S is equal to its set of

ccumulation points. 

roposition 2.4. The set S, given in (2.2) , is a perfect set, i.e. S = S ′ . 

roof. Since S is closed, it is enough to show that every element of

 is an accumulation point of S . In order to prove the last assertion,

et a ∈ S , and ε > 0. We will show that there exists b ∈ S such that

 < | a − b| < ε. We take N ∈ N satisfying N > 

1 
2 · log 10 

(
2 
ε 

)
. Since a
 S , there is (x n ) n ∈ N ∈ A such that a = 

∑ + ∞ 

i =1 

x i −1 

10 i ! 
. For all i ∈ N , we

efine 

 i := 

{
1 − x i , if (2 N − i )(2 N + 1 − i ) = 0 , 

x i , otherwise . 
(2.16) 

ince (x n ) n ∈ N ∈ { 0 , 1 } N , it follows directly from (2.16) that

(y n ) n ∈ N ∈ { 0 , 1 } N . We will now show that for all i ∈ N , y 2 i + y 2 i +1 =
 . In fact, if i = N, then y 2 i + y 2 i +1 = 1 − x 2 i + 1 − x 2 i +1 = 1 + 1 −
 = 1 . On the other hand, if i � = N , then y 2 i + y 2 i +1 = x 2 i + x 2 i +1 = 1 .

hus, (y n ) n ∈ N ∈ A, and therefore 

 := 

+ ∞ ∑ 

i =1 

y i −1 

10 

i ! 
∈ S. (2.17) 

n addition, 

 < | a − b| = 

∣∣∣∣∣+ ∞ ∑ 

i =1 

x i −1 

10 

i ! 
−

+ ∞ ∑ 

i =1 

y i −1 

10 

i ! 

∣∣∣∣∣ = 

∣∣∣∣∣+ ∞ ∑ 

i =1 

x i −1 − y i −1 

10 

i ! 

∣∣∣∣∣
= 

∣∣∣∣∣+ ∞ ∑ 

i =0 

x i − y i 

10 

(i +1)! 

∣∣∣∣∣ = 

∣∣∣x 2 N − y 2 N 

10 

(2 N+1)! 
+ 

x 2 N+1 − y 2 N+1 

10 

(2 N+2)! 

∣∣∣
= 

∣∣∣x 2 N − 1 + x 2 N 

10 

(2 N+1)! 
+ 

x 2 N+1 − 1 + x 2 N+1 

10 

(2 N+2)! 

∣∣∣
= 

∣∣∣ 2 x 2 N − 1 

10 

(2 N+1)! 
+ 

2 x 2 N+1 − 1 

10 

(2 N+2)! 

∣∣∣ ≤ | 2 x 2 N − 1 | 
10 

(2 N+1)! 
+ 

| 2 x 2 N+1 − 1 |
10 

(2 N+2)! 

= 

1 

10 

(2 N+1)! 
+ 

1 

10 

(2 N+2)! 
≤ 1 

10 

(2 N)! 
+ 

1 

10 

(2 N)! 

≤ 2 

10 

2 N 
< ε, 

here the last equality is a consequence of the fact that for all z ∈
 0 , 1 } , | 2 z − 1 | = 1 . This concludes the proof of the proposition. �

We now proceed to prove the key theorem of this section. 

heorem 2.1. The set S, given in (2.2) , is a Cantor set contained in

he set of Liouville numbers. 

roof. Let S be the set given by (2.2) . By Propositions 2.1, 2.3 and

.4 , S is an uncountable perfect set contained in L . Moreover, by

roposition 2.2 , S is a closed subset of R , since λ(L ) = 0 and S ⊂ L ,

e have that S is a nowhere dense subset of R . We may therefore

onclude that S is a Cantor set such that S ⊂ L . �

Before ending this section, we state an important definition and

 lemma that we will use in the proof of Proposition 2.5 below. 

efinition 2.1 (Cantor–Bendixson’s derivative) . Let A be a subset of

 topological space. For a given ordinal number α ∈ OR , we define,

sing transfinite recursion, the αth derivative of A , written A 

( α) , as

ollows: 

• A 

(0) = A, 

• A 

(β+1) = (A 

(β) ) ′ , for all ordinal β , 

• A 

(λ) = 

⋂ 

γ <λ

A 

(γ ) , for all limit ordinal λ � = 0. 

The next lemma and its proof can be found in [6, Lemma 2.1] . 

emma 2.3. Suppose that n ∈ Z 

+ . Let F 1 , F 2 , . . . , F n be closed subsets

f R . Then, for all ordinal number α ∈ OR , we have that 

 

n ⋃ 

k =1 

F k 

) (α) 

= 

n ⋃ 

k =1 

F (α) 
k 

. 

We close this section with a general topological result on the

eal line. 

roposition 2.5. Every element of a perfect set C ⊂ R is a condensa-

ion point of C. 
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Proof. Let C ⊂ R be a perfect set. We suppose, for the sake of con-

tradiction, that there is a ∈ C such that a is not a condensation

point of C . Then, there exists r > 0 such that C ∩ (a − r, a + r) is

countable. Thus, C ∩ [ a − r, a + r] is also countable. Since C is a per-

fect set, we have that C is closed. Hence, C ∩ [ a − r, a + r] is a closed

and countable subset of R . By Theorem C of Cantor [7] , there exists

a countable ordinal number α ∈ � such that the αth derivative of

 ∩ [ a − r, a + r] is empty, namely, (C ∩ [ a − r, a + r]) (α) = ∅ . More-

over, we write 

 = (C \ (a − r, a + r)) 
⊎ 

(C ∩ (a − r, a + r)) 

⊂ (R \ (a − r, a + r)) ∪ (C ∩ [ a − r, a + r]) , 

where R \ (a − r, a + r) = (−∞ , a − r] 
⊎ 

[ a + r, + ∞ ) is a perfect set.

Using Lemma 2.3 , we see that 

a ∈ C = C (α) ⊂ [ (R \ (a − r, a + r)) ∪ (C ∩ [ a − r, a + r]) ] 
(α) 

= (R \ (a − r, a + r)) (α) ∪ (C ∩ [ a − r, a + r]) (α) 

= R \ (a − r, a + r) , 

which is a contradiction. Therefore, every element of C is a con-

densation point of C . �

3. Existence of a Cantor set contained in the Diophantine 

numbers 

First, let us consider the following representation of the set of

Liouville numbers, 

L = 

⋂ 

n ∈ N 
U n , 

where 

 n = 

+ ∞ ⋃ 

q =2 

⋃ 

p∈ Z 

[ (
p 

q 
− 1 

q n 
, 

p 

q 

)⊎ 

(
p 

q 
, 

p 

q 
+ 

1 

q n 

)] 
is an open and dense set of R , for all n ∈ N . Then, 

D = R \ L = L 

c = 

(⋂ 

n ∈ N 
U n 

)c 

= 

⋃ 

n ∈ N 
U 

c 
n = 

⋃ 

n ∈ N 
D n , (3.1)

where D n = U 

c 
n is a closed and nowhere dense set, for all n ∈ N . We

come now to the main result of this section. 

Theorem 3.1. There is a set C ⊂ D such that C is a Cantor set. 

Proof. Since λ(L ) = 0 , D is an uncountable set. Using (3.1) , we see

that there is a k ∈ N such that D k is an uncountable set. Let C be

the set of all condensation points of D k . By Bendixson’s Theorem,

D k = (D k \ C) 
⊎ 

C, where D k �C is countable and C is a perfect set.

We see that C is an uncountable subset of R . Also, since D k is a

nowhere dense set, we get that C is also nowhere dense. Hence, C

is a Cantor set contained in D . �
. A necessary and sufficient condition for the existence of a 

antor set contained in a subset of the real line 

We begin this section with a preliminary result. 

emma 4.1. Every nonempty perfect set in R contains a Cantor set. 

roof. Let P ⊂ R be a nonempty perfect set. There are two cases to

onsider. 

• If int (P ) = ∅ , then P is a Cantor set. 

• If a ∈ int( P ), there is r > 0 such that (a − r, a + r) ⊂ P . Let ˜ C be

the usual triadic Cantor set in the closed interval 
[
a − r 

3 , a + 

r 
3 

]
.

Then, 

˜ C ⊂
[ 

a − r 

3 

, a + 

r 

3 

] 
⊂ (a − r, a + r) ⊂ P. 

�

Finally, we show the purpose of this section. 

heorem 4.1. X ⊂ R contains a Cantor set if and only if X contains a

losed and uncountable subset of R . 

roof. Let F ⊂ X be a closed and uncountable subset of the real

ine. By Bendixson’s Theorem, there is a perfect and uncount-

ble set P ⊂ F . By Lemma 4.1 , there is a Cantor set K , such that

 ⊂ P ⊂ F ⊂ X . Reciprocally, since all Cantor sets are closed and un-

ountable, the theorem is proved. �
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