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1. Introduction and preliminaries 

It worth to mention that the use of triangle inequality in a met-

ric space ( X , d ) is of extreme importance since it implies that (i) d

is continuous, (ii) each open ball is an open set, (iii) a sequence

may converge to a unique point, (iv) every convergent sequence is

a Cauchy sequence and other things. One of the importance gen-

eralizations of metric spaces is symmetric spaces, where the tri-

angle inequality is relaxed. It was not immediately observed that

such spaces may fail to satisfy properties (i)–(iv). Hence, in some

of last papers, the authors implicitly used some of conditions (i)–

(iv), so that their results were inaccuracy. Various authors intro-

duced many types, generalizations, and applications of generalized

metric spaces until now (see, [2–5] ). 

On the other hand, In 2015, Almeida, Roldan-Lopez-de-Hierro

and Sadarangani [1] proved that whenever f is a rational type con-

traction mapping from a complete metric space into itself, then f

has a unique fixed point. In this paper, we introduce fixed point

theorems for contraction mappings of rational type in symmetric

spaces. Our results generalize the results due to Almeida, Roldan-

Lopez-de-Hierro and Sadarangani [1] . 
∗ Corresponding author. 
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Next, we present some preliminaries and notations related to

ymmetric spaces and rational type contractions. 

efinition 1.1. [6] . Suppose that X be a non-empty set and S : X ×
 → [0, ∞ ) be a distance function such that: 

(i) S(x, y ) = 0 ⇔ x = y. 

(ii) S(x, y ) = S(y, x ) , 

or all x , y ∈ X . 

We mean by a pair ( X , S ) with a symmetric space. 

efinition 1.2. [6] . Let ( X , S ) be a symmetric space. 

(a) A sequence { x n } in X is S-Cauchy sequence if

lim n →∞ 

S(x n , x n + r ) = 0 , r ∈ N(the set of all natural num-

bers). 

(b) ( X , S ) is S-complete if for every S-Cauchy sequence { x n },

there exists x in X with lim n →∞ 

S(x n , x ) = 0 . 

(c) f : X → X is S-continuous if lim n →∞ 

S(x n , x ) = 0 implies

lim n →∞ 

S( f x n , f x ) = 0 . 

We need the following properties in a symmetric space ( X , S ). 

( W 3 ) [7] Given { x n } , y and x in X , lim n →∞ 

S(x n , x ) = 0 and

lim n →∞ 

S(x n , y ) = 0 imply that x = y. 
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( W 4 ) [7] Given { x n } , { y n } and x in X , lim n →∞ 

S(x n , x ) = 0 and

lim n →∞ 

S(x n , y n ) = 0 imply that lim n →∞ 

S(y n , x ) = 0 . 

(1C) [8] A function S is 1-continuous if lim n →∞ 

S(x n , x ) = 0 �⇒
lim n →∞ 

S(x n , y ) = S(x, y ) . 

emark 1.1. [7] . ( W 4 ) �⇒ ( W 3 ). 

efinition 1.3. [9] . Let f : X → X and β: X × X → [0, ∞ ). The map-

ing f is β−admissible if, for all x , y ∈ X such that β( x , y ) > 1, we

ave β( fx , fy ) > 1. 

efinition 1.4. [9] . Let ( X , S ) be a symmetric space and β: X × X

 [0, ∞ ). X is β−regular if, for each sequence { x n } in X such that

(x n , x n +1 ) > 1 for all n ∈ N and lim n →∞ 

x n = x, then there exists

 subsequence { x n k } of { x n } such that β(x n k , x ) > 1 ∀ k ∈ N . 

In 2011, Haghi et al. [10] showed that some coincidence point

nd common fixed point generalizations in fixed point theory are

ot real generalizations. They gave the following lemma which

how that the authors should take care in obtaining real gener-

lizations in fixed point theory. 

emma 1.1. [10] . Let X be a nonempty set and f : X → X a function.

hen there exists a subset E ⊆X such that f (E) = f (X ) and f : E → X

s one-to-one. 

. Main results 

In this section we introduce some new fixed point results for a

ational contraction self-mapping on symmetric spaces. 

heorem 2.1. Suppose that ( X , S ) be a S-complete symmetric space

atisfy ( W 4 ) and (1 C ). Let f be a self-mapping on X , and the following

ondition holds: 

( f x, f y ) ≤ φ(M(x, y )) + C min { S(x, f x ) , S(y, f y ) , S(x, f y ) , 

S(y, f x ) } ∀ x, y ∈ X, C ≥ 0 , (1) 

here M ( x , y ) is defined by 

(x, y ) = max 

{
S(x, y ) , 

S(x, f x )(S(y, f y ) + 1) 

1 + S(x, y ) 
, 

S(y, f y )(S(x, f x ) + 1) 

1 + S(x, y ) 

}
. 

nd φ: [0, ∞ ) → [0, ∞ ) be a continuous, nondecreasing function and

im n →∞ 

φn (t) = 0 ∀ t > 0 . 

Then f have a unique fixed point. 

roof. Let x 0 ∈ X be an arbitrary point and let { x n } be the sequence

efined by x n +1 = f x n for all n ∈ N . If there exists m ∈ N such that

 m 

= x m +1 , then x m 

= x m +1 = f x m 

, so x m 

is a fixed point of f . In this

ase, the proof is finished. Suppose, on the contrary, that x n +1 
 = x n 
or all n ∈ N , that is d(x n , x n +1 ) > 0 . 

By (1) , we have 

( f x n , f x n +1 ) ≤ φ(M(x n , x n +1 )) 

+ C min { S(x n , f x n ) , S(x n +1 , f x n +1 ) , 

S(x n , f x n +1 ) , S(x n +1 , f x n ) } 
= φ(M(x n , x n +1 )) (2) 

here 

(x n , x n +1 ) = max 

{
S(x n , x n +1 ) , 

S(x n , f x n )(S(x n +1 , f x n +1 ) + 1) 

1 + S(x n , x n +1 ) 
, 
S(x n +1 , f x n +1 )(S(x n , f x n ) + 1) 

1 + S(x n , x n +1 ) 

}

= max 

{
S(x n , x n +1 ) , 

S(x n , x n +1 )(1 + S(x n +2 , x n +1 )) 

1 + S(x n , x n +1 ) 
, 

S(x n +2 , x n +1 ) 

}
, 

e consider the following cases 

• If M(x n , x n +1 ) = S(x n , x n +1 ) from (2) we have 

S(x n +1 , x n +2 ) ≤ φ(S(x n , x n +1 )) < S(x n , x n +1 ) (3) 

• If M(x n , x n +1 ) = 

S(x n ,x n +1 )(1+ S(x n +2 ,x n +1 )) 

1+ S(x n ,x n +1 ) 
from (2) we obtain 

S(x n +1 , x n +2 ) ≤ φ

(
S(x n , x n +1 )(1 + S(x n +2 , x n +1 )) 

1 + S(x n , x n +1 ) 

)

< 

S(x n , x n +1 )(1 + S(x n +2 , x n +1 )) 

1 + S(x n , x n +1 ) 
. 

Hence 

S(x n +1 , x n +2 ) < S(x n , x n +1 ) , 

that is (3) holds. 

• If M(x n , x n +1 ) = S(x n +2 , x n +1 ) from (2) we get 

S(x n +2 , x n +1 ) < S(x n +2 , x n +1 ) , 

hich is impossible. 

In any case, we proved that (3) holds. Since { S(x n +1 , x n +2 ) } is

ecreasing. Hence, it converges to a nonnegative number, c ≥ 0. If

 > 0, then letting n → + ∞ in (2) , we deduce 

c ≤ φ

(
max 

{
c, 

c(1 + c) 

1 + c 
, c 

})
= φ(c) < c, 

hich implies that c = 0 , that is 

lim 

 →∞ 

S(x n +1 , x n +2 ) = 0 . (4) 

y using ( W 4 ) and for any integer number r we have 

lim 

 →∞ 

S(x n , x n + r ) = 0 , (5) 

hich implies that { x n } is S-Cauchy sequence. Since ( X , S ) is S-

omplete, there exists u ∈ X such that lim n →∞ 

S(x n , u ) = 0 . From

 W 4 ) we have 

lim 

 →∞ 

S(x n +1 , u ) = 0 . 

et u 
 = fu . Applying (1) and using (1C) we get 

( f u, u ) = lim 

n →∞ 

S( f u, x n +1 ) = lim 

n →∞ 

S( f u, f x n ) 

≤ lim 

n →∞ 

[ φ(M(u, x n )) + C min { S(x n , f x n ) , 

S(u, f u ) , S(x n , f u ) , S(u, f x n ) } ] 
= lim 

n →∞ 

[ φ(M(u, x n )) + C min { S(x n , x n +1 ) , 

S(u, f u ) , S(x n , f u ) , S(u, x n +1 ) } ] 
= lim 

n →∞ 

[ φ(M(u, x n ))] < S( f u, u ) , (6) 

here 

(u, x n ) = max 

{
S(u, x n ) , 

S(u, f u )(S(x n , f x n ) + 1) 

1 + S(u, x n ) 
, 

S(x n , f x n )(S(u, f u ) + 1) 

1 + S(u, x n ) 

}

= max 

{
S(u, x n ) , 

S(u, f u )(S(x n , x n +1 ) + 1) 

1 + S(u, x n ) 
, 
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S(x n , x n +1 )(S(u, f u ) + 1) 

1 + S(u, x n ) 

}

= S(u, f u ) as n → ∞ . 

Which leads to a contradiction. Hence, S(u, f u ) = 0 , that is, u = f u

and so u is a fixed point for f . 

Now, we prove that u is the unique fixed point of f . Let x and

y be arbitrary fixed points of f such that x = f x and y = f y. Using

the condition (1) , it follows that 

S(x, y ) = S( f x, f y ) ≤ φ

(
max 

{
S(x, y ) , 

S(x, f x )(S(y, f y ) + 1) 

1 + S(x, y ) 
, 

S(y, f y )(S(x, f x ) + 1) 

1 + S( f 2 u, f 2 v ) 

})

+ C min { S(x, f x ) , S(y, f y ) , S(x, f y ) , S(y, f x ) } 
= φ(S(x, y )) < S(x, y ) , 

which implies that S(x, y ) = 0 . Thus, x = y and f has a unique fixed

point. �

Example 2.1. Suppose that X = [0 , 1] and E = { 5 6 , 
2 
3 , 

7 
12 , 

8 
15 } . Define

S on X × X as follows: 

S 

(
5 

6 

, 
2 

3 

)
= S 

(
7 

12 

, 
8 

15 

)
= 

4 

9 

, S 

(
5 

6 

, 
8 

15 

)
= S 

(
2 

3 

, 
7 

12 

)
= 

1 

3 

, 

S 

(
5 

6 

, 
7 

12 

)
= S 

(
2 

3 

, 
8 

15 

)
= 

8 

9 

, S(x, y ) = | x − y | otherwise . 

Then ( X , S ) is a symmetric space but not metric space. Let f : X → X

and φ( t ): [0, ∞ ) → [0, ∞ ) defined by f x = 

1 
2 x, and φ(t) = 

t 
2 , ∀ t ∈

[0 , ∞ ) . 

Then f and φ satisfy all the conditions of Theorem 2.1 . Hence, 0

is the unique fixed point of f . 

From Lemma 1.1 , one can find that the following theorem is a

consequence of Theorem 2.1 . 

Theorem 2.2. Suppose that ( X , S ) be a symmetric space satisfy ( W 4 )

and (1 C ). Let f 1 and f 2 be self-mappings on X such that f 1 X ⊂ f 2 X . Sup-

pose that ( f 2 X , S ) is a S-complete symmetric space and the following

condition holds: 

S( f 1 x, f 1 y ) ≤ φ(M(x, y )) + C min { S( f 2 x, f 1 x ) , S( f 2 y, f 1 y ) , 

S( f 2 x, f 1 y ) , S( f 2 y, f 1 x ) } ∀ x, y ∈ X, C ≥ 0 , (7)

where M ( x , y ) is defined by 

M(x, y ) = max 

{
S( f 2 x, f 2 y ) , 

S( f 2 x, f 1 x )(S( f 2 y, f 1 y ) + 1) 

1 + S( f 2 x, f 2 y ) 
, 

S( f 2 y, f 1 y )(S( f 2 x, f 1 x ) + 1) 

1 + S( f 2 x, f 2 y ) 

}
. 

and φ: [0, ∞ ) → [0, ∞ ) be a continuous, nondecreasing function and

φ(t) = 0 ⇐⇒ t = 0 . 

Then f 1 and f 2 have a unique point of coincidence in X . Moreover

if f 1 and f 2 are weakly compatible, then f 1 and f 2 have a unique com-

mon fixed point. 

Corollary 2.1. Replacing the condition (1) in Theorem 2.1 with the

following condition: 

S( f x, f y ) ≤ a 1 S(x, y ) + a 2 
S(x, f x )(S(y, f y ) + 1) 

1 + S(x, y ) 

+ a 3 
S(y, f y )(S(x, f x ) + 1) 

1 + S(x, y ) 

+ C min { S(x, f x ) , S(y, f y ) , S(x, f y ) , S(y, f x ) } , 
where a , a , a , C ≥ 0, and a + a + a < 1 . 
1 2 3 1 2 3 
Then f has a unique fixed point in X . 

emark 2.1. [1, Theorem 7] is special case of Theorem 2.1 . 

Next, we introduce a fixed point theorem for a ( α, ψ , φ)-

ontraction self-mapping of rational type in S-complete symmetric

paces. 

heorem 2.3. Let ( X , S ) be a S-complete symmetric spaces satisfy

 W 4 ) and (1 C ). Let f be self-mapping satisfy the following condition: 

(β(x, y ) S( f x, f y )) ≤ φ(M(x, y )) − ψ(M(x, y )) ∀ x, y ∈ X, (8)

here M ( x , y ) as in Theorem 2.1 . 

Consider also that the next conditions hold: 

(i) ∃ x 0 ∈ X such that β( fx 0 , x 0 ) ≥ 1, 

(ii) f is β−admissible, 

(iii) X is β−regular and β( x m 

, x n ) ≥ 1, ∀ m , n ∈ N , m 
 = n , 

(iv) either β( x , y ) ≥ 1 or β( y , x ) ≥ 1, 

(iiv) φ: [0, ∞ ) → [0, ∞ ) be a continuous, non-decreasing and

φ(t) = 0 ⇐⇒ t = 0 , and ψ : [0, ∞ ) → [0, ∞ ) be a lower

semi-continuous function and ψ(t) = 0 ⇐⇒ t = 0 . 

Then f has a unique fixed point in X . 

roof. Suppose that x 0 ∈ X , β( x 0 , fx 0 ) ≥ 1. Define { x n } be a se-

uences in X such that x n +1 = f x n . If x n = x n +1 which implies

hat x n +1 is a fixed point of f . Consequently, we can suppose

hat x n 
 = x n +1 for all n ∈ N . From (i), we get that β(x 0 , f x 0 ) =
(x 0 , x 1 ) ≥ 1 . Also, by (ii) we have that β( f x 0 , f x 1 ) = β(x 1 , x 2 ) ≥
 , β( f x 1 , f x 2 ) = β(x 2 , x 3 ) ≥ 1 . Continuous with this process we

btain that β(x n , x n +1 ) ≥ 1 . Now, by using (8) , we get 

(S( f x n , f x n +1 )) ≤ φ(β(x n , x n +1 ) S( f x n , f x n +1 )) 

≤ φ(M(x n , x n +1 )) − ψ(M(x n , x n +1 )) (9)

here 

(x n , x n +1 ) = max 

{
S(x n , x n +1 ) , 

S(x n , f x n )(S(x n +1 , f x n +1 ) + 1) 

1 + S(x n , x n +1 ) 
, 

S(x n +1 , f x n +1 )(S(x n , f x n ) + 1) 

1 + S(x n , x n +1 ) 

}

= max 

{
S(x n , x n +1 ) , 

S(x n , x n +1 )(1 + S(x n +1 , x n +2 )) 

1 + S(x n , x n +1 ) 
, 

S(x n , x n +2 ) 

}
, 

e consider the following cases 

• If M(x n , x n +1 ) = S(x n , x n +1 ) from (9) we have 

φ(S(x n +1 , x n +2 )) ≤ φ(S(x n , x n +1 )) − ψ(S(x n , x n +1 )) 

< φ(S(x n , x n +1 )) , 

Since φ is nondecreasing we have 

S(x n +1 , x n +2 ) < S(x n , x n +1 ) . (10)

• If M(x n , x n +1 ) = 

S(x n ,x n +1 )(1+ S(x n +1 ,x n +2 )) 

1+ S(x n ,x n +1 ) 
from (9) we obtain 

φ(S(x n +1 , x n +2 )) ≤ φ

(
S(x n , x n +1 )(1 + S(x n +1 , x n +2 )) 

1 + S(x n , x n +1 ) 

)

−ψ 

(
S(x n , x n +1 )(1 + S(x n +1 , x n +2 )) 

1 + S(x n , x n +1 ) 

)

< φ

(
S(x n , x n +1 )(1 + S(x n +1 , x n +2 )) 

1 + S(x n , x n +1 ) 

)
. 
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The nondecreasing property of φ implies that 

S(x n +1 , x n +2 ) < 

S(x n , x n +1 )(1 + S(x n +1 , x n +2 )) 

1 + S(x n , x n +1 ) 

�⇒ S(x n +1 , x n +2 ) + S(x n +1 , x n +2 ) S(x n , x n +1 ) 

< S(x n , x n +1 ) + S(x n +1 , x n +2 ) S(x n , x n +1 ) 

�⇒ S(x n +1 , x n +2 ) < S(x n , x n +1 ) . (11) 

Hence, (10) is obtained. 

• If M(x n , x n +1 ) = S(x n +1 , x n +2 )) . By (9) we obtain 

φ(S(x n +1 , x n +2 )) ≤ φ(S(x n +1 , x n +2 )) − ψ(S(x n +1 , x n +2 )) 

< φ(S(x n +1 , x n +2 )) , 

his is a contradiction. 

In any case, we proved that (10) holds. Since { S(x n +1 , x n +2 ) } is

ecreasing. Hence, it converges to 0, that is 

lim 

 →∞ 

S(x n +1 , x n +2 ) = 0 . (12) 

y ( W 4 ) we get that { x n } is a S-Cauchy sequence. Since ( X , S ) is S-

omplete, there exists u ∈ X such that lim n →∞ 

x n = u. From ( W 4 )

im n →∞ 

x n +1 = u. If u 
 = fu . Applying (8) and using (1 C ) we obtain

hat 

(S( f u, u )) = lim 

k →∞ 

φ(S( f u, x n +1 )) 

≤ lim 

n →∞ 

[ φ(M(u, x n )) − φ(M(u, x n ))] , (13) 

here M ( u , x n ) as in (6) 

We get from (13) that 

φ(S(u, f u )) < φ(S(u, f u )) , 

hich implies a contradiction, then S(u, f u ) = 0 , that is, u = f u

nd so u is a fixed point for f . 

Now, we prove that u is the unique fixed point of f . Let x and

 be arbitrary fixed points of f such that x = f x and y = f y. Using

he condition (8) , it follows that 

(S(x, y )) = φ(S( f x, f y )) ≤ φ(S(x, y )) − ψ(S(x, y )) < φ(S(x, y ))

hich implies that S(x, y ) = 0 . Thus, x = y and f has a unique fixed

oint. �

emark 2.2. [1, Theorem 16] is special case of Theorem 2.3 . 

In 20 0 0, Branciari [3] introduced a new concept of generalized

etric space as follows: 

efinition 2.1. [3] . Suppose that X be a nonempty set and d : X × X

 [0, ∞ ) be a distance function such that for all w, a, b, c ∈ X and

 
 = a 
 = b 
 = c, 

(i) d(w, a ) = 0 ⇔ w = a, 

(ii) d(w, a ) = d(a, w ) , 

(iii) d(w, a ) ≤ d(a, b) + d(b, c) + d(c, w ) (quadrilateral inequal-

ity). 

Then we say that ( X , d ) generalized metric spaces (G.M.S, for

hort). 
roposition 2.1. Let ( X , d ) be the G.M.S. Then ( W 4 ) and (1 C ) are sat-

sfied. 

efinition 2.2. Assume that X be a non-empty set and S : X × X →
0, ∞ ) be a distance function satisfy the conditions ( i ) and ( ii ) in

efinition 2.1 . Then ( X , S ) is called symmetric generalized metric

paces (S.G.M.S, for short). 

emark 2.3. Theorems 2.1 and 2.3 are correct in S.G.M.S. 

emark 2.4. It will be interesting to establish Theorems 2.1 and

.3 for n −tupled fixed points as in M. Imdad et al. [11] , Soliman

12–14] and Soliman et al. [15] . 
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