Contents lists available at [ScienceDirect](http://www.ScienceDirect.com)

Journal of the Egyptian Mathematical Society

journal homepage: www.elsevier.com/locate/joems

Original article

Shaban Khidr

$L^p - L^r$ estimates for $\overline{\partial}$ on *q*-convex intersections in a Stein manifold

Department of Mathematics, Faculty of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia Department of Mathematics, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt

a r t i c l e i n f o

A B S T R A C T

manifold.

Article history: Received 29 September 2016 Accepted 16 February 2017 Available online 18 March 2017

MSC: 32W05 32F10 and 32A26

Keywords: L^p − *L^r* estimates $\bar{\partial}$ -equation *q*-convexity Raising steps method

1. Introduction

The estimates of growth and regularity of the $\bar{\partial}$ -equation plays a very prominent role in the theory of functions of several complex variables. In particular, L^p estimates of the solutions to the $\bar{\partial}$ equation has a long history in this field going back to the classical results of Kerzman [\[1\]](#page-3-0) and Øvrelid $[2]$. $L^p - L^r$ estimates (or L^p estimates with gain) for $\bar{\partial}$ were first obtained by Krantz [\[3\],](#page-3-0) who proved that for every ∂¯-closed (0, 1)-form *f* with *L^p* coefficients, 1 $\leq p \leq \infty$, on a strictly pseudoconvex domain Ω with C^5 boundary in \mathbb{C}^n , there exists a function *u* in $L^r(\Omega)$ with $\frac{1}{r} = \frac{1}{p} - \frac{1}{2(n+1)}$ such that $\bar{\partial}u = f$ in Ω and $||u||_{L^r(\Omega)} \lesssim ||f||_{L^p_{0,1}(\Omega)}$, see [\[3\]](#page-3-0) for the precise formulations.

This result strongly improves the $L^p - L^p$ result obtained by Øvrelid $\lceil 2 \rceil$, because it gives a gain $r > p$ and this is the key for the "raising steps method" to work. This kind of results has been recently extended by Amar [\[4\]](#page-3-0) to (*r, s*)-forms.

Minini [\[5\]](#page-3-0) obtained $L^p - L^r$ estimates for solutions of the $\overline{\partial}$ equation on a finite transverse intersection of strictly pseudoconvex bounded domains in C*n*.

In the case of bounded convex domains of finite type *m*, by us-ing support functions, Diederich et al[.\[6\]](#page-3-0) proved optimal $\frac{1}{m}$ -Hölder estimate and Fischer [\[7\]](#page-3-0) obtained optimal L^p estimates for $\bar{\partial}$.

On generalizing the domains introduced in [\[5\]](#page-3-0) to *q*-convex setting, $q \geq 1$, Lan Ma and Vassiliadou [\[8\]](#page-3-0) introduced the so called

<http://dx.doi.org/10.1016/j.joems.2017.02.005>

This is an open access article under the CC BY-NC-ND license. [\(http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/)

In this work, we obtain *L^p*-regularity with gain for the ∂¯-equation on *q*-convex intersection in a Stein

q-convex intersection below and then they obtained *L^p* − *L^r* estimates for $\bar{\partial}$ on such domains.

© 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Definition 1.1. A bounded domain *D* in a complex manifold *X* of complex dimension *n* is called a C^3 *q*-convex intersection (*q* \geq 1) in the sense of Grauert if there exist a bounded neighborhood *U* of \overline{D} and a finite number of real-valued C^3 functions $\rho_1(z), \ldots, \rho_N(z)$, where $n \ge N + 2$, defined on *U* such that

$$
D = \{z \in U \mid \rho_1(z) < 0, \ldots, \rho_N(z) < 0\}
$$

and the following conditions are fulfilled:

(1) For $1 \le i_1 < i_2 < \cdots < i_\ell \le N$ the 1-forms $d\rho_{i_1}, \ldots, d\rho_{i_\ell}$ are $R-$ linearly independent on the set \bigcap^{ℓ} $\bigcap_{j=1}^{n} {\rho_{i_j}(z) \leq 0}.$

(2) For $1 \le i_1 < i_2 < \cdots < i_\ell \le N$ and every $z \in \bigcap^{\ell}$ $\bigcap_{j=1}^{n} {\rho_{i_j}(z) \le 0}$, if we set $I = (i_1, \ldots, i_\ell)$, there exists a linear subspace T^I_z of *X* of complex dimension at least $n - q + 1$ such that for $i \in I$ the Levi forms L_{ρ_i} restricted on T_z^I are positive definite.

Theorem 1.2 [\(\[8\]\)](#page-3-0). Let Ω be a C^3 q-convex intersection in \mathbb{C}^n with $1 ≤ q ≤ n$. Let *f* be *a* ∂-closed form in $L^p_{0,s}(\Omega)$, where $1 ≤ p ≤ ∞$ and *s* ≥ *q. Then there exist a* ν ∈ N+, *depending on the maximal number of nonempty intersections of* $\{\rho_i = 0\}_{i=1}^{\ell+1}$, *a form u in* $L^r_{0,s-1}(\Omega)$, *with* $\frac{1}{r} = \frac{1}{p} + \frac{1}{\lambda} - 1$, and a positive constant *C* such that $\bar{\partial}u = f$ and

$$
||u||_{L_{0,s-1}^r(\Omega)} \leq C||f||_{L_{0,s}^p(\Omega)},
$$

where $1 \leq \lambda < \frac{2\nu + 2n}{2n - 1 + 2\nu}$. More precisely, we have

1110-256X/© 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. [\(http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/)

E-mail address: skhidr@yahoo.com

(1) *For any* $1 < p < 2(n + v)$, *there exists a positive constant* $C_p(\Omega)$ $(\text{depends on } max\{\|\rho_i\|_{\mathcal{C}^3}\}_{i=1}^{\ell+1}, \Omega \text{ and } p) \text{ such that}$

$$
||u||_{L_{0,s-1}^r(\Omega)} \leq C_p(\Omega) ||f||_{L_{0,s}^p(\Omega)} \quad \text{with} \quad \frac{1}{r} = \frac{1}{p} - \frac{1}{2n+2\nu}.
$$

(2) *For* $p \ge 2(n + v)$, *there is a constant* $C_p(\Omega) > 0$ *(depends on* $\max\{\|\rho_i\|_{\mathcal{C}^3}\}_{i=1}^{\ell+1}, \ \Omega \text{ and } p) \text{ such that}$

$$
||u||_{L^{\infty}_{0,s-1}(\Omega)} \leq A_p(\Omega) ||f||_{L^p_{0,s}(\Omega)}.
$$

The main goal of this paper is to extend their results above to Stein manifolds. Namely, we aim to prove the following $L^p - L^r$ existence theorem.

Theorem 1.3. Let Ω be a C^3 q-convex intersection ($q \ge 1$) in a Stein *manifold X* of complex dimension *n* with $n \geq 2$ and f *a* ∂ $\overline{\partial}$ *-closed* (0, *s*)*-form on* Ω *with* $s > q$ *. Then we have the following assertions.*

(a) *If* $1 \leq p \leq 2$ *and f belongs to* $L^p_{0,s}(\Omega)$, *then the equation* $\bar{\partial}u =$ *f* has a solution *u* in $L_{0,s-1}^r(\Omega)$ with $\frac{1}{r} = \frac{1}{p} - \gamma$, where $\gamma =$ $\min(\frac{1}{2(n+\nu)},\frac{1}{p}-\frac{1}{2}),$ moreover, there is a constant $C_p(\Omega)>0$ such *that*

 $||u||_{L_{0,s-1}^r(\Omega)} \leq C_p(\Omega) ||f||_{L_{0,s}^p(\Omega)}.$

(b) If 2 < $p < 2(n + v)$ and f belongs to $L_{0,s}^{p,c}(\Omega)$ with $\bar{\partial}\omega = 0$ for $q \leq$ $s < n$ and f belongs to $L_{0,s}^p(\Omega)$ with $f \perp \mathcal{H}_n^{p'}(\Omega)$ for $s = n$, then *the equation* $\bar{\partial}u = f$ *has a solution* u *<i>in* $L_{0,s-1}^r(\Omega)$ *with* $\frac{1}{r} = \frac{1}{p}$ – $\frac{1}{2(n+v)}$, moreover, there is a positive constant $A_p(\Omega)$ such that

$$
||u||_{L^r_{0,s-1}(\Omega)} \leq A_p(\Omega) ||f||_{L^p_{0,s}(\Omega)}.
$$

- (c) *If* $p \ge 2(n+\nu)$ and *f* belongs to $L^p_{0,s}(\Omega)$, then the equation $\bar{\partial}u = f$ h as a solution u in $L^\infty_{0,s-1}(\Omega)$, moreover, there is a constant $E_p(\Omega)$ > 0 *such that*
	- $||u||_{L^{\infty}_{0,s-1}(\Omega)} \leq E_p(\Omega) ||f||_{L^p_{0,s}(\Omega)},$

The constants C_p(Ω), $A_p(\Omega)$, and $E_p(\Omega)$ depend on $\max\{\|\rho_i\|_{\mathcal{C}^3}\}_{i=1}^{\ell+1}, \ \Omega \text{ and } p.$

The proof relies heavily on the *L*2-Hilbert space techniques of Hörmander [\[9\]](#page-3-0) and on applying the raising steps method introduced in Amar [\[10\],](#page-3-0) we first recall this method to make our paper reasonably self-contained. Let *X* be a smooth manifold admitting a partition of unity and a decreasing scale ${B_p}_{p>1}$, $r \geq$ $p \Rightarrow B_r(\Omega) \subset B_n(\Omega)$ of Banach spaces of functions or forms defined on relatively compact open set Ω in *X* such that $\Omega' \subset \Omega$ implies $B_p(\Omega) \subset B_p(\Omega')$. These Banach spaces must be "strong" modules over D, the space of \mathcal{C}^{∞} functions with compact support, i.e., let *Ω*, *U* be two open sets and $Ω' = Ω ∩ U$; if $f ∈ B_p(Ω')$ and $χ ∈$ $\mathcal{D}(U)$, then $\chi f \in B_p(\Omega)$ which is stronger than $\chi f \in B_p(\Omega')$, with $\|\chi f\|_{B_p(\Omega)} \leq C(\chi) \|f\|_{B_p(\Omega')}$. This means that the smooth extension of *f* by 0 in $\Omega \backslash \Omega'$ is also in $B_p(\Omega)$. For instance, $B_p(\Omega) = L^p(\Omega)$ the Lebesgue spaces, or $B_p(\Omega) = W^{p,t}(\Omega)$ the Sobolev spaces are such spaces.

The problem is to solve the linear equation $Du = f$, where *D* is a linear operator and $f \in B_p(\Omega)$ with eventually the constraint $\Delta f = 0$, where Δ is also a linear operator such that $\Delta D = D\Delta = 0$. In case there is no constraint we take $\Delta = 0$. We put the following hypotheses on *D* for any domain $\Omega \subset X$:

(i) $\forall \chi \in \mathcal{D}(\Omega)$, $D\chi \in \mathcal{D}(\Omega)$;

(ii) $\forall \chi \in \mathcal{D}(\Omega)$, $\forall \alpha \in B_p(\Omega)$, $D(\chi \alpha) = D\chi \cdot \alpha + \chi D\alpha$.

It can be easily seen that a linear differential operator *D* verifies these assumptions.

Let Ω be a relatively compact domain in *X*, we put the following assumptions on *X* and Ω . There is a $p_0 > 1$ and a $\delta > 0$ such that

(iii) There is an open covering ${U_j}_{j=1,\ldots,N}$ of $\overline{\Omega}$ such that, $\forall p \leq p_0$, setting $\frac{1}{r} = \frac{1}{p} - \delta$, for given $f \in B_p(\Omega)$ with $\Delta f = 0$, we can solve $Du_j = f$ locally in $\Omega_j := U_j \cap \Omega$ with $B_p(\Omega) - B_r(\Omega_j)$ estimates, that is, there exist u_j in $B_s(\Omega_j)$ and a constant $C_0 > 0$ such that

 $Du_j = f$ in Ω_j and $||u_j||_{B_r(\Omega_j)} \leq C_0 ||f||_{B_p(\Omega)}$.

(iv) We can solve $D\beta = f$, $\Delta f = 0$, globally in Ω with $B_{p_0} - B_{p_0}$ estimates, i.e., there exist β in $B_{p_0}(\Omega)$ and a constant $E > 0$ such that

 $D\beta = f$ in Ω and $\|\beta\|_{B_{p_0}(\Omega)} \leq E \|f\|_{B_{p_0}(\Omega)}$.

We therefore have the following key theorem.

Theorem 1.4 (Raising steps theorem, [\[10\]\)](#page-3-0)**.** *Under the above assumptions. If f is in* $B_p(\Omega)$ *with* $\Delta f = 0$, $p \le p_0$, *there exist u in* $B_r(\Omega)$ *with* $\gamma := \min(\delta, \frac{1}{p} - \frac{1}{p_0})$ *and* $\frac{1}{r} = \frac{1}{p} - \gamma$ *, and a constant* $C > 0$ *such that* $Du = f$ *in* Ω *and*

$$
||u||_{B_r(\Omega)} \leq C||f||_{B_p(\Omega)}.
$$

2. Proof of Theorem 1.3

We apply the raising steps method above to the case when Ω is a $C³$ q-convex intersection in a Stein manifold *X* of complex dimension $n \ge 2$, $D = \Delta = \overline{\partial}$, and $B_p(\Omega) = L_{0,s}^p(\Omega)$ is the space of $(0, s)$ -forms with coefficients in $L^p(\Omega)$. This will be done in several steps. Clearly (i) and (ii) are verified. Then we begin by using the *L*²-theory for $\overline{\partial}$.

2.1. Use of L*2-estimates and Serre duality for* ∂¯

Let Ω be given as above. Choose finitely many holomorphic coordinates system $h_j: U_j \to \mathbb{C}^n$ on *X* and choose also open subsets *V_i* ∈ *U_j* such that $\overline{\Omega}$ \subseteq \cup _{*j}V_j* and Ω *_j* = *V_j* ∩ Ω is a local *q*-convex in-</sub> tersection in *X* and $\Omega'_j = h_j(\Omega_j)$ is a C^3 *q*-convex intersection in \mathbb{C}^n for each *j*. Let *f* be a $\bar{\partial}$ -closed form in $L^p_{0,s}(\Omega)$. [Theorem](#page-0-0) 1.2 is now applied to each $\Omega'_j \subset \mathbb{C}^n$ which yields a solution u'_j in $L^r_{0,s-1}(\Omega'_j)$ to the equation $\bar{\partial}u'_j = h_j f$ with $\frac{1}{r} = \frac{1}{p} - \frac{1}{2(n+v)}$. So we have here $\delta =$ $\frac{1}{2(n+v)}$. The resulting solution *u'_j* is then pulled-back to Ω_j using the holomorphic map *h_j*, we then have a solution $u_j \in L_{0,s-1}^r(\Omega_j)$ to the equation $\overline{\partial} u_j = f$ in Ω_j with control of the norm. So assumption (iii) is fulfilled.

The assumption (iv) follows from the following *L*2-setting. Since the *q*-convexity is stable with respect to $C³$ small perturbations, by arguing as in the proof of Lemma 2.1 in [\[11\],](#page-3-0) we can exhaust Ω from inside by a sequence of C^3 strictly *q*-convex domains $\{\Omega_k\}$ such that

$$
\Omega_k \Subset \Omega_{k+1} \Subset \Omega \quad \text{and} \quad \Omega = \cup_k \Omega_k.
$$

It follows from [9, [Theorem](#page-3-0) 3.4.1] that the operator $\bar{\partial}$: $L^2_{0,s-1}(\Omega_k)$ → $L^2_{0,s}(\Omega_k)$ has closed range for each *k* and all $s ≥ q$. For all $f \in L^2_{0,s}(\Omega) \cap \text{Dom}(\bar{\partial}) \cap \text{Dom}(\bar{\partial}^*)$, $s \geq q$, we then have the estimate

$$
\int_{\Omega_k} |f|^2 dv \leq C_s(\Omega_k) \bigg(\|\bar{\partial} f\|_{L^2(\Omega_k)}^2 + \|\bar{\partial}^* f\|_{L^2(\Omega_k)}^2 \bigg),
$$

where *dV* is the volume element on *X* and $C_s(\Omega_k)$ is a positive constant depends on the diameter of Ω_k and *s*.

Using this estimate and standard arguments, we deduce that the $\bar{\partial}$ operator has L^2 closed range on Ω for all (0, *s*)-forms with *s* ≥ *q*. Proposition 1.1.2 in [\[9\]](#page-3-0) and the fact that Ker($\overline{\partial}$) ∩ Ker($\overline{\partial}$ *) = {0} imply that the estimate

$$
||f||_{L^{2}(\Omega)}^{2} \leq K(\Omega) \left(||\bar{\partial}f||_{L^{2}(\Omega)}^{2} + ||\bar{\partial}^{*}f||_{L^{2}(\Omega)}^{2} \right)
$$

holds for all *f* ∈ *L*_{0,*s*}(Ω) ∩ Dom($\bar{\partial}$) ∩ Dom($\bar{\partial}$ *) with *s* ≥ *q*.

This last estimate together with Theorem 1.1.4 in [\[9\]](#page-3-0) enable us to have the following *L*2-existence theorem.

Theorem 2.1. Let Ω be a C^3 q-convex intersection (q \geq 1) in a Stein *manifold X* of complex dimension *n* with $n \geq 2$. Then for every $\overline{\partial}$ *closed form f in* $L^2_{0,s}(\Omega)$, $s \geq q$, *there exist a form u in* $L^2_{0,s-1}(\Omega)$ *solving the equation* $\overline{\partial}u = f$ *in* Ω *and a constant* $C > 0$ *(depending on* Ω *and s*) *satisfying the following* L^2 -*estimate*

 $||u||_{L^2_{0,s-1}(\Omega)} \leq C||f||_{L^2_{0,s}(\Omega)}.$

On applying [Theorem](#page-1-0) 1.4, we therefore get the assertion (a) in [Theorem](#page-1-0) 1.3.

We turn now to the case when $p > 2$, we proceed by duality and ask that *f* has compact support, that is, *f* belongs to $L_{(0,s)}^{p,c}(\Omega)$ when *s* < *n*. Denote by $\mathcal{H}_m^p(\Omega)$ the space of all $\bar{\partial}$ -closed (*m*, 0)forms in Ω with coefficients in $L^p(\Omega)$.

To prove the assertion (b) in [Theorem](#page-1-0) 1.3, we use the same duality approach which we have already used in $[12]$ inspired by the Serre duality [\[13\].](#page-3-0) As usual let r' the conjugate exponent to r .

Lemma 2.2. Let Ω be given as in the statement of Theore[m1.3](#page-1-0) and f *be as in the assertion (b) of that theorem. Consider the form* $\mathcal{L} = \mathcal{L}_f$ ∂f *defined* on $\overline{\partial}$ *-closed* (*n*, *n* − *s* + 1)*-form* α *with* $L^{p'}(\Omega)$ *-components by*

$$
\mathcal{L}_f(\alpha) := (-1)^{s-1} \langle f, \varphi \rangle,
$$

 $where ψ ∈ L_{n,n-s}^r(Ω) is such that $\bar{\partial}φ = α$ in Ω. Then L is well defined$ *and linear.*

Proof. First notice that if $\frac{1}{p} = \frac{1}{r} - \frac{1}{2(n+v)}$ then $\frac{1}{r'} = \frac{1}{p'} - \frac{1}{2(n+v)}$, we assume also that $r < 2(n + v)$ to insure that *p* being finite. Such a current φ with $\bar{\partial}\varphi = \alpha$ exists since *p'* the conjugate exponent of *p* satisfies $p' \le 2$, hence we can apply [Theorem](#page-1-0) 1.3 (a) that we have just proved, with the remark that $p' \leq r'$.

Suppose first that $s < n$, to prove that $\mathcal L$ is well defined we have to show

$$
\forall \varphi, \psi \in L^{r'}_{n,n-s}(\Omega), \ \bar{\partial}\varphi = \bar{\partial}\psi \Rightarrow \langle f, \varphi \rangle = \langle f, \psi \rangle.
$$

This is meaningful because $f \in L_{0,s}^{p,c}(\Omega)$, $p > 1$, Supp $f \in \Omega$. Since $\bar{\partial}\varphi = \bar{\partial}\psi$, then the difference $\varphi - \psi$ is $\bar{\partial}$ -closed form in $L_{n,n-s}^{r'}(\Omega) \subset L_{n,n-s}^{p'}(\Omega)$ so the ∂-equation is solvable in $L^{r'}(\Omega)$, because $s' \le 2$ by [Theorem](#page-1-0) 1.3 (a), and hence there exists a form γ in $L_{n,n-s-1}^{r'}(\Omega)$ such that $\bar{\partial}\gamma = \varphi - \psi$. Therefore

$$
\langle f, \varphi - \psi \rangle = \langle f, \bar{\partial} \gamma \rangle = (-1)^{s-1} \langle \bar{\partial} f, \gamma \rangle = 0.
$$

As *f* being compactly supported in Ω there is no boundary term. Then \mathcal{L}_f is well defined in this case.

For *s* = *n*, we have $\overline{\partial} f = 0$ (because in this case *f* is of bidegree (0, *n*)). Again, let φ , $\psi \in L_{n,0}^{r'}(\Omega)$ with $\bar{\partial}\varphi = \bar{\partial}\psi$, hence $\varphi - \bar{\psi}$ is a $\bar{\partial}$ -closed (*n*, 0)-form, i.e., $\varphi - \psi \in \mathcal{H}_n^{r'}(\Omega)$. Since, by hypothesis, $f \perp \mathcal{H}_n^{r'}(\Omega)$, we have $\langle \varphi - \psi, f \rangle = 0$. Then \mathcal{L}_f is also well defined in this case.

We show next that $\mathcal L$ is a linear form, let α_1 and α_2 be in $L_{n,n-s+1}^{p'}(\Omega)$ such that $\bar{\partial}\alpha_1 = \bar{\partial}\alpha_2 = 0$ and put $\alpha = \alpha_1 + \lambda \alpha_2$, with $\lambda \in \mathbb{C}$, then $\bar{\partial}\alpha = 0$ and so there are φ , φ_1 , and φ_2 in $L_{n,n-s}^{r'}(\Omega)$ such that $\alpha = \bar{\partial}\varphi$, $\alpha_1 = \bar{\partial}\varphi_1$, and $\alpha_2 = \bar{\partial}\varphi_2$. So, because $\bar{\partial}(\varphi - \varphi_1)$ $\varphi_1 - \lambda \varphi_2$) = 0, if *s* < *n*, there is a form ψ in $L_{n,n-s-1}^{\psi}(\Omega)$ such that $\varphi = \varphi_1 + \varphi_2 + \bar{\partial}\psi$.

Therefore

$$
\mathcal{L}_f(\alpha) = (-1)^{s-1} \langle f, \varphi \rangle = (-1)^{s-1} \langle f, \varphi_1 + \lambda \varphi_2 + \bar{\partial} \psi \rangle
$$

= $\mathcal{L}(\alpha_1) + \lambda \mathcal{L}(\alpha_2) + (-1)^{s-1} \langle f, \bar{\partial} \psi \rangle$
= $\mathcal{L}_f(\alpha_1) + \lambda \mathcal{L}_f(\alpha_2).$

This is because $\langle f, \bar{\partial}\psi\rangle = \langle \bar{\partial}f, \psi\rangle = 0$, since Supp $f \in \Omega$ implies there is no boundary term.

If $s = n$, because $\bar{\partial}(\varphi - \varphi_1 - \varphi_2) = 0$, we have $h = (\varphi - \varphi_1 - \varphi_2)$ $\lambda \varphi_2$) \in $\mathcal{H}_n^{r'}(\Omega)$ and the hypothesis $f \perp \mathcal{H}_n^{r'}(\Omega)$ gives $\langle f, h \rangle = 0$. Thus

$$
\mathcal{L}_f(\alpha) = (-1)^{s-1} \langle f, \varphi \rangle = (-1)^{s-1} \langle f, \varphi_1 + \lambda \varphi_2 + h \rangle
$$

= $\mathcal{L}_f(\alpha_1) + \lambda \mathcal{L}_f(\alpha_2) + (-1)^{s-1} \langle f, h \rangle$
= $\mathcal{L}_f(\alpha_1) + \lambda \mathcal{L}_f(\alpha_2).$

By repeating the same arguments for $\alpha = \lambda \alpha_1$, we get the linearity of \mathcal{L} . \Box

Lemma 2.3. *Under the same hypotheses as above, there is* $a(0, s -$ 1)*-form u such that*

$$
\forall \alpha \in L_{n,n-s+1}^{p'}(\Omega), \ \langle u, \alpha \rangle = \mathcal{L}_f(\alpha) = (-1)^{s-1} \langle f, \varphi \rangle,
$$

and

$$
\sup_{\alpha \in L^{p'}(\Omega), \|\alpha\|_{L^{p'}(\Omega)} \le 1} |\langle u, \alpha \rangle| \le C \|f\|_{L^r(\Omega)}.
$$
\n(2.1)

Proof. It follows from Lemma 2.2 that \mathcal{L} is a linear form on $\bar{\partial}$ closed $(n, n - s + 1)$ -forms α with $L^{p'}(\Omega)$ -coefficients, then there exists an $(n, n - s)$ -form φ with $L^{r'}(\Omega)$ -coefficients solving the equation $\bar{\partial}\varphi = \alpha$ and satisfying the estimate

$$
\|\varphi\|_{L^{r'}(\Omega)} \le K \|\alpha\|_{L^{p'}(\Omega)}.
$$
\n(2.2)

By definition of $\mathcal L$ and Hölder inequality, we get

$$
|\mathcal{L}(\alpha)| = |\langle f, \varphi \rangle| \leq ||f||_{L^{r}(\Omega)} ||\varphi||_{L^{r'}(\Omega)} \leq C ||f||_{L^{r}(\Omega)} ||\alpha||_{L^{s'}(\Omega)}.
$$

The last inequalities follows from (2.2) . So we see that the norm of L is bounded on the subspace of $\tilde{\partial}$ closed forms in $L^{p'}(\Omega)$ by C *f* $||f||_{L^r(\Omega)}$.

By the Hahn–Banach Theorem, we can extend $\mathcal L$ with the same norm to all $(n, n - s + 1)$ -forms in $L^{p'}(\Omega)$. As in Serre duality theorem (see [\[13\],](#page-3-0) p. 20) this is one of the main ingredient in the proof. This means, in the sense of currents, that there is a $(0, s - 1)$ form u represents the extended form \mathcal{L} , i.e., u satisfies the required properties. \square

2.2. End Proof of Theorem 1.3

Let us now apply Lemma 2.3 to forms $\varphi \in \mathcal{D}_{n,n-s}(\Omega)$, we then get $\alpha = \bar{\partial}\varphi \in \mathcal{D}_{n,n-s+1} \subset L^{p'}(\Omega)$ and

$$
\langle u, \bar{\partial}\varphi \rangle = \mathcal{L}(\bar{\partial}\varphi) = (-1)^{s-1} \langle f, \varphi \rangle \Rightarrow \langle \bar{\partial}u, \varphi \rangle = \langle f, \varphi \rangle
$$

Since φ has compact support in Ω , then $\overline{\partial}u = f$ in the sense of distributions. In addition, the estimate (2.1) implies by duality arguments that

$$
||u||_{L^p_{0,s-1}(\Omega)} \leq C||f||_{L^r_{0,s}(\Omega)}.
$$

uL^p

This proves the assertion (b) of [Theorem](#page-1-0) 1.3.

For the assertion (c), arguing as above with $p' = 1$ we then find

$$
\sup_{\alpha\in L^1(\Omega),\ \|\alpha\|_{L^1(\Omega)}\leq 1} |\langle u,\alpha\rangle| \leq C \|\omega\|_{L^r(\Omega)},
$$

which implies by duality that $u \in L^{\infty}_{0,s-1}(\Omega)$ with control of the norm. The proof of [Theorem](#page-1-0) 1.3 is now complete. \square

References

- [1] N. [Kerzman,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0001) Hölder and *L^p* estimates for solutions of $\bar{\partial}u = f$ in strongly pseudoconvex domains, [Commun.](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0001) Pure Appl. Math. 24 (1971) 301–379.
- [2] N. [Øvrelid,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0002) Integral [representation](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0002) formulas and *L^p* estimates for the ∂¯ equation, Math. Scand. 29 (1971) 137–160.
- [3] S. [Krantz,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0003) Optimal Lipschitz and L^p regularity for the equation $\bar{\partial}u = f$ on stongly [pseudoconvex](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0003) domains, Math. Ann. 219 (1976) 233–260.
- [4] E. [Amar,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0004) Estimates *L^r* − *L^s* for solutions of the ∂¯ equation in strictly pseudo-convex domains in *Cⁿ*, 2013. HAL: [hal-00922356.](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0004)
- [5] C. [Menini,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0005) Estimations pour la réselution du $\bar{\partial}$ sur une intersection d' ouvert strictement [pseudoconvexes,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0005) Math. Z. 225 (1997) 87–93.
- [6] K. [Diederich,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0006) B. [Fischer,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0006) J.E. [Fornaess,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0006) Hölder estimates on convex domains of finite type, Math. Z. 232 (1999) 43–61.
- [7] B. [Fischer,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0007) *L^p* [estimates](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0007) on convex domains of finite type, Math. Z. 236 (2001) 401–418.
- [8] L. [Ma,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0008) S.K. [Vassiliaduo,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0008) *L^p*-estimates for ∂[¯-equation](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0008) on *q*-convex intersections in C*ⁿ*, Manuscr. Math. 103 (2000) 413–433.
- [9] L. [Hörmander,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0009) *L*2-estimates and existence theorems for the ∂[¯-operator,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0009) Acta Math. 113 (1965) 89–152.
- [10] E. Amar, The raising steps method: applications to the $\bar{\partial}$ equation in Stein manifolds, J. Geom. Anal. (2015), doi[:10.1007/s12220-015-9576-8.](http://dx.doi.org/10.1007/s12220-015-9576-8)
[11] S. [Vassiliadou,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0011) The $\bar{\partial}$ -neumann problem on certain piecewise
- in C*ⁿ*, Complex Var. 46 (2001) 123–141.
- [12] S. Khidr, *L^p*-estimates for the ∂¯-equation with exact support on *q*-convex intersections, Submitted.
- [13] J.-P. [Serre,](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0012) Un théorème de dualité, [Comment.](http://refhub.elsevier.com/S1110-256X(17)30012-3/sbref0012) Math. Helv. 29 (1955) 9–26.