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1. Introduction 

The estimates of growth and regularity of the ∂̄ -equation plays

a very prominent role in the theory of functions of several com-

plex variables. In particular, L p estimates of the solutions to the ∂̄ -
equation has a long history in this field going back to the classical

results of Kerzman [1] and Øvrelid [2] . L p − L r estimates (or L p -

estimates with gain) for ∂̄ were first obtained by Krantz [3] , who

proved that for every ∂̄ -closed (0, 1)-form f with L p coefficients, 1

≤ p < ∞ , on a strictly pseudoconvex domain � with C 5 boundary

in C 

n , there exists a function u in L r ( �) with 

1 
r = 

1 
p − 1 

2(n +1) 
such

that ∂̄ u = f in � and ‖ u ‖ L r (�) � ‖ f‖ 
L 

p 
0 , 1 

(�) 
, see [3] for the precise

formulations. 

This result strongly improves the L p − L p result obtained by

Øvrelid [2] , because it gives a gain r > p and this is the key for

the “raising steps method” to work. This kind of results has been

recently extended by Amar [4] to ( r, s )-forms. 

Minini [5] obtained L p − L r estimates for solutions of the ∂̄ -
equation on a finite transverse intersection of strictly pseudocon-

vex bounded domains in C 

n . 

In the case of bounded convex domains of finite type m , by us-

ing support functions, Diederich et al. [6] proved optimal 1 
m 

-Hölder

estimate and Fischer [7] obtained optimal L p estimates for ∂̄ . 
On generalizing the domains introduced in [5] to q -convex set-

ting, q ≥ 1, Lan Ma and Vassiliadou [8] introduced the so called
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 -convex intersection below and then they obtained L p − L r esti-

ates for ∂̄ on such domains. 

efinition 1.1. A bounded domain D in a complex manifold X of

omplex dimension n is called a C 3 q -convex intersection ( q ≥ 1)

n the sense of Grauert if there exist a bounded neighborhood U of

 and a finite number of real-valued C 3 functions ρ1 (z) , . . . , ρN (z) ,

here n ≥ N + 2 , defined on U such that 

 = { z ∈ U| ρ1 (z) < 0 , . . . , ρN (z) < 0 } 
nd the following conditions are fulfilled: 

1) For 1 ≤ i 1 < i 2 < · · · < i � ≤ N the 1-forms d ρi 1 
, . . . , d ρi � 

are

R −linearly independent on the set 
� ⋂ 

j=1 

{ ρi j 
(z) ≤ 0 } . 

2) For 1 ≤ i 1 < i 2 < · · · < i � ≤ N and every z ∈ 

� ⋂ 

j=1 

{ ρi j 
(z) ≤ 0 } , if we

set I = (i 1 , . . . , i � ) , there exists a linear subspace T I z of X of com-

plex dimension at least n − q + 1 such that for i ∈ I the Levi

forms L ρi 
restricted on T I z are positive definite. 

heorem 1.2 ( [8] ) . Let � be a C 3 q-convex intersection in C 

n with

 ≤ q ≤ n. Let f be a ∂̄ -closed form in L 
p 
0 ,s 

(�) , where 1 ≤ p ≤ ∞ and

 ≥ q. Then there exist a ν ∈ N 

+ , depending on the maximal number

f nonempty intersections of { ρi = 0 } � +1 
i =1 

, a form u in L r 
0 ,s −1 

(�) , with
1 
r = 

1 
p + 

1 
λ

− 1 , and a positive constant C such that ∂̄ u = f and 

 u ‖ L r 
0 ,s −1 

(�) ≤ C‖ f‖ L p 
0 ,s 

(�) , 

here 1 ≤ λ < 

2 ν+2 n 
2 n −1+2 ν . More precisely, we have 
. This is an open access article under the CC BY-NC-ND license. 
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1) For any 1 < p < 2(n + ν) , there exists a positive constant C p ( �)

(depends on max { ‖ ρi ‖ C 3 } � +1 
i =1 

, � and p) such that 

‖ u ‖ L r 
0 ,s −1 

(�) ≤ C p (�) ‖ f‖ L p 
0 ,s 

(�) with 

1 

r 
= 

1 

p 
− 1 

2 n + 2 ν
. 

2) For p ≥ 2(n + ν) , there is a constant C p ( �) > 0 (depends on

max { ‖ ρi ‖ C 3 } � +1 
i =1 

, � and p) such that 

‖ u ‖ L ∞ 
0 ,s −1 

(�) ≤ A p (�) ‖ f‖ L p 
0 ,s 

(�) . 

The main goal of this paper is to extend their results above to

tein manifolds. Namely, we aim to prove the following L p − L r ex-

stence theorem. 

heorem 1.3. Let � be a C 3 q-convex intersection ( q ≥ 1) in a Stein

anifold X of complex dimension n with n ≥ 2 and f a ∂̄ -closed (0,

 ) -form on � with s ≥ q. Then we have the following assertions. 

a) If 1 ≤ p ≤ 2 and f belongs to L 
p 
0 ,s 

(�) , then the equation ∂̄ u =
f has a solution u in L r 

0 ,s −1 
(�) with 1 

r = 

1 
p − γ , where γ =

min ( 1 
2(n + ν) 

, 1 p − 1 
2 ) , moreover, there is a constant C p ( �) > 0 such

that 

‖ u ‖ L r 
0 ,s −1 

(�) ≤ C p (�) ‖ f‖ L p 
0 ,s 

(�) . 

b) If 2 < p < 2(n + ν) and f belongs to L 
p,c 
0 ,s 

(�) with ∂̄ ω = 0 for q ≤
s < n and f belongs to L 

p 
0 ,s 

(�) with f ⊥ H 

p ′ 
n (�) for s = n, then

the equation ∂̄ u = f has a solution u in L r 0 ,s −1 (�) with 1 
r = 

1 
p −

1 
2(n + ν) 

, moreover, there is a positive constant A p ( �) such that 

‖ u ‖ L r 
0 ,s −1 

(�) ≤ A p (�) ‖ f‖ L p 
0 ,s 

(�) . 

c) If p ≥ 2(n + ν) and f belongs to L 
p 
0 ,s 

(�) , then the equation ∂̄ u = f

has a solution u in L ∞ 

0 ,s −1 
(�) , moreover, there is a constant E p ( �)

> 0 such that 

‖ u ‖ L ∞ 
0 ,s −1 

(�) ≤ E p (�) ‖ f‖ L p 
0 ,s 

(�) , 

The constants C p ( �), A p ( �), and E p ( �) depend on

ax { ‖ ρi ‖ C 3 } � +1 
i =1 

, � and p. 

The proof relies heavily on the L 2 -Hilbert space techniques of

örmander [9] and on applying the raising steps method intro-

uced in Amar [10] , we first recall this method to make our pa-

er reasonably self-contained. Let X be a smooth manifold ad-

itting a partition of unity and a decreasing scale { B p } p≥1 , r ≥
 ⇒ B r ( �) ⊂ B p ( �) of Banach spaces of functions or forms defined

n relatively compact open set � in X such that �′ ⊂� implies

 p ( �) ⊂ B p ( �
′ ). These Banach spaces must be “strong” modules

ver D, the space of C ∞ functions with compact support, i.e., let

, U be two open sets and �′ = � ∩ U; if f ∈ B p ( �′ ) and χ ∈
(U) , then χ f ∈ B p ( �) which is stronger than χ f ∈ B p ( �

′ ), with

 χ f‖ B p (�) ≤ C(χ ) ‖ f‖ B p (�′ ) . This means that the smooth extension

f f by 0 in ���′ is also in B p ( �). For instance, B p (�) = L p (�) the

ebesgue spaces, or B p (�) = W 

p,t (�) the Sobolev spaces are such

paces. 

The problem is to solve the linear equation Du = f, where D

s a linear operator and f ∈ B p ( �) with eventually the constraint

f = 0 , where � is also a linear operator such that �D = D � = 0 .

n case there is no constraint we take � ≡ 0 . We put the following

ypotheses on D for any domain � ⊂ X: 

(i) ∀ χ ∈ D(�) , Dχ ∈ D(�) ; 

ii) ∀ χ ∈ D(�) , ∀ α ∈ B p (�) , D (χα) = Dχ · α + χDα. 

It can be easily seen that a linear differential operator D verifies

these assumptions. 

Let � be a relatively compact domain in X , we put the follow-

ing assumptions on X and �. There is a p 0 > 1 and a δ > 0 such

that 
ii) There is an open covering { U j } j=1 ,...,N of � such that, ∀ p ≤ p 0 ,

setting 
1 

r 
= 

1 

p 
− δ, for given f ∈ B p ( �) with � f = 0 , we can

solve Du j = f locally in �j := U j ∩ � with B p (�) − B r (� j ) es-

timates, that is, there exist u j in B s ( �j ) and a constant C 0 > 0

such that 

Du j = f in �j and 

∥∥u j 
∥∥

B r (� j ) 
≤ C 0 ‖ f ‖ B p (�) . 

v) We can solve Dβ = f, � f = 0 , globally in � with B p 0 − B p 0 es-

timates, i.e., there exist β in B p 0 (�) and a constant E > 0 such

that 

Dβ = f in � and ‖ β‖ B p 0 (�) ≤ E ‖ f ‖ B p 0 (�) . 

We therefore have the following key theorem. 

heorem 1.4 (Raising steps theorem, [10] ) . Under the above as-

umptions. If f is in B p ( �) with � f = 0 , p ≤ p 0 , there exist u in B r ( �)

ith γ := min (δ, 1 p − 1 
p 0 

) and 1 
r = 

1 
p − γ , and a constant C > 0 such

hat Du = f in � and 

 

u ‖ B r (�) ≤ C ‖ 

f ‖ B p (�) . 

. Proof of Theorem 1.3 

We apply the raising steps method above to the case when �

s a C 3 q -convex intersection in a Stein manifold X of complex di-

ension n ≥ 2, D = � = ∂̄ , and B p (�) = L 
p 
0 ,s 

(�) is the space of

(0 , s ) -forms with coefficients in L p ( �). This will be done in several

teps. Clearly (i) and (ii) are verified. Then we begin by using the

 

2 -theory for ∂̄ . 

.1. Use of L 2 -estimates and Serre duality for ∂̄ 

Let � be given as above. Choose finitely many holomorphic co-

rdinates system h j : U j → C 

n on X and choose also open subsets

 j � U j such that � ⊆ ∪ j V j and � j = V j ∩ � is a local q -convex in-

ersection in X and �′ 
j 
= h j (� j ) is a C 3 q -convex intersection in C 

n 

or each j . Let f be a ∂̄ -closed form in L 
p 
0 ,s 

(�) . Theorem 1.2 is now

pplied to each �′ 
j 
⊂ C 

n which yields a solution u ′ 
j 

in L r 0 ,s −1 (�
′ 
j 
) to

he equation ∂̄ u ′ 
j 
= h j f with 

1 
r = 

1 
p − 1 

2(n + ν) 
. So we have here δ =

1 
2(n + ν) 

. The resulting solution u ′ 
j 

is then pulled-back to �j using

he holomorphic map h j , we then have a solution u j ∈ L r 0 ,s −1 (� j ) to

he equation ∂̄ u j = f in �j with control of the norm. So assump-

ion (iii) is fulfilled. 

The assumption (iv) follows from the following L 2 -setting. Since

he q -convexity is stable with respect to C 3 small perturbations,

y arguing as in the proof of Lemma 2.1 in [11] , we can exhaust

from inside by a sequence of C 3 strictly q -convex domains { �k }

uch that 

k � �k +1 � � and � = ∪ k �k . 

t follows from [9, Theorem 3.4.1] that the operator ∂̄ :
 

2 
0 ,s −1 (�k ) → L 2 0 ,s (�k ) has closed range for each k and all s ≥ q .

or all f ∈ L 2 
0 ,s 

(�) ∩ Dom( ̄∂ ) ∩ Dom( ̄∂ ∗) , s ≥ q , we then have the

stimate 
 

�k 

| f | 2 dv ≤ C s (�k ) 
(
‖ ̄∂ f‖ 

2 
L 2 (�k ) 

+ ‖ ̄∂ ∗ f‖ 

2 
L 2 (�k ) 

)
, 

here dV is the volume element on X and C s ( �k ) is a positive con-

tant depends on the diameter of �k and s . 

Using this estimate and standard arguments, we deduce that

he ∂̄ operator has L 2 closed range on � for all (0, s )-forms with

 ≥ q . Proposition 1.1.2 in [9] and the fact that Ker ( ̄∂ ) ∩ Ker ( ̄∂ ∗) =
 0 } imply that the estimate 

 f ‖ 

2 
L 2 (�) ≤ K(�) 

(
‖ ̄∂ f ‖ 

2 
L 2 (�) + ‖ ̄∂ ∗ f ‖ 

2 
L 2 (�) 

)
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holds for all f ∈ L 2 0 ,s (�) ∩ Dom( ̄∂ ) ∩ Dom( ̄∂ ∗) with s ≥ q . 

This last estimate together with Theorem 1.1.4 in [9] enable us

to have the following L 2 -existence theorem. 

Theorem 2.1. Let � be a C 3 q-convex intersection (q ≥ 1 ) in a Stein

manifold X of complex dimension n with n ≥ 2 . Then for every ∂̄ -
closed form f in L 2 

0 ,s 
(�) , s ≥ q, there exist a form u in L 2 

0 ,s −1 
(�)

solving the equation ∂̄ u = f in � and a constant C > 0 (depending

on � and s) satisfying the following L 2 -estimate 

‖ u ‖ L 2 
0 ,s −1 

(�) ≤ C‖ f‖ L 2 
0 ,s 

(�) . 

On applying Theorem 1.4 , we therefore get the assertion (a) in

Theorem 1.3 . 

We turn now to the case when p > 2, we proceed by duality

and ask that f has compact support, that is, f belongs to L 
p,c 
(0 ,s ) 

(�)

when s < n . Denote by H 

p 
m 

(�) the space of all ∂̄ -closed ( m , 0)-

forms in � with coefficients in L p ( �). 

To prove the assertion (b) in Theorem 1.3 , we use the same du-

ality approach which we have already used in [12] inspired by the

Serre duality [13] . As usual let r ′ the conjugate exponent to r . 

Lemma 2.2. Let � be given as in the statement of Theorem 1.3 and f

be as in the assertion (b) of that theorem. Consider the form L = L f 

defined on ∂̄ -closed (n, n − s + 1) -form α with L p 
′ 
(�) -components

by 

L f (α) := (−1) s −1 〈 f, ϕ 〉 , 
where ϕ ∈ L r 

′ 
n,n −s (�) is such that ∂̄ ϕ = α in �. Then L is well defined

and linear. 

Proof. First notice that if 1 
p = 

1 
r − 1 

2(n + ν) 
then 

1 

r ′ = 

1 

p ′ −
1 

2(n + ν) 
,

we assume also that r < 2(n + ν) to insure that p being finite. Such

a current ϕ with ∂̄ ϕ = α exists since p ′ the conjugate exponent of

p satisfies p ′ ≤ 2 , hence we can apply Theorem 1.3 (a) that we have

just proved, with the remark that p ′ ≤ r ′ . 
Suppose first that s < n , to prove that L is well defined we have

to show 

∀ ϕ, ψ ∈ L r 
′ 

n,n −s (�) , ∂̄ ϕ = ∂̄ ψ ⇒ 〈 f, ϕ 〉 = 〈 f, ψ 〉 . 
This is meaningful because f ∈ L 

p,c 
0 ,s 

(�) , p > 1, Supp f � �.

Since ∂̄ ϕ = ∂̄ ψ, then the difference ϕ − ψ is ∂̄ -closed form in

L r 
′ 

n,n −s (�) ⊂ L 
p ′ 
n,n −s (�) so the ∂̄ -equation is solvable in L r 

′ 
(�) , be-

cause s ′ ≤ 2 by Theorem 1.3 (a), and hence there exists a form γ
in L r 

′ 
n,n −s −1 

(�) such that ∂̄ γ = ϕ − ψ . Therefore 

〈 f, ϕ − ψ 〉 = 

〈
f, ∂̄ γ

〉
= (−1) s −1 

〈
∂̄ f, γ

〉
= 0 . 

As f being compactly supported in � there is no boundary term.

Then L f is well defined in this case. 

For s = n, we have ∂̄ f = 0 (because in this case f is of bidegree

(0, n )). Again, let ϕ, ψ ∈ L r 
′ 

n, 0 (�) with ∂̄ ϕ = ∂̄ ψ, hence ϕ − ψ is

a ∂̄ -closed ( n , 0)-form, i.e., ϕ − ψ ∈ H 

r ′ 
n (�) . Since, by hypothesis,

f ⊥ H 

r ′ 
n (�) , we have 〈 ϕ − ψ, f 〉 = 0 . Then L f is also well defined

in this case. 

We show next that L is a linear form, let α1 and α2 be in

L 
p ′ 
n,n −s +1 

(�) such that ∂̄ α1 = ∂̄ α2 = 0 and put α = α1 + λα2 , with

λ ∈ C , then ∂̄ α = 0 and so there are ϕ , ϕ 1 , and ϕ 2 in L r 
′ 

n,n −s (�)

such that α = ∂̄ ϕ, α1 = ∂̄ ϕ 1 , and α2 = ∂̄ ϕ 2 , . So, because ∂̄ (ϕ −
ϕ 1 − λϕ 2 ) = 0 , if s < n , there is a form ψ in L r 

′ 
n,n −s −1 

(�) such that

ϕ = ϕ + ϕ + ∂̄ ψ . 
1 2 
Therefore 

 f (α) = (−1) s −1 〈 f, ϕ 〉 = (−1) s −1 
〈
f, ϕ 1 + λϕ 2 + ∂̄ ψ 

〉
= L (α1 ) + λL (α2 ) + (−1) s −1 

〈
f, ∂̄ ψ 

〉
= L f (α1 ) + λL f (α2 ) . 

This is because 
〈
f, ∂̄ ψ 

〉
= 

〈
∂̄ f, ψ 

〉
= 0 , since Supp f � � implies

here is no boundary term. 

If s = n, because ∂̄ (ϕ − ϕ 1 − ϕ 2 ) = 0 , we have h = (ϕ − ϕ 1 −
ϕ 2 ) ∈ H 

r ′ 
n (�) and the hypothesis f ⊥ H 

r ′ 
n (�) gives 〈 f, h 〉 = 0 .

hus 

 f (α) = (−1) s −1 〈 f, ϕ 〉 = (−1) s −1 〈 f, ϕ 1 + λϕ 2 + h 〉 
= L f (α1 ) + λL f (α2 ) + (−1) s −1 〈 f, h 〉 
= L f (α1 ) + λL f (α2 ) . 

By repeating the same arguments for α = λα1 , we get the lin-

arity of L . �

emma 2.3. Under the same hypotheses as above, there is a (0 , s −
) -form u such that 

 α ∈ L p 
′ 

n,n −s +1 
(�) , 〈 u, α〉 = L f (α) = (−1) s −1 〈 f, ϕ 〉 , 

nd 

sup 

∈ L p ′ (�) , ‖ α‖ 
L p 

′ 
(�) 

≤1 

| 〈 u, α〉 | ≤ C ‖ 

f ‖ L r (�) . (2.1)

roof. It follows from Lemma 2.2 that L is a linear form on ∂̄ -
losed (n, n − s + 1) -forms α with L p 

′ 
(�) -coefficients, then there

xists an (n, n − s ) -form ϕ with L r 
′ 
(�) -coefficients solving the

quation ∂̄ ϕ = α and satisfying the estimate 

 

ϕ ‖ L r ′ (�) ≤ K ‖ 

α‖ L p ′ (�) . (2.2)

y definition of L and Hölder inequality, we get 

 

L (α) | = | 〈 f, ϕ 〉 | ≤ ‖ 

f ‖ L r (�) ‖ 

ϕ ‖ L r ′ (�) ≤ C ‖ 

f ‖ L r (�) ‖ 

α‖ L s ′ (�) . 

he last inequalities follows from (2.2) . So we see that the norm

f L is bounded on the subspace of ∂̄ closed forms in L p 
′ 
(�) by

C ‖ f ‖ L r (�) . 

By the Hahn–Banach Theorem, we can extend L with the same

orm to all (n, n − s + 1) -forms in L p 
′ 
(�) . As in Serre duality theo-

em (see [13] , p. 20) this is one of the main ingredient in the proof.

his means, in the sense of currents, that there is a (0 , s − 1) -

orm u represents the extended form L , i.e., u satisfies the required

roperties. �

.2. End Proof of Theorem 1.3 

Let us now apply Lemma 2.3 to forms ϕ ∈ D n,n −s (�) , we then

et α = ∂̄ ϕ ∈ D n,n −s +1 ⊂ L p 
′ 
(�) and 〈

u, ∂̄ ϕ 

〉
= L ( ̄∂ ϕ) = (−1) s −1 〈 f, ϕ 〉 ⇒ 

〈
∂̄ u, ϕ 

〉
= 〈 f, ϕ 〉 

ince ϕ has compact support in �, then ∂̄ u = f in the sense of

istributions. In addition, the estimate (2.1) implies by duality ar-

uments that 

‖ 

u ‖ L p 
0 ,s −1 

(�) ≤ C ‖ 

f ‖ L r 
0 ,s 

(�) . 

his proves the assertion (b) of Theorem 1.3 . 

For the assertion (c), arguing as above with p ′ = 1 we then

nd 

sup 

∈ L 1 (�) , ‖ α‖ L 1 (�) 
≤1 

| 〈 u, α〉 | ≤ C ‖ 

ω ‖ L r (�) , 

hich implies by duality that u ∈ L ∞ 

0 ,s −1 (�) with control of the

orm. The proof of Theorem 1.3 is now complete. �
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