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1. Introduction

The estimates of growth and regularity of the §-equation plays
a very prominent role in the theory of functions of several com-
plex variables. In particular, LP estimates of the solutions to the 9-
equation has a long history in this field going back to the classical
results of Kerzman [1] and @vrelid [2]. [P — L" estimates (or LP-
estimates with gain) for d were first obtained by Krantz [3], who
proved that for every od-closed (0, 1)-form f with LP coefficients, 1
< p < oo, on a strictly pseudoconvex domain © with ¢> boundary

. . . . . ‘l ‘l ‘l
in C", there exists a function u in L'(2) with + = 7T 20D such

that du = fin Q and |Jullrg) S ”f||L51(9)’ see [3] for the precise
formulations. '

This result strongly improves the LP — LP result obtained by
@vrelid [2], because it gives a gain r > p and this is the key for
the “raising steps method” to work. This kind of results has been
recently extended by Amar [4] to (1, s)-forms. ;

Minini [5] obtained LP — L" estimates for solutions of the 0-
equation on a finite transverse intersection of strictly pseudocon-
vex bounded domains in C".

In the case of bounded convex domains of finite type m, by us-
ing support functions, Diederich et al.[6] proved optimal %—Hélder
estimate and Fischer [7] obtained optimal I? estimates for .

On generalizing the domains introduced in [5] to g-convex set-
ting, ¢ > 1, Lan Ma and Vassiliadou [8] introduced the so called
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g-convex intersection below and then they obtained LP — L™ esti-
mates for 0 on such domains.

Definition 1.1. A bounded domain D in a complex manifold X of
complex dimension n is called a ¢3 g-convex intersection (q > 1)
in the sense of Grauert if there exist a bounded neighborhood U of
D and a finite number of real-valued ¢3 functions 01 (2). ..., pn(2).
where n > N + 2, defined on U such that

D={zeU|pi1(2) <O0,..., pn(z) <0}
and the following conditions are fulfilled:

(1) For 1<ij <ip <---<ig<N the 1-forms dp;....,dp; are

J4
R-linearly independent on the set {pij (z) < 0}.
j=1

4
(2) For1<iy <ip <---<i; <N andevery z e ﬂ{pij(z)go}, if we
j=1

set I = (i,..., i), there exists a linear subspace T} of X of com-
plex dimension at least n —q+ 1 such that for i € I the Levi
forms L,, restricted on T/ are positive definite.

Theorem 1.2 ([8]). Let Q2 be a C3 g-convex intersection in C" with
1 < q < n. Let f be a d-closed form in Lg_S(Q), where 1 < p < co and
s > q. Then there exist a v € NT, depending on the maximal number
of nonempty intersections of {p; = O}f:}, a form uin Ly ., (2), with
1

1=1+1 -1, and a positive constant C such that du = f and

lulley, @ =Clifll @)

2v+2n

where 1 <A < 73270

More precisely, we have
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(1) Forany 1 < p <2(n+v), there exists a positive constant Cy(£2)
(depends on max{||p,||C3 , 2 and p) such that

. 1 1 1
lulley @ < Cp(Q)“f“Lg_S(Q) with  —= P It
(2) For p>=2(n—+v), there is a constant C,(2) > 0 (depends on

max{||pillcs}H!. Q and p) such that
llulle, @) <Ap(Q)||f||LP ()"

0,5-1

The main goal of this paper is to extend their results above to
Stein manifolds. Namely, we aim to prove the following LP — L" ex-
istence theorem.

Theorem 1.3. Let Q be a ¢3 g-convex intersection (q > 1) in a Stein
manifold X of complex dimension n with n > 2 and f a d-closed (0,
s)-form on Q with s > q. Then we have the following assertions.

(@) If 1 < p < 2 and f belongs to Lgvs(Q), then the equation Ju =

f has a solution uin Ly, () with 1= l — vy, where y =
0,5-1 T Y Y

mm(z(nw) B 2) moreover, there is a constant Cp(2) > 0 such

that
||U||L5M(Q) = Cp(Q)”f“Lg_S(Q)‘

b) If 2 < p <2(n+v) and f belongs to LS:?(Q) with dw =0 for q <
s <n and f belongs to Lf (2) with f L Hp/(Q) for s=n, then
the equation du = f has a solution u in L 0.5 1() wzth - —

‘l . o,
Ttnv): Mmoreover, there is a positive constant Ap(S2) such that

lully;, @) = Ap (D fllz (g)-

(c) If p>2(n+v) and f belongs to Lp (§2), then the equation du=f
has a solution u in L& 1(2), moreover there is a constant Ep(£2)
> 0 such that

lullz, @ < Ep(D £l @)

0.5—1
The constants Cp(£2), Ap(R2),

and  Ep(£2)
max({|| pillg3 )1}, 2 and p.

depend on

The proof relies heavily on the L2-Hilbert space techniques of
Hormander [9] and on applying the raising steps method intro-
duced in Amar [10], we first recall this method to make our pa-
per reasonably self-contained. Let X be a smooth manifold ad-
mitting a partition of unity and a decreasing scale {Bp},-1, 1 >
p=>B;(2) C By(£2) of Banach spaces of functions or forms defined
on relatively compact open set  in X such that Q' c  implies
B,(£2) C By(€2'). These Banach spaces must be “strong” modules
over D, the space of C* functions with compact support, i.e., let
@, U be two open sets and Q' =QnU; if f € By(2') and x €
D), then xf e Bp(2) which is stronger than xf e By(R’), with
||Xf||BP(Q) < C(X)||f||3p(9/). This means that the smooth extension
of fby 0 in Q\Q’ is also in B,(£2). For instance, B, (2) = LP(2) the
Lebesgue spaces, or B,(2) = WPf() the Sobolev spaces are such
spaces.

The problem is to solve the linear equation Du = f, where D
is a linear operator and f € Bp(S2) with eventually the constraint
Af =0, where A is also a linear operator such that AD = DA = 0.
In case there is no constraint we take A = 0. We put the following
hypotheses on D for any domain 2 c X:

(i) Vx €e D(RQ), Dy € D(R);

(ii) Vx e D(R), Ya € Bp(R2), D(xa) =Dy - + xDo.
It can be easily seen that a linear differential operator D verifies
these assumptions.
Let Q be a relatively compact domain in X, we put the follow-
ing assumptions on X and 2. There is a py > 1 and a § > 0 such
that

(iii) There is an open covering {U;};_; _n of Q such that, Vp < po,

setting % = 1 8, for given f € Bp(2) with Af =0, we can

solve Duj = f locally in ; := U;nQ with Bp(2) — B (£2;) es-
timates, that is, there exist y; in BS(Q ) and a constant Co >0
such that
Duj = fin Q; and ||u; ||Br(9j) =Gl fllgy -

(iv) We can solve DB = f, Af =0, globally in & with By, — By, es-
timates, i.e., there exist B in Bp,(2) and a constant E > 0 such
that

Df =finQand B, (o) =

We therefore have the following key theorem.

Ellfllgy, -

Theorem 1.4 (Raising steps theorem, [10]). Under the above as-
sumptions. If fis in By(2) with Af =0, p < po, there exist u in B;(2)
with y :=min(§, 1 — pl—o) and } = —y, and a constant C > 0 such
that Du = f in Q and

lullg, ) = Cllflls, )
2. Proof of Theorem 1.3

We apply the raising steps method above to the case when 2
is a ¢3 g-convex intersection in a Stein manifold X of complex di-
mension n > 2, D=A =0, and By(Q) =L} () is the space of
(0, s)-forms with coefficients in LP(£2). This W111 be done in several
steps. Clearly (i) and (ii) are verified. Then we begin by using the
L2-theory for 9.

2.1. Use of L2-estimates and Serre duality for 9

Let 2 be given as above. Choose finitely many holomorphic co-
ordinates system h; : U; — C" on X and choose also open subsets
V; € U; such that Qc U;Vjand Q;=V;nQ is a local g-convex in-
tersection in X and Q; =h;j(R;)isa C3 g-convex intersection in C"
for each j. Let f be a 9-closed form in L” ;(§2). Theorem 1.2 is now
applied to each Q’ C C" which ylelds a solutlon u inLf, 1(Q}) to

the equation au =h;f W1th = So We have here § =

E 2(n+v)
2(n+v) The resultmg solutlon u] is then pulled-back to €; using

the holomorphic map hj, we then have a solution u; € Lj ;_, (Q ) to

the equation 5uj = f in €; with control of the norm. So assump-
tion (iii) is fulfilled.

The assumption (iv) follows from the following L%-setting. Since
the g-convexity is stable with respect to ¢3 small perturbations,
by arguing as in the proof of Lemma 2.1 in [11], we can exhaust
Q from inside by a sequence of C3 strictly g-convex domains {£2;}
such that

Qk S Qk+] € and Q= Uka.
It follows from [9, Theorem 3.4.1] that the operator 9 :
L3 1 () — L3 () has closed range for each k and all s > g.

For all f e I3 () nDom(d) NDom(d*), s > g, we then have the
estimate

[ 117 < G0 (1811 @, + 13 )
k

where dV is the volume element on X and Cs(£2;) is a positive con-
stant depends on the diameter of 2} and s.

Using this estimate and standard arguments, we deduce that
the 9 operator has L2 closed range on € for all (0, s)-forms with
s > q. Proposition 1.1.2 in [9] and the fact that Ker(d) nKer(§*) =
{0} imply that the estimate

11 = K@ (18] gy + 13 ey
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holds for all f e L2 ()N Dom(d) N Dom(§*) with s > g.
This last estlmate together with Theorem 1.1.4 in [9] enable us
to have the following [%-existence theorem.

Theorem 2.1. Let  be a C3 g-convex intersection (q > 1) in a Stein
manifold X of complex dimension n with n > 2. Then for every 0-
closed form f in 13 (), s = q, there exist a form u in L} ()
solving the equation du = f in Q2 and a constant C > 0 (depending
on Q and s) satisfying the following L%-estimate

||U||L25 (@) <C||f||L2 ()

On applying Theorem 1.4, we therefore get the assertion (a) in
Theorem 1.3.

We turn now to the case when p > 2, we proceed by duality
and ask that f has compact support, that is, f belongs to L(0 )(Q)

when s < n. Denote by HP (2) the space of all d-closed (m, 0)-
forms in © with coefficients in LP(2).

To prove the assertion (b) in Theorem 1.3, we use the same du-
ality approach which we have already used in [12] inspired by the
Serre duality [13]. As usual let r’ the conjugate exponent to r.

Lemma 2.2. Let 2 be given as in the statement of Theorem1.3 and f
be as in the assertion (b) of that theorem. Consider the form £ = Ly
defined on d-closed (n,n—s+ 1)-form « with L (Q2)-components
by

Li(@) = (-1)"1(f.¢),

where ¢ € Lgﬂn_s(sz) is such that d¢ = o in 2. Then L is well defined
and linear.

1 1 1 1 p— —
Proof. First notice that if = r 2(n ) then 7o 2(n ‘)) s

we assume also that r < 2(n + v) to insure that p being finite. Such
a current ¢ with 5(/) = o exists since p’ the conjugate exponent of
p satisfies p’ < 2, hence we can apply Theorem 1.3 (a) that we have
just proved, with the remark that p’ <r’.

Suppose first that s < n, to prove that £ is well defined we have
to show

Vo, e L o(Q), d¢ =3y = (f.9) = (£ ¥).

This is meaningful because felf(Q), p > 1, Suppf € Q.
Since d¢ = 9y, then the difference ¢ — is d-closed form in
Lg/.,H(Q) C Lﬁfn_s(Q) so the d-equation is solvable in L (£2), be-
cause s’ <2 by Theorem 1.3 (a), and hence there exists a form y
in L' (£2) such that 0y = ¢ — 1. Therefore

n,n—s—1

(fro-v)=(f.0y)= (1) af.y)=0

As f being compactly supported in €2 there is no boundary term.
Then L is well defined in this case.

For s = n, we have 3 f = 0 (because in this case f is of bidegree
(0, n)). Again, let ¢, ¥ € L;/,O(Q) with dg = 0y, hence ¢ — 1 is
a d-closed (n, 0)-form, i.e., ¢ — ¥ € ! (). Since, by hypothesis,
fL Hﬁ,/(Q), we have (¢ — v, f) = 0. Then Ly is also well defined
in this case.

We show next that £ is a linear form, let @y and o be in
Lﬁ/n 5:1(R) such that dary = dar; =0 and put & = & + A, with
A eC, then do =0 and so there are ¢, ¢, and ¢, in Lnn s(2)
such that o = 3¢, oy = d¢p;, and ay = d¢s.. So, because J(¢ —
@1 — Apy) =0, if s < n, there is a form ¥ in L (£2) such that

@ =¢1+¢+ 0.

n,n—s—1

Therefore

Lp(@) = (1)"f0) = D f. 01+ Apa + V)
= L(7) + AL(a2) + (—=1)7(f. dy)
= L) + AL ().

This is because (f. dy)=(df. ¥)=0. since Suppf € Q implies
there is no boundary term.

If s=n, because 9(¢ — ¢
Apy) er,/(Q) and the hypothesis fLH;/(Q) gives
Thus
Li() = (1) f @) = (=D (f. 1 + A2 + h)

= Lp(a1) +ALp(az) + (=151 (f h)
= Lg(og) +ALs(a2).

By repeating the same arguments for o = Ax;, we get the lin-
earity of £. O

— @) =0, we have h= (¢ — ¢ —
(f.h) =

Lemma 2.3. Under the same hypotheses as above, there is a (0,s —
1)-form u such that

Vaell  (Q). (wa)=Lr@)=(-1)"(f9)

and

sup [{u, )| < Cl| fllirq)- (21)

ael? (@), llal,y g <1
Proof. It follows from Lemma 2.2 that £ is a linear form on 3-
closed (n,n—s+1)-forms o with LP' (§2)-coefficients, then there
exists an (n,n—s)-form ¢ with L" (§)-coefficients solving the
equation dp = « and satisfying the estimate

el @ < Kllallwyq)-
By definition of £ and Hélder inequality, we get

[L(@)| =[{f. ¢)| < ||f||Lr(Q)||(/’||Lr’(Q) = C||f||Lf(Q)||05||Ls’(Q)-

The last inequalities follows from (2.2). So we see that the norm
of £ is bounded on the subspace of 3 closed forms in LP' () by
Clifllr @)

By the Hahn-Banach Theorem, we can extend £ with the same
norm to all (n,n —s+ 1)-forms in L? (2). As in Serre duality theo-
rem (see [13], p. 20) this is one of the main ingredient in the proof.
This means, in the sense of currents, that there is a (0,s—1)-
form u represents the extended form £, i.e., u satisfies the required
properties. O

(2.2)

2.2. End Proof of Theorem 1.3

Let us now apply Lemma 2.3 to forms ¢ € Dy n_s(2), we then
get =09 e Dnn_si1 C LY () and

(u.0¢) = L(Bp) = (=1 "{f. @) = (0u. @) = (f. ¢)

Since ¢ has compact support in €2, then du = f in the sense of
distributions. In addition, the estimate (2.1) implies by duality ar-
guments that

lullz @) = Cllflly @

This proves the assertion (b) of Theorem 1.3.
For the assertion (c), arguing as above with p’ =1 we then
find

sup (u, &) < Cllolly )

ael (Q). ol g, =<1

which implies by duality that u e L§ ;(€2) with control of the
norm. The proof of Theorem 1.3 is now complete. O
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