Contents lists available at ScienceDirect

Journal of the Egyptian Mathematical Society

journal homepage: www.elsevier.com/locate/joems

Original article

$L^p - L^r$ estimates for $\bar{\partial}$ on *q*-convex intersections in a Stein manifold

CrossMark

Shaban Khidr Department of Mathematics, Faculty of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia

Department of Mathematics, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt

ARTICLE INFO

ABSTRACT

Article history: Received 29 September 2016 Accepted 16 February 2017 Available online 18 March 2017

MSC: 32W05 32F10 and 32A26

Keywords: $L^p - L^r$ estimates $\bar{\partial}$ -equation *q*-convexity Raising steps method

1. Introduction

The estimates of growth and regularity of the $\bar{\partial}$ -equation plays a very prominent role in the theory of functions of several complex variables. In particular, L^p estimates of the solutions to the $\bar{\partial}$ equation has a long history in this field going back to the classical results of Kerzman [1] and Øvrelid [2]. $L^p - L^r$ estimates (or L^p estimates with gain) for $\bar{\partial}$ were first obtained by Krantz [3], who proved that for every $\bar{\partial}$ -closed (0, 1)-form f with L^p coefficients, 1 $\leq p < \infty$, on a strictly pseudoconvex domain Ω with C^5 boundary in \mathbb{C}^n , there exists a function u in $L^r(\Omega)$ with $\frac{1}{r} = \frac{1}{p} - \frac{1}{2(n+1)}$ such that $\bar{\partial}u = f$ in Ω and $||u||_{L^r(\Omega)} \leq ||f||_{L^p_{0,1}(\Omega)}$, see [3] for the precise formulations.

This result strongly improves the $L^p - L^p$ result obtained by Øvrelid [2], because it gives a gain r > p and this is the key for the "raising steps method" to work. This kind of results has been recently extended by Amar [4] to (r, s)-forms.

Minini [5] obtained $L^p - L^r$ estimates for solutions of the $\bar{\partial}$ -equation on a finite transverse intersection of strictly pseudoconvex bounded domains in \mathbb{C}^n .

In the case of bounded convex domains of finite type *m*, by using support functions, Diederich et al.[6] proved optimal $\frac{1}{m}$ -Hölder estimate and Fischer [7] obtained optimal L^p estimates for $\overline{\partial}$.

On generalizing the domains introduced in [5] to *q*-convex setting, $q \ge 1$, Lan Ma and Vassiliadou [8] introduced the so called

http://dx.doi.org/10.1016/j.joems.2017.02.005

In this work, we obtain L^p -regularity with gain for the $\bar{\partial}$ -equation on *q*-convex intersection in a Stein manifold.

© 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

q-convex intersection below and then they obtained $L^p - L^r$ estimates for $\bar{\partial}$ on such domains.

Definition 1.1. A bounded domain *D* in a complex manifold *X* of complex dimension *n* is called a C^3 *q*-convex intersection ($q \ge 1$) in the sense of Grauert if there exist a bounded neighborhood *U* of \overline{D} and a finite number of real-valued C^3 functions $\rho_1(z), \ldots, \rho_N(z)$, where $n \ge N + 2$, defined on *U* such that

$$D = \{z \in U \mid \rho_1(z) < 0, \dots, \rho_N(z) < 0\}$$

and the following conditions are fulfilled:

(1) For $1 \le i_1 < i_2 < \cdots < i_\ell \le N$ the 1-forms $d\rho_{i_1}, \ldots, d\rho_{i_\ell}$ are \mathbb{R} -linearly independent on the set $\bigcap_{j=1}^{\ell} \{\rho_{i_j}(z) \le 0\}$.

(2) For $1 \le i_1 < i_2 < \cdots < i_\ell \le N$ and every $z \in \bigcap_{j=1}^{\ell} \{\rho_{i_j}(z) \le 0\}$, if we set $I = (i_1, \ldots, i_\ell)$, there exists a linear subspace T_z^I of X of complex dimension at least n - q + 1 such that for $i \in I$ the Levi forms L_{ρ_i} restricted on T_z^I are positive definite.

Theorem 1.2 ([8]). Let Ω be a C^3 q-convex intersection in \mathbb{C}^n with $1 \leq q \leq n$. Let f be a $\bar{\partial}$ -closed form in $L^p_{0,s}(\Omega)$, where $1 \leq p \leq \infty$ and $s \geq q$. Then there exist a $v \in \mathbb{N}^+$, depending on the maximal number of nonempty intersections of $\{\rho_i = 0\}_{i=1}^{\ell+1}$, a form u in $L^r_{0,s-1}(\Omega)$, with $\frac{1}{r} = \frac{1}{p} + \frac{1}{\lambda} - 1$, and a positive constant C such that $\bar{\partial}u = f$ and

$$\begin{split} \|u\|_{L^p_{0,s-1}(\Omega)} &\leq C \|f\|_{L^p_{0,s}(\Omega)},\\ \text{where } 1 &\leq \lambda < \frac{2\nu+2n}{2n-1+2\nu}. \text{ More precisely, we have} \end{split}$$

1110-256X/© 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

E-mail address: skhidr@yahoo.com

(1) For any $1 , there exists a positive constant <math>C_p(\Omega)$ (depends on $\max\{\|\rho_i\|_{\mathcal{C}^3}\}_{i=1}^{\ell+1}, \Omega$ and p) such that

$$\|u\|_{L^r_{0,s-1}(\Omega)} \le C_p(\Omega) \|f\|_{L^p_{0,s}(\Omega)}$$
 with $\frac{1}{r} = \frac{1}{p} - \frac{1}{2n+2\nu}$

(2) For $p \ge 2(n + \nu)$, there is a constant $C_p(\Omega) > 0$ (depends on $\max\{\|\rho_i\|_{C^3}\}_{i=1}^{\ell+1}$, Ω and p) such that

 $||u||_{L^{\infty}_{0,s-1}(\Omega)} \leq A_p(\Omega) ||f||_{L^p_{0,s}(\Omega)}.$

The main goal of this paper is to extend their results above to Stein manifolds. Namely, we aim to prove the following $L^p - L^r$ existence theorem.

Theorem 1.3. Let Ω be a C^3 q-convex intersection $(q \ge 1)$ in a Stein manifold X of complex dimension n with $n \ge 2$ and f a $\overline{\partial}$ -closed (0, s)-form on Ω with $s \ge q$. Then we have the following assertions.

(a) If $1 \le p \le 2$ and f belongs to $L_{0,s}^p(\Omega)$, then the equation $\bar{\partial}u = f$ has a solution u in $L_{0,s-1}^r(\Omega)$ with $\frac{1}{r} = \frac{1}{p} - \gamma$, where $\gamma = \min(\frac{1}{2(n+\nu)}, \frac{1}{p} - \frac{1}{2})$, moreover, there is a constant $C_p(\Omega) > 0$ such that

 $||u||_{L^{r}_{0,s-1}(\Omega)} \leq C_{p}(\Omega) ||f||_{L^{p}_{0,s}(\Omega)}.$

(b) If 2 and <math>f belongs to $L_{0,s}^{p,c}(\Omega)$ with $\bar{\partial}\omega = 0$ for $q \le s < n$ and f belongs to $L_{0,s}^p(\Omega)$ with $f \perp \mathcal{H}_n^{p'}(\Omega)$ for s = n, then the equation $\bar{\partial}u = f$ has a solution u in $L_{0,s-1}^r(\Omega)$ with $\frac{1}{r} = \frac{1}{p} - \frac{1}{2(n+\nu)}$, moreover, there is a positive constant $A_p(\Omega)$ such that

$$\|u\|_{L^{p}_{0,s-1}(\Omega)} \le A_{p}(\Omega) \|f\|_{L^{p}_{0,s}(\Omega)}$$

(c) If $p \ge 2(n + \nu)$ and f belongs to $L^p_{0,s}(\Omega)$, then the equation $\bar{\partial}u = f$ has a solution u in $L^{\infty}_{0,s-1}(\Omega)$, moreover, there is a constant $E_p(\Omega) > 0$ such that

$$||u||_{L^{\infty}_{0,r}(\Omega)} \leq E_p(\Omega) ||f||_{L^p_{0,r}(\Omega)},$$

The constants $C_p(\Omega)$, $A_p(\Omega)$, and $E_p(\Omega)$ depend on $\max\{\|\rho_i\|_{\mathcal{C}^3}\}_{i=1}^{\ell+1}$, Ω and p.

The proof relies heavily on the L^2 -Hilbert space techniques of Hörmander [9] and on applying the raising steps method introduced in Amar [10], we first recall this method to make our paper reasonably self-contained. Let X be a smooth manifold admitting a partition of unity and a decreasing scale $\{B_p\}_{p\geq 1}$, $r \geq p \Rightarrow B_r(\Omega) \subset B_p(\Omega)$ of Banach spaces of functions or forms defined on relatively compact open set Ω in X such that $\Omega' \subset \Omega$ implies $B_p(\Omega) \subset B_p(\Omega')$. These Banach spaces must be "strong" modules over \mathcal{D} , the space of \mathcal{C}^{∞} functions with compact support, i.e., let Ω , U be two open sets and $\Omega' = \Omega \cap U$; if $f \in B_p(\Omega')$ and $\chi \in$ $\mathcal{D}(U)$, then $\chi f \in B_p(\Omega)$ which is stronger than $\chi f \in B_p(\Omega')$, with $\|\chi f\|_{B_p(\Omega)} \leq C(\chi) \|f\|_{B_p(\Omega')}$. This means that the smooth extension of f by 0 in $\Omega \setminus \Omega'$ is also in $B_p(\Omega)$. For instance, $B_p(\Omega) = L^p(\Omega)$ the Lebesgue spaces, or $B_p(\Omega) = W^{p,t}(\Omega)$ the Sobolev spaces are such spaces.

The problem is to solve the linear equation Du = f, where D is a linear operator and $f \in B_p(\Omega)$ with eventually the constraint $\Delta f = 0$, where Δ is also a linear operator such that $\Delta D = D\Delta = 0$. In case there is no constraint we take $\Delta \equiv 0$. We put the following hypotheses on D for any domain $\Omega \subset X$:

(i) $\forall \chi \in \mathcal{D}(\Omega), D\chi \in \mathcal{D}(\Omega);$

(ii) $\forall \chi \in \mathcal{D}(\Omega), \ \forall \alpha \in B_p(\Omega), \ D(\chi \alpha) = D\chi \cdot \alpha + \chi D\alpha.$

It can be easily seen that a linear differential operator *D* verifies these assumptions.

Let Ω be a relatively compact domain in *X*, we put the following assumptions on *X* and Ω . There is a $p_0 > 1$ and a $\delta > 0$ such that

(iii) There is an open covering $\{U_j\}_{j=1,...,N}$ of $\overline{\Omega}$ such that, $\forall p \leq p_0$, setting $\frac{1}{r} = \frac{1}{p} - \delta$, for given $f \in B_p(\Omega)$ with $\Delta f = 0$, we can solve $Du_j = f$ locally in $\Omega_j := U_j \cap \Omega$ with $B_p(\Omega) - B_r(\Omega_j)$ estimates, that is, there exist u_j in $B_s(\Omega_j)$ and a constant $C_0 > 0$ such that

 $Du_j = f \text{ in } \Omega_j \text{ and } \|u_j\|_{B_r(\Omega_j)} \le C_0 \|f\|_{B_p(\Omega)}.$

(iv) We can solve $D\beta = f$, $\Delta f = 0$, globally in Ω with $B_{p_0} - B_{p_0}$ estimates, i.e., there exist β in $B_{p_0}(\Omega)$ and a constant E > 0 such that

 $D\beta = f$ in Ω and $\|\beta\|_{B_{p_0}(\Omega)} \leq E\|f\|_{B_{p_0}(\Omega)}$.

We therefore have the following key theorem.

Theorem 1.4 (Raising steps theorem, [10]). Under the above assumptions. If f is in $B_p(\Omega)$ with $\Delta f = 0$, $p \le p_0$, there exist u in $B_r(\Omega)$ with $\gamma := \min(\delta, \frac{1}{p} - \frac{1}{p_0})$ and $\frac{1}{r} = \frac{1}{p} - \gamma$, and a constant C > 0 such that Du = f in Ω and

 $\|u\|_{B_r(\Omega)} \leq C \|f\|_{B_p(\Omega)}.$

2. Proof of Theorem 1.3

We apply the raising steps method above to the case when Ω is a C^3 *q*-convex intersection in a Stein manifold *X* of complex dimension $n \ge 2$, $D = \Delta = \overline{\partial}$, and $B_p(\Omega) = L_{0,s}^p(\Omega)$ is the space of (0, s)-forms with coefficients in $L^p(\Omega)$. This will be done in several steps. Clearly (i) and (ii) are verified. Then we begin by using the L^2 -theory for $\overline{\partial}$.

2.1. Use of L²-estimates and Serre duality for $\bar{\partial}$

Let Ω be given as above. Choose finitely many holomorphic coordinates system $h_j: U_j \to \mathbb{C}^n$ on X and choose also open subsets $V_j \in U_j$ such that $\overline{\Omega} \subseteq \bigcup_j V_j$ and $\Omega_j = V_j \cap \Omega$ is a local q-convex intersection in X and $\Omega'_j = h_j(\Omega_j)$ is a \mathcal{C}^3 q-convex intersection in \mathbb{C}^n for each j. Let f be a $\overline{\partial}$ -closed form in $L^p_{0,s}(\Omega)$. Theorem 1.2 is now applied to each $\Omega'_j \subset \mathbb{C}^n$ which yields a solution u'_j in $L^r_{0,s-1}(\Omega'_j)$ to the equation $\overline{\partial} u'_j = h_j f$ with $\frac{1}{r} = \frac{1}{p} - \frac{1}{2(n+v)}$. So we have here $\delta = \frac{1}{2(n+v)}$. The resulting solution u'_j is then pulled-back to Ω_j using the holomorphic map h_j , we then have a solution $u_j \in L^r_{0,s-1}(\Omega_j)$ to the equation $\overline{\partial} u_j = f$ in Ω_j with control of the norm. So assumption (iii) is fulfilled.

The assumption (iv) follows from the following L^2 -setting. Since the *q*-convexity is stable with respect to C^3 small perturbations, by arguing as in the proof of Lemma 2.1 in [11], we can exhaust Ω from inside by a sequence of C^3 strictly *q*-convex domains { Ω_k } such that

$$\Omega_k \Subset \Omega_{k+1} \Subset \Omega$$
 and $\Omega = \cup_k \Omega_k$.

It follows from [9, Theorem 3.4.1] that the operator $\bar{\partial}$: $L^2_{0,s-1}(\Omega_k) \to L^2_{0,s}(\Omega_k)$ has closed range for each k and all $s \ge q$. For all $f \in L^2_{0,s}(\Omega) \cap \text{Dom}(\bar{\partial}) \cap \text{Dom}(\bar{\partial}^*)$, $s \ge q$, we then have the estimate

$$\int_{\Omega_k} |f|^2 d\nu \leq C_s(\Omega_k) \Big(\|\bar{\partial}f\|_{L^2(\Omega_k)}^2 + \|\bar{\partial}^*f\|_{L^2(\Omega_k)}^2 \Big),$$

where dV is the volume element on X and $C_s(\Omega_k)$ is a positive constant depends on the diameter of Ω_k and *s*.

Using this estimate and standard arguments, we deduce that the $\bar{\partial}$ operator has L^2 closed range on Ω for all (0, s)-forms with $s \ge q$. Proposition 1.1.2 in [9] and the fact that $\text{Ker}(\bar{\partial}) \cap \text{Ker}(\bar{\partial}^*) = \{0\}$ imply that the estimate

$$\|f\|_{L^{2}(\Omega)}^{2} \leq K(\Omega) \left(\|\bar{\partial}f\|_{L^{2}(\Omega)}^{2} + \|\bar{\partial}^{*}f\|_{L^{2}(\Omega)}^{2} \right)$$

holds for all $f \in L^2_{0,s}(\Omega) \cap \text{Dom}(\bar{\partial}) \cap \text{Dom}(\bar{\partial}^*)$ with $s \ge q$.

This last estimate together with Theorem 1.1.4 in [9] enable us to have the following L^2 -existence theorem.

Theorem 2.1. Let Ω be a C^3 q-convex intersection ($q \ge 1$) in a Stein manifold X of complex dimension n with $n \ge 2$. Then for every $\bar{\partial}$ closed form f in $L^2_{0,s}(\Omega)$, $s \ge q$, there exist a form u in $L^2_{0,s-1}(\Omega)$ solving the equation $\bar{\partial} u = f$ in Ω and a constant C > 0 (depending on Ω and s) satisfying the following L²-estimate

$$||u||_{L^2_{0,s-1}(\Omega)} \leq C ||f||_{L^2_{0,s}(\Omega)}.$$

On applying Theorem 1.4, we therefore get the assertion (a) in Theorem 1.3.

We turn now to the case when p > 2, we proceed by duality and ask that f has compact support, that is, f belongs to $L^{p,c}_{(0,s)}(\Omega)$ when s < n. Denote by $\mathcal{H}_m^p(\Omega)$ the space of all $\bar{\partial}$ -closed (m, 0)forms in Ω with coefficients in $L^p(\Omega)$.

To prove the assertion (b) in Theorem 1.3, we use the same duality approach which we have already used in [12] inspired by the Serre duality [13]. As usual let r' the conjugate exponent to r.

Lemma 2.2. Let Ω be given as in the statement of Theorem 1.3 and f be as in the assertion (b) of that theorem. Consider the form $\mathcal{L} = \mathcal{L}_f$ defined on $\bar{\partial}$ -closed (n, n-s+1)-form α with $L^{p'}(\Omega)$ -components by

$$\mathcal{L}_f(\alpha) := (-1)^{s-1} \langle f, \varphi \rangle$$

where $\varphi \in L_{n,n-s}^{r'}(\Omega)$ is such that $\bar{\partial}\varphi = \alpha$ in Ω . Then \mathcal{L} is well defined and linear.

Proof. First notice that if $\frac{1}{p} = \frac{1}{r} - \frac{1}{2(n+\nu)}$ then $\frac{1}{r'} = \frac{1}{p'} - \frac{1}{2(n+\nu)}$, we assume also that $r < 2(n + \nu)$ to insure that *p* being finite. Such a current φ with $\bar{\partial}\varphi = \alpha$ exists since p' the conjugate exponent of *p* satisfies $p' \leq 2$, hence we can apply Theorem 1.3 (a) that we have just proved, with the remark that $p' \leq r'$.

Suppose first that s < n, to prove that \mathcal{L} is well defined we have to show

$$\forall \varphi, \psi \in L_{n,n-s}^{r'}(\Omega), \ \bar{\partial}\varphi = \bar{\partial}\psi \Rightarrow \langle f, \varphi \rangle = \langle f, \psi \rangle.$$

This is meaningful because $f \in L^{p,c}_{0,s}(\Omega)$, p > 1, $Supp f \Subset \Omega$. Since $\bar{\partial}\varphi = \bar{\partial}\psi$, then the difference $\varphi - \psi$ is $\bar{\partial}$ -closed form in $L_{n,n-s}^{r'}(\Omega) \subset L_{n,n-s}^{p'}(\Omega)$ so the $\bar{\partial}$ -equation is solvable in $L^{r'}(\Omega)$, because $s' \le 2$ by Theorem 1.3 (a), and hence there exists a form γ in $L_{n,n-s-1}^{r'}(\Omega)$ such that $\bar{\partial}\gamma = \varphi - \psi$. Therefore

$$\langle f, \varphi - \psi \rangle = \langle f, \bar{\partial} \gamma \rangle = (-1)^{s-1} \langle \bar{\partial} f, \gamma \rangle = 0.$$

As *f* being compactly supported in Ω there is no boundary term. Then \mathcal{L}_f is well defined in this case.

For s = n, we have $\bar{\partial} f = 0$ (because in this case f is of bidegree (0, n)). Again, let φ , $\psi \in L'_{n,0}(\Omega)$ with $\bar{\partial} \varphi = \bar{\partial} \psi$, hence $\varphi - \psi$ is a $\bar{\partial}$ -closed (*n*, 0)-form, i.e., $\varphi - \psi \in \mathcal{H}_n^{r'}(\Omega)$. Since, by hypothesis, $f \perp \mathcal{H}_n^{r'}(\Omega)$, we have $\langle \varphi - \psi, f \rangle = 0$. Then \mathcal{L}_f is also well defined in this case.

We show next that ${\cal L}$ is a linear form, let α_1 and α_2 be in $L_{n,n-s+1}^{p'}(\Omega)$ such that $\bar{\partial}\alpha_1 = \bar{\partial}\alpha_2 = 0$ and put $\alpha = \alpha_1 + \lambda \alpha_2$, with $\lambda \in \mathbb{C}$, then $\bar{\partial}\alpha = 0$ and so there are φ , φ_1 , and φ_2 in $L_{n,n-s}^{r'}(\Omega)$ such that $\alpha = \bar{\partial}\varphi$, $\alpha_1 = \bar{\partial}\varphi_1$, and $\alpha_2 = \bar{\partial}\varphi_2$. So, because $\bar{\partial}(\varphi - \varphi_1)$ $\varphi_1 - \lambda \varphi_2) = 0$, if s < n, there is a form ψ in $L_{n,n-s-1}^{r'}(\Omega)$ such that $\varphi = \varphi_1 + \varphi_2 + \bar{\partial}\psi.$

Therefore

$$\begin{split} \mathcal{L}_{f}(\alpha) &= (-1)^{s-1} \langle f, \varphi \rangle = (-1)^{s-1} \big\langle f, \varphi_{1} + \lambda \varphi_{2} + \bar{\partial} \psi \big\rangle \\ &= \mathcal{L}(\alpha_{1}) + \lambda \mathcal{L}(\alpha_{2}) + (-1)^{s-1} \big\langle f, \bar{\partial} \psi \big\rangle \\ &= \mathcal{L}_{f}(\alpha_{1}) + \lambda \mathcal{L}_{f}(\alpha_{2}). \end{split}$$

This is because $\langle f, \bar{\partial}\psi \rangle = \langle \bar{\partial}f, \psi \rangle = 0$, since Supp $f \in \Omega$ implies there is no boundary term.

If s = n, because $\bar{\partial}(\varphi - \varphi_1 - \varphi_2) = 0$, we have $h = (\varphi - \varphi_1 - \varphi_2) = 0$. $\lambda \varphi_2) \in \mathcal{H}_n^{r'}(\Omega)$ and the hypothesis $f \perp \mathcal{H}_n^{r'}(\Omega)$ gives $\langle f, h \rangle = 0$. Thus

$$\begin{aligned} \mathcal{L}_f(\alpha) &= (-1)^{s-1} \langle f, \varphi \rangle = (-1)^{s-1} \langle f, \varphi_1 + \lambda \varphi_2 + h \rangle \\ &= \mathcal{L}_f(\alpha_1) + \lambda \mathcal{L}_f(\alpha_2) + (-1)^{s-1} \langle f, h \rangle \\ &= \mathcal{L}_f(\alpha_1) + \lambda \mathcal{L}_f(\alpha_2). \end{aligned}$$

By repeating the same arguments for $\alpha = \lambda \alpha_1$, we get the linearity of \mathcal{L} .

Lemma 2.3. Under the same hypotheses as above, there is a (0, s -1)-form *u* such that

$$\forall \alpha \in L^p_{n,n-s+1}(\Omega), \ \langle u, \alpha \rangle = \mathcal{L}_f(\alpha) = (-1)^{s-1} \langle f, \varphi \rangle,$$

and
$$(2.1)$$

$$\sup_{\alpha \in L^{p'}(\Omega), \|\alpha\|_{L^{p'}(\Omega)} \le 1} |\langle u, \alpha \rangle| \le C \|f\|_{L^{r}(\Omega)}.$$
(2.1)

Proof. It follows from Lemma 2.2 that \mathcal{L} is a linear form on $\bar{\partial}$ closed (n, n - s + 1)-forms α with $L^{p'}(\Omega)$ -coefficients, then there exists an (n, n-s)-form φ with $L'(\Omega)$ -coefficients solving the equation $\bar{\partial}\varphi = \alpha$ and satisfying the estimate

$$\|\varphi\|_{L^{p'}(\Omega)} \le K \|\alpha\|_{L^{p'}(\Omega)}.$$
(2.2)

By definition of \mathcal{L} and Hölder inequality, we get

$$|\mathcal{L}(\alpha)| = |\langle f, \varphi \rangle| \le ||f||_{L^{r}(\Omega)} ||\varphi||_{L^{r'}(\Omega)} \le C ||f||_{L^{r}(\Omega)} ||\alpha||_{L^{s'}(\Omega)}.$$

The last inequalities follows from (2.2). So we see that the norm of \mathcal{L} is bounded on the subspace of $\bar{\partial}$ closed forms in $L^{p'}(\Omega)$ by $C \|f\|_{L^r(\Omega)}.$

By the Hahn–Banach Theorem, we can extend \mathcal{L} with the same norm to all (n, n - s + 1)-forms in $L^{p'}(\Omega)$. As in Serre duality theorem (see [13], p. 20) this is one of the main ingredient in the proof. This means, in the sense of currents, that there is a (0, s - 1)form *u* represents the extended form \mathcal{L} , i.e., *u* satisfies the required properties. \Box

2.2. End Proof of Theorem 1.3

Let us now apply Lemma 2.3 to forms $\varphi \in \mathcal{D}_{n,n-s}(\Omega)$, we then get $\alpha = \bar{\partial} \varphi \in \mathcal{D}_{n,n-s+1} \subset L^{p'}(\Omega)$ and

$$\left\langle u, \bar{\partial}\varphi \right\rangle = \mathcal{L}(\bar{\partial}\varphi) = (-1)^{s-1} \langle f, \varphi \rangle \Rightarrow \left\langle \bar{\partial}u, \varphi \right\rangle = \langle f, \varphi \rangle$$

Since φ has compact support in Ω , then $\bar{\partial} u = f$ in the sense of distributions. In addition, the estimate (2.1) implies by duality arguments that

$$||u||_{L^p_{0,s-1}(\Omega)} \leq C||f||_{L^r_{0,s}(\Omega)}.$$

This proves the assertion (b) of Theorem 1.3.

For the assertion (c), arguing as above with p' = 1 we then find

$$\sup_{\alpha \in L^1(\Omega), \|\alpha\|_{L^1(\Omega)} \le 1} |\langle u, \alpha \rangle| \le C \|\omega\|_{L^r(\Omega)},$$

which implies by duality that $u \in L^{\infty}_{0,s-1}(\Omega)$ with control of the norm. The proof of Theorem 1.3 is now complete. \Box

References

- [1] N. Kerzman, Hölder and L^p estimates for solutions of $\bar{\partial} u = f$ in strongly pseudoconvex domains, Commun. Pure Appl. Math. 24 (1971) 301–379.
- [2] N. Øvrelid, Integral representation formulas and L^p estimates for the $\bar{\partial}$ equation, Math. Scand. 29 (1971) 137-160.
- [3] S. Krantz, Optimal Lipschitz and L^p regularity for the equation $\bar{\partial} u = f$ on stongly pseudoconvex domains, Math. Ann. 219 (1976) 233–260. [4] E. Amar, Estimates $L^r L^s$ for solutions of the $\bar{\partial}$ equation in strictly pseudoconvex domains in C^n , 2013. HAL: hal-00922356.
- [5] C. Menini, Estimations pour la réselution du $\bar{\partial}$ sur une intersection d' ouvert strictement pseudoconvexes, Math. Z. 225 (1997) 87–93.
 K. Diederich, B. Fischer, J.E. Fornaess, Hölder estimates on convex domains of
- finite type, Math. Z. 232 (1999) 43–61.

- [7] B. Fischer, L^p estimates on convex domains of finite type, Math. Z. 236 (2001) 401-418.
- [8] L. Ma, S.K. Vassiliaduo, L^p -estimates for $\bar{\partial}$ -equation on q-convex intersections in \mathbb{C}^n , Manuscr. Math. 103 (2000) 413–433.
- [9] L. Hörmander, L^2 -estimates and existence theorems for the $\bar{\partial}$ -operator, Acta Math. 113 (1965) 89-152.
- [10] E. Amar, The raising steps method: applications to the $\hat{\partial}$ equation in Stein manifolds, J. Geom. Anal. (2015), doi:10.1007/s12220-015-9576-8.
- [11] S. Vassiliadou, The ∂-neumann problem on certain piecewise smooth domains in Cⁿ, Complex Var. 46 (2001) 123–141.
 [12] S. Khidr, L^p-estimates for the ∂-equation with exact support on *q*-convex in-
- tersections, Submitted.
- [13] J.-P. Serre, Un théorème de dualité, Comment. Math. Helv. 29 (1955) 9-26.