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In this paper, we introduce the concept of k −partial groups and discuss some of their basic properties. 

We introduce the category kpg of k −partial groups, which is more convenient than the category Sstg of 

strong semilattices of topological groups [1] and satisfies the same nice properties of Sstg. 
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1. Introduction 

In [1] , we introduced the concept of topological partial groups

and discussed some of their basic properties. The category Tpg of

topological partial groups, as objects, and the homomorphisms of

topological partial groups, as arrows, has the following deficien-

cies: 

(i) Let S be a topological partial group and a ∈ S . Then, the right

transformation r a : S → S , x �→ x a and the left transformation

� a : S → S , x �→ a x , may not be open. 

(ii) Let S be a topological partial group and N � S . Then, the par-

tial group S / N with the identification topology with respect

to the quotient map ρN : S → S / N , x �→ x N , may not be a topo-

logical partial group, since ρN × ρN may not be an identifi-

cation map. 

If S is a locally compact space, then S / N is also locally compact.

Thus, ρN × ρN is an identification map [2] . So, S / N is a topolog-

ical partial group. Therefore, we introduced the category Lcpg, of

locally compact partial groups. The category Lcpg modified some

of the above deficiencies as (ii) but it does not modify (i) (see

Example (4.1) in [1] ). Let S = L (S i , Y, ϕ i, j ) be a strong semilattice

of groups [3] . Let ( S i ) i ∈ Y be a family of topological groups. Then,
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 with the final topology with respect to the inclusions ( i λ) λ ∈ L ,
hich is called the sum topology on S [2] , is a topological par-

ial group, denoted by S = 

∐ 

λ∈ L S λ [1] . The weak product S × W 

S ,

hich is S × S with the final topology with respect to the inclu-

ion maps ( i α × i β ) α, β ∈ L , makes S a topological partial group.

e proved that every strong semilattice of topological groups is

 topological partial group but the converse may not be true [1] .

he category Sstg of strong semilattices of topological groups is a

onvenient category, as we think, because: 

(i) If S and T are strong semilattices of topological groups, then

S × W 

T is also a strong semilattice of topological groups. That

is, the weak product is a categorical product of Sstg. 

(ii) A wide subpartial group [4] of a strong semilattice of topo-

logical groups with the relative topology is a strong semilat-

tice of topological groups. 

(iii) If S is a strong semilattice of topological groups and N � S ,

then the partial group S / N with the identification topology

with respect to the quotient map ρN : S → S / N , is a strong

semilattice of topological groups. 

In this paper, we introduced the category kpg of k −partial

roups, as objects, and continuous partial group homomorphisms,

s arrows which is more convenient than the category Sstg and

atisfies the same nice properties of Sstg. Let τ be the category of

opological spaces and continuous maps and let ℘ be a non- empty

ull subcategory of τ . 
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Let S be a topological partial group, then the map α: C → S is

alled a ℘− test map if α is continuous and α−1 (S e x ) is open in

 for each e x ∈ E ( S ) , where C ∈ obj ( ℘). The k −topology on S is

he final topology with respect to all ℘− test maps α: C → S , C

 obj ( ℘). S with the k −topology is denoted by k ( S ). S is called a

 − space if k (S) = S. 

For objects S and T in kpg, let S ×W 

′ T = k (S × T ) be S × T with

he final topology with respect to all ℘− test maps α × β: C × D

 S × T . The product S ×W 

′ T is called the weak product of S and

 which will be the categorical product of kpg. The topological par-

ial group S with the k −topology on S is called a k −partial group,

here μ : S ×W 

′ S → S is the product map. 

The category kpg is a convenient category if and only if the cat-

gory ℘ satisfies the following conditions [5] : 

(A) If A is a closed subspace of an object B of ℘, then A is a k℘ −
space [5] . 

(B) If B and C are objects in ℘, then B × C is also an object in ℘. 

(C) For objects X in ℘ and Y in τ , the evaluation map e :

Y X × X → Y ; e ( f, x ) = f (x ) , f ∈ Y X and x ∈ X , is continu-

ous, where Y X has the compact open topology. 

(D) If A and B are objects in ℘, then the topological sum A � B is

also an object in ℘. 

Examples of such non- empty full subcategories ℘ are, the cate-

ory H of all compact Hausdorff spaces, the category LH of all lo-

ally compact Hausdorff spaces and the category L of all locally

ompact spaces. 

. Preliminaries 

We collect for sake of reference the needed definitions and re-

ults appeared in the given references. 

Let S be a partial group [6] . If x ∈ S , then e x and x −1 are the

artial identity and the partial inverse of x , respectively, which

re unique [6] . E ( S ) is the set of all partial identity elements of

 , which is also the set of all idempotents of S [4]. The set S x =
 

y ∈ S : e x = e y } is a maximal subgroup of S and S = 

⋃ { S x : x ∈ S } =
 { S e x : e x ∈ E(S) } . That is, every partial group is a disjoint union

f groups [6] . A semigroup S is a partial group if and only if it is a

trong semilattice of groups [6] . 

Let S be a partial group and τ be a topology on S . Then, S is

alled a topological partial group if the following maps are contin-

ous [1] : 

(i) The product map μ: S × S → S ; ( x, y ) �→ xy 

(ii) The partial inverse map γ : S → S; x �→ x −1 

(iii) The partial identity map e S : S → S ; x �→ e x . 

Let S be a topological partial group and N be a subpartial group

4] of S . Then N with the relative topology is a topological partial

roup, called a topological subpartial group [1] . 

. k -partial groups. 

Let τ be the category of topological spaces and continuous

aps and let ℘ be a non- empty full subcategory of τ . 

efinition 3.1. Let S be a topological partial group, then the map

: C → S is called a ℘− test map if α is continuous and α−1 (S e x )

s open in C for each e x ∈ E ( S ), where C ∈ obj ( ℘). 

efinition 3.2. The k −topology on S is the final topology with

espect to all ℘− test maps α: C → S , C ∈ obj ( ℘). S with the

 −topology is denoted by k ( S ). S is called a k − space if k (S) = S. 

From this definition, we have that S e x is open in S for all e x ∈
 ( S ). So, the k −space S , which is not a group, is not connected.

lso, we have that the identity map I : k ( S ) → S is continuous. 
heorem 3.1. There exists a set of ℘− test maps sufficient to define

he k − topology on S . 

roof. Let C be the family of all non open subsets in S . Since S is a

et, then C is a set. So, ∀ U ∈ C, we can choose F ∈ obj ( ℘) and αU : F

 S such that α−1 
U 

(U) is not open in F . Let L = { αU : F → S, U ∈ C } .
et S ′ have the final topology with respect to L . Then, the topology

n S ′ is finer than the topology on S . Let V be a non- empty non

pen subset in S , then ∃ a ℘-test map αV : F 
′ → S such that α−1 

V 
(V )

s not open in F ′ . So, V is not open in S ′ . Hence, the topology on S ′ 
s coarser than the topology on S . �

efinition 3.3. The k − topology on S × S is the final topology with

espect to all ℘− test maps of the form α × β: C × D → S × S ,

here C , D ∈ obj ( ℘). S × S with this topology will be denoted by

 ×W 

′ S. 

heorem 3.2. Let S and T be topological partial groups. If f : S → Tis

ontinuous, then k ( f ) = f : k (S) → k (T ) is continuous. 

roof. Let α: C → S be a ℘− test map, then f α: C → T is a ℘−
est map since f α is continuous and if T e is a maximal subgroup

f T , then ( fα) −1 ( T e ) is open in C . Then f α: C → k ( T ) is a ℘− test

ap, since k ( k (T )) = k (T ) . That means, k ( f ) = f : k (S) → k (T ) is

ontinuous. �

We note that the following structure maps are continuous from

he above theorem, for any k - space S : 

(i) μ : S ×W 

′ S → S, 

(ii) γ : S → S , 

(iii) e S : S → S . 

So, the partial group S with the k −topology on S is a topologi-

al partial group, called a k −partial group. 

Let kpg be a category of k −partial groups, as objects, and con-

inuous partial group homomorphisms, as arrows. Then one can

efine a functor k : Tpg → kpg , S �→ k ( S ), f �→ k ( f ). 

The category kpg is a convenient category if and only if the con-

itions A, B, C and D in the introduction are satisfied. 

heorem 3.3. Let S be a k −partial group, then the maps r a and � a 
re continuous. 

roof. Since S is a topological partial group, then from

heorem 3.2 , the maps r a and � a are continuous. �

heorem 3.4. The maps r a and � a are open. 

roof. We only prove that r a is open as follows: Let U ⊆S be open.

hen, U 

⋂ 

S e x is open in the maximal topological subgroup S e x .

ince, the right transformation r a | 
S e x 

: S e x → S e x is a homeomor-

hism, then, r a | 
S e x 

(U 

⋂ 

S e x ) is open in S e x . Since S e x is open in S ,

hen r a | 
S e x 

(U 

⋂ 

S e x ) = Ua 
⋂ 

S e x is open in S . That means r a (U) =
 

e x ∈ E(S) r a | S e x (U 

⋂ 

S e x ) is open in S . Similarly, � a is open. �

heorem 3.5. Let S be a k −partial group and A , B ⊆S. Then, if A

s open in S, then AB and BA are also open in S, where AB =
 

ab : a ∈ A, b ∈ B } . 
roof. Since AB = 

⋃ 

b∈ B r b (A ) , and r b ( A ) is open in S , then AB is

pen in S . Similarly, since BA = 

⋃ 

b∈ B � b (A ) , and � b ( A ) is open in S ,

hen BA is open in S . �

heorem 3.6. Let N be a topological subpartial group of the

k −partial group S, then k (N) = N. 

roof. Let U ⊆N be such that α−1 (U) is open in C , where α: C →
 is a ℘−test map. Let i : N → S be the inclusion. Since i α: C →
 is continuous and S e x is open in S , then (i α) −1 (S e x ) is open in

 . That means i α: C → S is a ℘− test map. Now, (i α) −1 (U) =
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α−1 (i −1 (U)) = α−1 (U) is open in C . Hence, U is open in S . Since

 

⋂ 

N = U, then U is open in N . So, k (N) = N. �

We will denote the topological subpartial group N of a

k −partial group S by N ≤ S . 

Theorem 3.7. If S is a k −partial group, then every open topological

subpartial group of S is closed. 

Proof. Let N be an open topological subpartial group of S . Then, xN

is open in S , ∀ x ∈ S . Since, S − N = 

⋃ 

x / ∈ N xN, then S − N is open.

Therefore, N is closed. �

Let { S i : i = 1 , 2 , · · · , n } be a family of k − partial groups and let 

S = 

n 
�

i =1 
S i = { x = 〈 x i 〉 : x i ∈ S i , ∀ i = 1 , 2 , . . . , n } be the external

direct product of the k − partial groups S i . Then, S is a topological

partial group [1] . 

Theorem 3.8. k (S) = S. 

Proof. We have that the identity maps I i : S i → k ( S i ) and the pro-

jections P i : S → S i are continuous. So, the maps I i P i : S → k ( S i ) are

continuous. Hence, the identity map 〈 I P i 〉 : S → k ( S ) is continuous.

That means k (S) = S. �

4. Quotients in k -partial groups and separation axioms 

Definition 4.1. If S is a k −partial group and N ≤ S , then S / N with

the identification topology, with respect to the quotient map ρN :

S → S / N , x �→ xN , is called the coset space. 

Theorem 4.1. Let S be a k -partial group and N ≤ S. Then, the quo-

tient map ρN : S → S / N is open. 

Proof. Let U ⊆S be open. Now, 

ρ−1 
N 

(ρN (U)) = { x ∈ S : ρN (x ) ∈ ρN (U) } 
= { x ∈ S : xN ∈ U/N } 
= U N. 

Since U is open in S , then U N is open in S ( Theorem 3.5 ). Therefore,

ρN ( U ) is open is S / N . �

Theorem 4.2. If S is a k - partial group and N � S, then S / N is a k -

partial group. 

Proof. Firstly, we show that S / N is a topological partial group.

Since ρN is an open identification map, then ρN × ρN is an identi-

fication map [2] . So, the product map μ: S / N × S / N → S / N is con-

tinuous, since μ (ρN × ρN ) = ρN μ
′ , where μ′ : S × S → S is the

product map. The partial inverse map γ : S / N → S / N and the partial

identity map e S / N : S / N → S / N are continuous, since γ ρN = ρN γ
′ 

and e S/N ρN = ρN e S , where γ ′ : S → S , x �→ x −1 and e S : S → S, x �→ e x
are continuous. Since I ρN = k (ρN ) I 

′ , then I is continuous, where I :

S / N → k ( S / N ) and I ′ : S → k ( S ) are the identity maps. �

Definition 4.2. Let S and T be k −partial groups. Then, ϕ: S → T is

called a morphism if ϕ is continuous and partial group homomor-

phism [4] . 
heorem 4.3. Let ϕ: S → T be an idempotent separating [3] surjec-

ive morphism and K = ker ϕ. Then, there exists a unique bijective

orphism α: S / K → T such that ϕ = α ρK . 

roof. α is continuous since ϕ is continuous and ρK is an identi-

cation map. That is all we need. �

heorem 4.4. Let S be a k −partial group and M , N � S be such that

 ⊆N, then 

(i) N / M � S / M . 

(ii) There exists a unique bijective morphism α : (S/M) / (N/M) →
S/N , such that ρN = αρN/M 

ρM 

. 

roof. 

(i) See [4] 

(ii) Let ρN : S → S / N and ρM 

: S → S / M be the quotient maps.

Since ρN is an idempotent separating surjective morphism

and ker ρN = N, then from the last theorem, there exists a

unique bijective morphism ϕ: S / M → S / N , x M �→ x N such that

ϕ ρM 

= ρN . Since ker ϕ = N/M [1] is a k −partial group, then

by the last theorem, there exists a unique bijective mor-

phism α: ( S / M )/( N / M ) → S / N , such that ρN = αρN/M 

ρM 

. �

heorem 4.5. Let S be a k −partial group. Then, S is a Hausdorff

pace if and only if S is a T 0 −space. 

roof. Let S be a Hausdorff space. Then, S is a T 0 −space. Con-

ersely, let S is a T 0 −space. Let x, y ∈ S , x � = y . 

(i) If x, y ∈ S a , then S a is a T 2 −group, then ∃ two open sets U , V in

S a and also open in S such that U 

⋂ 

V = φ and x ∈ U and y ∈ V .

ii) If x ∈ S a and y ∈ S b . Then, we have that S a and S b are open in

S and S a 
⋂ 

S b = φ. So, S is a Hausdorff space. �

heorem 4.6. Let S be a Hausdorff k −partial group. If f , g : S → T

re morphisms of k −partial groups, then the difference kernel A =
 

x ∈ T : f (x ) = g(x ) } is a closed subpartial group. 

roof. A is closed (see [2] ). Let x, y ∈ A , then 

f (x y −1 ) = f (x ) f (y −1 ) 
= f (x ) f (y ) −1 

= g(x ) g(y ) −1 = g(xy −1 ) , then x y −1 ∈ A. 

So, A is a closed subpartial group. �
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