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. Introduction 

Fuzzy sets are sets whose elements represent by degrees of

embership. L.A.Zadeh [1] introduced the concepts of fuzzy sets.

ince then, many new approaches and theories have been pro-

osed. Moreover the concept of Intuitiontic Fuzzy set ( IFS ) was

roposed by K.T.Atanassor [2,3] . 

In ordinary set, a set is a well-defined collection of distinct ob-

ects and permit us to have almost one occurrence of each element,

ultisets or bag permit us to have multiple occurrence of the ele-

ents. Multisets have various applications, such as some chemical

erminology form by multiset as chemical soup of molecules [4] .

ultiset is used in graph theory and in DNA computing [5] , multi-

ets have become an important tool in data base, and in computer

cience. Yager introduced the concepts of fuzzy multisets [6] . 

An element of (FMS) can be repeated more than once with the

ame or different membership values. Then T.K Shinoj and Sunil

acob John introduce the concept of Intuitionistic Fuzzy Multi sets

 IFMS ) [7] . The definition of correlation measure of fuzzy multi

et is an extension of the correlation measure of ( IFS ) and ( IFMS )

8–10] . 

Pawlak introduce the theory of rough set as extension of the set

heory [11,12] by information inadequate and incomplete. Informa-

ion system is a term which has wide area of applications [11,13] .
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athematically it represents data tables and expressed using ob-

ects and attributes. One of the fundamental aims in information

ystem is to reduce the number of attributes to get redacts without

ffecting the accuracy of decisions [14,15] . There are many ways to

educe the condition or objects from decision information, such as

lassification of data, indiscernibility matrix and function. 

In this paper, we begin with the introduction of multiset, fuzzy

et, fuzzy multi set and correlation measure of IFS and IFMS in

ection 2 . In Sections 3 and 4 , we define new measure of corre-

ation FMS and apply this measure on medical diagnosis and se-

ecting specialization. We also attempt to introduce a new view of

eduction for fuzzy multi information system and the definition of

ower and upper fuzzy multi set by using threshold indiscernibility

atrix in Sections 5 and 6 . Besides, several examples are given and

e close the paper with some concluding remarks ( Tables 1 –8 ). 

. Preliminaries 

efinition 2.1. [2] A fuzzy set can is defined as A =
 〈 x, μA (x ) 〉 : x ∈ X } and X be a nonempty set, μA ( x ) ∈ [0.1] is

he membership of x ∈ X in A . 

efinition 2.2. [3] We can define an Intuitionistic fuzzy set ( IFS )

 in X as A = { 〈 x, μA (x ) , ϑ A (x ) 〉 : x ∈ X } where μA : X → [0, 1]

nd ϑA : X → [0, 1] such that 0 ≤ μA (x ) + ϑ A (x ) ≤ 1 , ∀ x ∈ X . And

A ( x ) and ϑA ( x ) ∈ [0.1] are the membership and non-membership

unctions of the fuzzy set A . 
. This is an open access article under the CC BY-NC-ND license. 
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ii. ρFMS ( A 1 , B 1 ) ≤ ρFMS ( A 2 , B 2 ) 
The complement set A 

c of A is defined as 

A 

c = { 〈 x, ϑ A ( x ) , μA ( x ) 〉 : x ∈ X } 
Definition 2.3. [6] An mset M drawn from the set X is represented

by s function count M or C M 

, defined as C M 

: X → N , where N rep-

resents the set of nonnegative integers. 

In Definition 2.3 , C M 

( x ) is the number of occurrences of the el-

ement x in the mset M however those elements which are not

included in the mset M have zero count. 

Definition 2.4. Yager [6] first discussed fuzzy multisets, al-

though he uses the term of fuzzy bag, an element of X

can be repeated more than once in the same or differ-

ent membership values. Therefore an FMS A is given by A =
{ ( x i , ( μ1 

A 
(x ) , μ2 

A 
(x ) , . . . , μp 

A 
(x ) ) , x ∈ X } of 

X = { x 1 , x 2 , . . . , x n } where 
(
μ1 

A ( x ) ≥ μ2 
A ( x ) ≥ . . . ≥ μp 

A ( x ) 
)

An Intuitionistic fuzzy multi set ( IFMS ) A defined as 

A = 

{
( x i , 

(
μ1 

A ( x ) , μ
2 
A ( x ) , . . . , μ

p 
A ( x ) , ϑ 

1 
A ( x ) , ϑ 

2 
A ( x ) , . . . , ϑ 

p 
A ( x ) 

)
x ∈ X

where (
μ1 

A ( x ) ≥ μ2 
A ( x ) ≥ . . . ≥ μp 

A ( x ) 
)

Definition 2.5. [6] The cardinality membership function M C ( x ) and

the non-membership NM C ( x ) is the length of an element x in

an IFMS A can be defined as η = | M C (x ) | = | N M C (x ) | . If A, B

and C are the IFMS defined on X , then the cardinality η =
Max { η(A ) , η(B ) , η(C) } . 

Definition 2.6. (fuzzy correlation measure) [ 16, 6 ]: 

Let A = { 〈 x i , μA ( x i ) 〉 , x i ∈ x } and B = { 〈 x i , μB ( x i ) 〉 , x i ∈ x } be two

FSs on a finite set X = { x 1 , x 2 , . . . , x n } , then the correlation coeffi-

cient of A and B is 

ρF S ( A, B ) = 

C F S ( A, B ) √ 

C F S ( A, A ) ∗ C F S ( B, B ) 

where 

 F S ( A, B ) = 

n ∑ 

i =1 

μA ( x i ) μB ( x i ) 

and 

 F S ( A, A ) = 

n ∑ 

i =1 

μA ( x i ) μA ( x i ) 

Definition 2.7. (Intuitionistic fuzzy correlation measure) [ 16 , 6 ]:

Let A = { 〈 x i , μA ( x i ) , ϑ A ( x i ) 〉 , x i ∈ x } and B =
{ 〈 x i , μB ( x i ) , ϑ B ( x i ) 〉 , x i ∈ x } be two IFSs on the finite set

X = { x 1 , x 2 , . . . , x n } , then the correlation coefficient of A and

B is 

ρIF S ( A, B ) = 

C IF S ( A, B ) √ 

C IF S ( A, A ) ∗C IF S ( B, B ) 

where C IF S ( A, B ) = 

∑ n 
i =1 μA ( x i ) μB ( x i ) + ϑ A ( x i ) ϑ B ( x i ) and

 IF S ( A, A ) = 

∑ n 
i =1 μA ( x i ) μA ( x i ) + ϑ A ( x i ) ϑ A ( x i ) 

Definition 2.8. (Intuitionistic fuzzy multi correlation measure)

[ 17 ]: 

Let X = { x 1 , x 2 , . . . , x n } be the finite set and A =
{ 〈 x i , μ j 

A 
( x i ) , ϑ 

j 
A 
( x i ) 〉 , x i ∈ x } , B = { 〈 x i , μ j 

B 
( x i ) , ϑ 

j 
B 
( x i ) 〉 , x i ∈ x } be

two IFMS , then the correlation coefficient of A and B 

ρIF MS ( A, B ) = 

C IF MS ( A, B ) √ 

C IF MS ( A, A ) ∗ C IF MS ( B, B ) 
here C IF MS ( A, B ) = 

1 
η

∑ n 
i =1 ( μA ( x i ) μB ( x i ) + ϑ 

j 
A 
( x i ) ϑ 

j 
B 
( x i )) 

 IF MS ( A, A ) = 

1 

η

n ∑ 

i =1 

( μA ( x i ) μA ( x i ) + ϑ 

j 
A ( x i ) ϑ 

j 
A ( x i ) ) 

In the next section, we will define correlation measure of fuzzy

ultiset ( FMS ) and its properties and apply this measure on med-

cal diagnosis. 

. Correlation measure for fuzzy multisets ( FMS ) 

efinition 3.1. Let A = { ( x i , ( μ1 
A 
( x ) , μ2 

A 
( x ) , . . . , μp 

A 
( x ) ) , x ∈ X } and

 = { ( x i , ( μ1 
B 
( x ) , μ2 

B 
( x ) , . . . , μk 

B 
( x ) ) , x ∈ X } be two fuzzy multiset on

 finite set X = { x 1 , x 2 , . . . , x n } then the fuzzy multi correlation

easure of A and B is 

F MS ( A, B ) = 

C F MS ( A, B ) √ 

C F MS ( A, A ) ∗ C F MS ( B, B ) 

Where 

 F MS ( A, B ) = 

1 

η

n ∑ 

i =1 

μA ( x i ) μB ( x i ) 

And 

 F MS ( A, A ) = 

1 

η

n ∑ 

i =1 

μA ( x i ) μA ( x i ) 

roposition 3.1. The defined measure ρFMS ( A, B ) between

MS A and B satisfies the following properties 

i. 0 ≤ ρFMS ( A, B ) ≤ 1 

ii. ρF MS ( A, B ) = 1 iff A = B 

iii. ρF MS ( A, B ) = ρF MS ( B, A ) 

roof. 

i. ρFMS ( A, B ) lies between 0 and 1beacuse, the membership

functions of the FMSs lies between 0 and 1. 

ii. Let the two FMS A and B be equal .i.e. ( A = B )

hence for any μ j 
A 
( x i ) = μ j 

B 
( x i ) then C F MS ( A, A ) =

C F MS ( B, B ) = 

1 
η

∑ n 
i =1 μA ( x i ) μA ( x i ) And C F MS ( A, B ) =

1 
η

∑ n 
i =1 μA ( x i ) μB ( x i ) = C FMS ( A, A ) Hence ρF MS ( A, B ) = 1 ,

let the ρF MS ( A, B ) = 1 .i.e. 1 = 

C F MS ( A,B ) √ 

C F MS ( A,A ) ∗C F MS ( B,B ) 
this refers

that μ j 
A 
( x i ) = μ j 

B 
( x i ) for all values i, j hence A = B . 

iii. ρF MS ( A, B ) = ρF MS ( B, A ) . It is obvious that ρF MS ( A, B ) =
C F MS ( A,B ) √ 

C F MS ( A,A ) ∗C F MS ( B,B ) 
= ρF MS ( B, A ) as C F MS ( A, B ) =

1 
η

∑ n 
i =1 μA ( x i ) μB ( x i ) = 

1 
η

∑ n 
i =1 μB ( x i ) μA ( x i ) = C F MS ( B, A ) . 

xample 3.1. Let A = { (0 . 3 , 0 . 2 , 0 . 1) /x, (1 , 0 . 5 , 0 . 5) /y } and B =
 (0 . 7 , 0 . 5 , 0 . 4) /w, (0 . 5 , 0 . 4 , 0 . 4) /z } here the cardinality η = 2 

 F MS ( A, B ) = 

1 

2 

[ ( 0 . 3 ) ( 0 . 7 ) + ( 1 ) ( 0 . 5 ) + ( 0 . 2 ) ( 0 . 5 ) + ( 0 . 5 ) ( 0 . 4 ) 

+ ( 0 . 1 ) ( 0 . 4 ) + ( 0 . 5 ) ( 0 . 4 ) ] = 0 . 625 

And the correlation FMS measure is ρF MS ( A, B ) = 0 . 805 

roposition 3.2. Let A 1 , A 2 , B 1 , B 2 are FMS such that 

A 1 ⊆A 2 , B 1 ⊆B 2 then 

i. C FMS ( A 1 , B 1 ) ≤ C FMS ( A 2 , B 2 ) 
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Table 1 

FMS P: The relation between patient and symptoms. 

p Temperature Cough Throat pain Headache Body pain 

p 1 (0 .6,0.7,0.5) (0 .4,0.3,0.4) (0 .1,0.2,0) (0 .5,0.6,0.7) (0 .2,0.3,0.4) 

p 2 (0 .4,0.3,0.5) (0 .7,0.6,0.8) (0 .6,0.5,0.4) (0 .3,0.6,0.2) (0 .8,0.7,0.5) 

p 3 (0 .1,0.2,0.1) (0 .3,0.2,0.1) (0 .8,0.7,0.8) (0 .3,0.2,0.2) (0 .4,0.3,0.2) 

p 4 (0 .3,0.4,0.2) (0 .4,0.3,0.1) (0 .2,0.1,0) (0 .5,0.6,0.3) (0 .4,0.5,0.4) 

Table 2 

FMSs R: the relation among symptoms and diseases. 

R Viral fever Tuberculosis Typhoid Throat disease 

Temperature (0 .8,0.9,0.85) (0 .2,0.3,0.25) (0 .5,0.7,0.6) (0 .1,0.3,0.2) 

Cough (0 .2,0.3,0.25) (0 .9,1,0.95) (0 .3,0.5,0.4) (0 .3,0.4,0.35) 

Throat pain (0 .3,0.5,0.4) (0 .7,0.8,0.75) (0 .2,0.3,0.25) (0 .8,0.9,0.85) 

Headache (0 .5,0.7,0.6) (0 .6,0.7,0.65) (0 .2,0.4,0.3) (0 .1,0.2,0.15) 

Body pain (0 .5,0.6,0.55) (0 .7,0.8,0.75) (0 .4,0.6,0.5) (0 .1,0.2,0.15) 

P
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Table 3 

The correlation measure between FMSs P and R. 

Correlation measure Viral fever Tuberculosis Typhoid Throat disease 

p 1 0 .9292 0 .7579 0 .8997 0 .4032 

p 2 0 .8227 0 .9514 0 .8970 0 .747 

p 3 0 .6448 0 .8729 0 .6419 0 .9437 

p 4 0 .8557 0 .835 0 .8951 0 .480 

Table 4 

Student vs. subjects. 

S Logic Math Drawing Physic Mechanic 

S 1 (0 .9,0.7,0.8) (0 .9,0.7,0.8) (0 .6,0.4,0.3) (0 .9,0.8,0.8) (0 .5,0.5,0.4) 

S 2 (0 .5,0.4,0.5) (0 .6,0.4,0.5) (0 .5,0.5,0.4) (0 .4,0.3,0.4) (0 .8,0.9,0.7) 

S 3 (0 .7,0.6,0.7) (0 .5,0.4,0.4) (0 .9,0.7,0.8) (0 .5,0.4,0.3) (0 .4,0.5,0.3) 

S 4 (0 .7,0.6,0.7) (0 .8,0.7,0.7) (0 .8,0.7,0.7) (0 .6,0.5,0.6) (0 .5,0.4,0.5) 

Table 5 

Department vs. subjects. 

R Logic Math Drawing Physics Mechanic 

Architecture (0 .8,0.7,0.9) (0 .5,0.4,0.4) (0 .9,0.8,0.9) (0 .5,0.4,0.4) (0 .5,0.3,0.4) 

Electrical (0 .8,0.7,0.8) (0 .9,0.8,0.7) (0 .5,0.4,0.3) (0 .8,0.8,0.9) (0 .5,0.5,0.4) 

Civil (0 .8,0.8,0.9) (0 .7,0.6,0.6) (0 .9,0.8,0.9) (0 .5,0.4,0.3) (0 .6,0.7,0.6) 

Mechanical (0 .6,0.6,0.5) (0 .5,0.5,0.4) (0 .8,0.7,0.7) (0 .5,0.5,0.4) (0 .9,0.8,0.9) 

Table 6 

The correlation measure between FMSs S and R. 

Correlation measure Architecture Electrical Civil Mechanical 

S 1 0 .8858 0 .995 0 .904 0 .872 

S 2 0 .8699 0 .8832 0 .936 0 .974 

S 3 0 .9902 0 .8812 0 .986 0 .934 

S 4 0 .9614 0 .953 0 .973 0 .935 

T

 

h  

t  

d

 

m  

s

4

s

 

h  

E  

t  

a  

d  

i  

i  

t  

t  
roof. 

i. C F MS ( A 1 , B 1 ) = 

1 
η

∑ n 
i =1 μA 1 

( x i ) μB 1 
( x i ) and C F MS ( A 2 , B 2 ) =

1 
η

∑ n 
i =1 μA 2 

( x i ) μB 2 
( x i ) , μ j 

A 1 
(x ) ≤ μ j 

A 2 
(x ) ( A 1 ⊆A 2 ), for all

values of j , μ j 
B 1 

(x ) ≤ μ j 
B 2 

(x ) then C FMS ( A 1 , B 1 ) ≤ C FMS ( A 2 , B 2 )

ii. It is obvious from ( i ) 

We will present an application of FMS correlation measure in

edical diagnosis in the following example . As medical diagno-

is contains a large amount of uncertainties and increased volume

f information available to physicians from new updated technolo-

ies, the process of classifying different set of symptoms under a

ingle name of a disease. 

xample 3.2. Let p = { p 1 , p 2 , p 3 , p 4 } be a set of patients, D = {
ever, Tuberculosis, Typhoid, Throat disease} be the set of diseases

nd S = { Temperature, Cough, Throat pain, Headache, Body pain}

e the set of symptoms. 

Our solution is to examine the patient at different time inter-

als (three times a day). 

 1 = 

{
T / ( 0 . 6 , 0 . 7 , 0 . 5 ) , C/ ( 0 . 4 , 0 . 3 , 0 . 4 ) , T h/ ( 0 . 1 , 0 . 2 , 0 ) , 

H/ ( 0 . 5 , 0 . 6 , 0 . 7 ) , B/ ( 0 . 2 , 0 . 3 , 0 . 4 ) 

}
, 

 2 = 

{
T / ( 0 . 4 , 0 . 3 , 0 . 5 ) , C/ ( 0 . 7 , 0 . 6 , 0 . 8 ) , T h/ ( 0 . 6 , 0 . 5 , 0 . 4 ) , 

H/ ( 0 . 3 , 0 . 6 , 0 . 2 ) , B/ ( 0 . 8 , 0 . 7 , 0 . 5 ) 

}

 3 = 

{
T / ( 0 . 1 , 0 . 2 , 0 . 1 ) , C/ ( 0 . 3 , 0 . 2 , 0 . 1 ) , T h/ ( 0 . 8 , 0 . 7 , 0 . 8 ) , 

H/ ( 0 . 3 , 0 . 2 , 0 . 2 ) , B/ ( 0 . 4 , 0 . 3 , 0 . 2 ) 

}

 4 = 

{
T / ( 0 . 3 , 0 . 2 , 0 . 2 ) , C/ ( 0 . 4 , 0 . 3 , 0 . 1 ) , T h/ ( 0 . 2 , 0 . 1 , 0 ) , 

H/ ( 0 . 5 , 0 . 6 , 0 . 3 ) , B/ ( 0 . 4 , 0 . 5 , 0 . 4 ) 

}

ever 

= 

{
T / ( 0 . 8 , 0 . 9 , 0 . 85 ) , C/ ( 0 . 2 , 0 . 3 , 0 . 25 ) , T h/ ( 0 . 3 , 0 . 5 , 0 . 4 ) , 

H/ ( 0 . 5 , 0 . 7 , 0 . 6 ) , B/ ( 0 . 5 , 0 . 6 , 0 . 55 ) 

}

uberculosis 

= 

{
T / ( 0 . 2 , 0 . 3 , 0 . 25 ) , C/ ( 0 . 9 , 1 , 0 . 95 ) , T h/ ( 0 . 7 , 0 . 8 , 0 . 75 ) , 

H/ ( 0 . 6 , 0 . 7 , 0 . 65 ) , B/ ( 0 . 7 , 0 . 8 , 0 . 75 ) 

}

yphoid 

= 

{
T / ( 0 . 5 , 0 . 7 , 0 . 6 ) , C/ ( 0 . 3 , 0 . 5 , 0 . 4 ) , T h/ ( 0 . 2 , 0 . 3 , 0 . 25 ) , 

H/ ( 0 . 2 , 0 . 4 , 0 . 3 ) , B/ ( 0 . 4 , 0 . 6 , 0 . 5 ) 

}

t

hroat disease 

= 

{
T / ( 0 . 1 , 0 . 3 , 0 . 2 ) , C/ ( 0 . 3 , 0 . 4 , 0 . 35 ) , T h/ ( 0 . 8 , 0 . 9 , 0 . 85 ) , 

H/ ( 0 . 1 , 0 . 2 , 0 . 15 ) , B/ ( 0 . 1 , 0 . 2 , 0 . 15 ) 

}

From the table above, the following decision are made on, the

ighest measure gives that patient P 1 suffers from Viral Fever, pa-

ient P 2 suffers from Tuberculosis, patient P 2 suffers from Throat

isease and the patient P 4 suffers from Typhoid. 

Also we will present another application of FMS correlation

easure in selecting specialization. A case study for engineering

tudents will explain in details in the following example. 

. Application of FMS correlation measure in selecting 

pecialization 

In Egypt for example, we suffer from lack of specialization and

ow choosing the department or the faculty for each student. In

gypt each student chooses the department or faculty according

o its fame and ignores the fact that whether this student is suit-

ble to this department or not. So we need choosing the suitable

epartment to each student by its degree. In faculty of engineer-

ng for example each department needs student to be excellent

n specific objects. We use the correlation measure of FMSs as

ool since it incorporates the membership degree (i.e. the marks of

hree exam to each student, written exam, oral exam and summer

raining) 
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Table 7 

Student vs. subjects. 

S Math Drawing Physic Mechanic 

S 1 (0 .9,0.7,0.8) (0 .6,0.4,0.3) (0 .9,0.8,0.8) (0 .5,0.5,0.4) 

S 2 (0 .6,0.4,0.5) (0 .5,0.5,0.4) (0 .4,0.3,0.4) (0 .8,0.9,0.7) 

S 3 (0 .5,0.4,0.4) (0 .9,0.7,0.8) (0 .5,0.4,0.3) (0 .4,0.5,0.3) 

S 4 (0 .8,0.7,0.7) (0 .8,0.7,0.7) (0 .6,0.5,0.6) (0 .5,0.4,0.5) 

Table 8 

Department vs. subjects. 

R Math Drawing Physics Mechanic 

Architecture (0 .5,0.4,0.4) (0 .9,0.8,0.9) (0 .5,0.4,0.4) (0 .5,0.3,0.4) 

Electrical (0 .9,0.8,0.7) (0 .5,0.4,0.3) (0 .8,0.8,0.9) (0 .5,0.5,0.4) 

Civil (0 .7,0.6,0.6) (0 .9,0.8,0.9) (0 .5,0.4,0.3) (0 .6,0.7,0.6) 

Mechanical (0 .5,0.5,0.4) (0 .8,0.7,0.7) (0 .5,0.5,0.4) (0 .9,0.8,0.9) 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

The correlation measure between FMSs S and R. 

Correlation measure Architecture Electrical Civil Mechanical 

S 1 0 .8424 0 .995 0 .8702 0 .8514 

S 2 0 .8594 0 .864 0 .9355 0 .972 

S 3 0 .9892 0 .838 0 .982 0 .931 

S 4 0 .959 0 .940 0 .9696 0 .926 

Table 10 

Threshold indiscernibility matrix. 

Correlation measure Architecture Electrical Civil Mechanical 

S 1 0 1 0 0 

S 2 0 0 1 1 

S 3 1 0 1 1 

S 4 1 1 1 1 

Table 11 

Discernibility matrix. 

S 2 S 3 S 4 

S 1 Ele, Ci, Me Ar, Ele, Ci, Me Ar, Ci, Me 

S 2 Ar Ar, Ele 

S 3 Ele 

 

t  

{
D  

b  

∧  

t  

j  

T  

i  

g  

b  

t

D  

c  

i  

d  

w  

E

 

p

E  

c  

i

i

U
U
U
U
U
U

Example 4.1. 

S 1 = 

{
L/ ( 0 . 9 , 0 . 7 , 0 . 8 ) , Math/ ( 0 . 9 , 0 . 7 , 0 . 8 ) , D/ ( 0 . 6 , 0 . 4 , 0 . 3 ) , 

P h/ ( 0 . 9 , 0 . 8 , 0 . 8 ) , Me/ ( 0 . 5 , 0 . 5 , 0 . 4 ) 

}

S 2 = 

{
L/ ( 0 . 5 , 0 . 4 , 0 . 5 ) , Math/ ( 0 . 6 , 0 . 4 , 0 . 5 ) , D/ ( 0 . 5 , 0 . 5 , 0 . 4 ) , 

P h/ ( 0 . 4 , 0 . 3 , 0 . 4 ) , Me/ ( 0 . 8 , 0 . 9 , 0 . 7 ) 

}

S 3 = 

{
L/ ( 0 . 7 , 0 . 6 , 0 . 7 ) , Math/ ( 0 . 5 , 0 . 4 , 0 . 4 ) , D/ ( 0 . 9 , 0 . 7 , 0 . 8 ) , 

P h/ ( 0 . 5 , 0 . 4 , 0 . 3 ) , Me/ ( 0 . 4 , 0 . 5 , 0 . 3 ) 

}

S 4 = 

{
L/ ( 0 . 7 , 0 . 6 , 0 . 7 ) , Math/ ( 0 . 8 , 0 . 7 , 0 . 7 ) , D/ ( 0 . 8 , 0 . 7 , 0 . 7 ) , 

P h/ ( 0 . 6 , 0 . 5 , 0 . 6 ) , Me/ ( 0 . 5 , 0 . 4 , 0 . 5 ) 

}

Architecture 

= 

{
L/ ( 0 . 8 , 0 . 7 , 0 . 9 ) , Math/ ( 0 . 5 , 0 . 4 , 0 . 4 ) , D/ ( 0 . 9 , 0 . 8 , 0 . 9 ) , 

P h/ ( 0 . 5 , 0 . 4 , 0 . 4 ) , Me/ ( 0 . 5 , 0 . 3 , 0 . 4 ) 

}

Electrical 

= 

{
L/ ( 0 . 8 , 0 . 7 , 0 . 8 ) , Math/ ( 0 . 9 , 0 . 8 , 0 . 7 ) , D/ ( 0 . 5 , 0 . 4 , 0 . 3 ) , 

P h/ ( 0 . 8 , 0 . 8 , 0 . 9 ) , Me/ ( 0 . 5 , 0 . 5 , 0 . 4 ) 

}

civil 

= 

{
L/ ( 0 . 8 , 0 . 8 , 0 . 9 ) , Math/ ( 0 . 7 , 0 . 6 , 0 . 6 ) , D/ ( 0 . 9 , 0 . 8 , 0 . 9 ) , 

P h/ ( 0 . 5 , 0 . 4 , 0 . 3 ) , Me/ ( 0 . 6 , 0 . 7 , 0 . 6 ) 

}

Mechanical 

= 

{
L/ ( 0 . 6 , 0 . 6 , 0 . 5 ) , Math/ ( 0 . 5 , 0 . 5 , 0 . 4 ) , D/ ( 0 . 8 , 0 . 7 , 0 . 7 ) , 

P h/ ( 0 . 5 , 0 . 5 , 0 . 4 ) , Me/ ( 0 . 9 , 0 . 8 , 0 . 9 ) 

}

5. New view of reduction for fuzzy multi information system 

In this section, we attempt to apply reduction by using discerni-

bility matrix and discernibility function from the correlation mea-

sure of fuzzy multi between students and college department by

form threshold matrix at choice value ∝ , which convert the corre-

lation attributes to binary information system. 

Example 5.1. from Example 4.1 , we find that, some subjects do not

affect the choice of departments because they are important for

all departments, or it will not be a condition in the selection of

sections so it can be ignored for simplicity. 

We reduce the column of logic and it found that it does not

affect the outcome. 

Definition 5.1. (discernibility matrix) [ 14 , 15 ]: An information

system S defines a matrix M A called discernibility matrices. Each

entry M A ( x, y ) ⊆A consists of a set of attributes that can be used to

discern between objects x, y ∈ U : 
M A ( x, y ) = { a ∈ A : a (x )  = a (y ) } M A is an | U | × | U | ma-

rix, in the discernibility matrix has the form: M i j =
 a ∈ A : a ( x i )  = a ( x j ) } , i, j ∈ [ 1 , n ] , n = | U| 
efinition 5.2. (discernibility function) [ 14 , 15 ]: The discerni-

ility function of a discernibility matrix is defined by: f (M) =
{ ∨ ( M( x, y ) ) : ∀ x, y ∈ U, M( x, y )  = ∅ } the expression ∨ ( M ( x, y )) is

he disjunction of all attributes in M ( x, y ) indicating that the ob-

ect pair ( x, y ) can be distinguished by any attribute in M ( x, y ).

he expression ∧ { ∨ ( M ( x, y ))} is the conjunction of all ∨ ( M ( x, y )) ,

ndicating that the family of discernible object pairs can be distin-

uished by a set of attributes satisfying ∧ { ∨ ( M ( x, y ))}. The discerni-

ility function can be used to state an important result regarding

he set of reduces of an information table. 

efinition 5.3. (threshold indiscernibility matrix): let ρFMS be a

orrelation measure of fuzzy multi set and FMIS be a fuzzy multi

nformation system, to formed a crisp information system depen-

ent of the value of ρFMS as: if ρFMS ≥ ∝ the coefficient value

ill be 1 and if ρFMS < ∝ the coefficient value will be zero as in

xample 5.2 

Note : (reduction of attributes) let B ⊆A, a ∈ B , and then a is su-

erfluous in B if: U/IND (B ) = U/IND (B − { a } ) . 
xample 5.2. Continued from Example 5.1 we can use Table 9 of

orrelation measure to create the discernibility matrix as follow-

ng: 

f ρF MS ( S, R ) ≥ 0 . 9 

The discernibility matrix of Table 10 is shown in Table 11 

Reduction of Attributes: 

 /IND ( Ar ) = { { S 1 , S 2 } , { S 3 , S 4 } } , U /IND ( Ele ) = { { S 1 , S 4 } , { S 2 , S 3 } } , 
 /IND ( Ci ) = { { S 1 } , { S 2 , S 3 , S 4 } } , U /IND ( Me ) = { { S 1 } , { S 2 , S 3 , S 4 } } 
/IND ( A ) = { { S 1 } , { S 2 } , { S 3 } , { S 4 } } 
 /IND ( A )  = U /IND ( A − Ar ) , U /IND ( A )  = U /IND ( A − Ele ) 
 /IND ( A ) = U /IND ( A − Ci ) , U /IND ( A ) = U /IND ( A − Me ) 
 /IND ( A ) = U /IND ( A − { Ci, Me } ) 

By discernibility function: 

f ( Ar, Ele, Ci, Me ) 

= { Ele + Ci + Me } · { Ar + Ele + Ci + Me } · { Ar + Ci + Me } 
·{ Ar } · { Ar + Ele } · { Ele } = Ar · Ele 
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From the above example we notice that the reduction process

s not the meaning of the deleted department’s college but, facil-

tates the process of taking the decision and also, collects similar

tudents in one case because if we study all states for all students

nd discuss all possible values we find that the number of all pos-

ible states is 2 4 state. And we can look for the Part of the deleted

n which cases may require it. 

. Upper and lower for fuzzy multi information system 

At this section, we present the definition of lower and upper

uzzy multi information system by using threshold indiscernibility

atrix. 

efinition 6.1. let ρFMS be a fuzzy multi correlation measure of

et and O i , A i the sets of objects and attributes respectively in

uzzy multi information system ( FMIS ) then the upper and the

ower of a threshold set A is A α = ∪{ O i : 
∑ 

A i ≥
∑ 

A j } , A ∝ = A ∩
 O i : 

∑ 

A i ≥
∑ 

A j } where A i the value of attributes of object O i 

n threshold indiscernibility matrix using the correlation measure

FMS at optional value α and A j the value of attributes of each

ember of the set A and i  = j . 

xample 6.1. from Example 5.2 we can use Table 10 of threshold

ndiscernibility matrix as following: 

If A = { S 1 , S 3 } then A ∝ = ∪{ { S 1 , S 2 , S 3 , S 4 } , { S 3 , S 4 } } =
 S 1 , S 2 , S 3 , S 4 } 
 ∝ = A ∩ { S 1 , S 2 , S 3 , S 4 } ∩ { S 3 , S 4 } = { S 3 } 

We can calculate the upper and the lower of a set A

t some attributes as following: If A = { S 1 , S 3 } then A ∝ Ar,El 
=

{ { S 1 , S 3 , S 4 } , { S 1 , S 3 , S 4 } } = { S 1 , S 3 , S 4 } 
 ∝ Ar,El 

= A ∩ { S 1 , S 3 , S 4 } ∩ { S 1 , S 3 , S 4 } = { S 1 , S 3 } 

efinition 6.2. 

i. The object x i surely belongs to threshold set A ∝ if x i ∈ A ∝ 
and denoted by x ∈ A ∝ . 

ii. The object x i is possibly belong to threshold set A ∝ if x i ∈
A ∝ and denoted by x ∈̄ A ∝ . 

roposition 6.1. Let A ∝ and B ∝ be thresholds sets of fuzzy multi

nformation system of objects then the following properties are

atisfied: 

i. A ∝ ⊆ B ∝ implies that x i ∈ A ∝ so x i ∈ B ∝ and all x j ̄∈ A ∝ im- 

plies that x j ̄∈ B ∝ . 

ii. x i ̄∈ ( A ∝ ∪ B ∝ ) if x i ̄∈ A ∝ or x i ̄∈ B ∝ . 
iii. x i ̄∈ ( A ∝ ∩ B ∝ ) iff x i ̄∈ A ∝ and x i ̄∈ B ∝ 
iv. x i ∈ A ∝ or x i ∈ B ∝ implies that x i ∈ A ∝ ∪ B ∝ . 
v. x i ∈ A ∝ ∩ B ∝ implies that x i ∈ A ∝ and x i ∈ B ∝ . 

roof. 

i. Let x ∈ A ∝ then x ∈ A with ρ ≥∝ then x ∈ B with ρ ≥∝ ,

since A ⊆ B and ρ ≥ ∝ so A ∝ ⊆ B ∝ therefore x ∈ B ∝ . Similarly

for possibly belongs. 

We can prove (ii) to (v) from the above definitions. 

. Conclusion 

In this paper, we defined the FMS correlation measure and

roved some of its properties and applied this measure on med-

cal diagnosis and selecting specialization. Also, we introduced a

ew view of reduction for fuzzy multi information system. Finally,

e introduced the definition of lower and upper fuzzy multi set by

sing threshold indiscernibility matrix. 
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