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a b s t r a c t 

A new exponential Chebyshev operational matrix of derivatives based on Chebyshev polynomials of sec- 

ond kind (ESC) is investigated. The new operational matrix of derivatives of the ESC functions is derived 

and introduced for solving high-order linear ordinary differential equations with variable coefficients in 

unbounded domain using the collocation method. As an application the introduced method is used to 

evaluate Dawson’s integral by solving its differential equation. The corresponding differential equation to 

Dawson’s integral is a boundary value problem with conditions tends to infinity. The obtained numerical 

results are compared with the exact solution and showed good accuracy. 
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. Introduction 

Spectral methods have been developed rapidly through the last

ears for the numerical solutions of differential equations. Com-

ared to other numerical methods, spectral methods give high ac-

uracy and have wide range of applications in many mathemati-

al problems and physical phenomena. The main idea of spectral

ethods is to approximate the solutions of differential equations

y means of truncated series of some orthogonal polynomials. The

ost common spectral methods used to solve ordinary differen-

ial equations (ODEs) are tau, collocation, and Galerkin methods.

iyyam [1] used Laguerre tau method to solve ODEs while Parand

nd Razzaghi [2] used the same method with the same equations

ut with rational Legendre as the basis function. Guo et al. [3] and

ang et al. [4] employed the Legendre collocation method to solve

he initial value problems and Awoyemi and Idowu [5] used the

ybrid collocation with third order ODEs. Galerkin method is also

pplied for solving ODEs [6,7] . Doha et al. used the generalized Ja-

obi polynomials for solving ODEs [8–11] . 
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Chebyshev polynomials are one of the most important orthog-

nal polynomials, which are widely used with spectral methods

12] . 

The Chebyshev first kind T n ( x ) are orthogonal polynomials on

he finite interval [ −1, 1], these polynomials have many applica-

ions in numerical analysis [12] , and numerous studies show the

erits of them in various applications in fluid mechanics. One

f the applications of Chebyshev polynomials is the solution of

DEs with initial and boundary conditions, with collocation points

13,14] . Many studies are considered on the finite interval [0, 1]

ith the help of usual transformation maps the Chebyshev to the

hifted Chebyshev polynomial. Therefore, under a transformation

hat maps the interval [ −1, 1] into a semi-infinite domain [0, ∞ ),

everal research groups successfully applied spectral methods to

olve differential equations [15–26] , their transformation maps the

hebyshev polynomials to the rational Chebyshev functions (RC)

nd defined by. 

 n (x ) = T n 

(
x − 1 

x + 1 

)
. (1) 

Furthermore, Koc and Kurnaz [27] have proposed a modified

ype of Chebyshev polynomials as an alternative to the solutions

f the partial differential equations defined in real domain. In

heir study, the basis functions called exponential Chebyshev (EC)

unctions E n ( x ) which are orthogonal in ( −∞ , ∞ ) . This kind of
. This is an open access article under the CC BY-NC-ND license. 
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extension tackles the problems over the whole real domain. The

EC functions are defined as 

E n (x ) = T n 

(
e x − 1 

e x + 1 

)
. (2)

In our previous report [28] we introduced a modified form of

the operational matrix of the derivatives by processing the trunca-

tion made by Koc and Kurnaz [27] and applied it to ODEs defined

in whole rang. Recently, we reported a new operational matrix of

derivatives of EC functions for solving ODEs in unbounded domains

[29] . 

In this paper we introduce a new operational matrix of deriva-

tives based on exponential Chebyshev of the second kind (ESC)

functions and employ it to solve ODEs with variable coefficients

in unbounded domains using the collocation method. 

As an application of our method we find approximate solu-

tion to Dawson’s integral by solving its differential equation with

the subjected condition that tends to infinity. The high-order lin-

ear nonhomogeneous differential equations that considered here in

this paper is 

m ∑ 

k =0 

q k (x ) φ(k ) (x ) = f (x ) , − ∞ < x < ∞ , (3)

with the mixed conditions 

m −1 ∑ 

k =0 

J ∑ 

j=0 

d k i j φ
( k ) 

(
b j 

)
= αi , 

−∞ < b j < ∞ , i = 0 , 1 , . . . , m − 1 , j = 0 , 1 , . . . , J (4)

where, q k ( x ) and f ( x ) are continuous functions on the interval

(−∞ , ∞ ) , d k 
i j 
, b j and αi are appropriate constants, or b j may tends

to ± ∞ (the boundary condition tends to infinity). 

2. The exponential Chebyshev functions of second kind 

In this section we list the definition and some properties of the

ESC functions. 

2.1. Definition of ESC functions 

The ESC function of the form 

E U n (x ) = U n 

(
e x − 1 

e x + 1 

)
, (5)

where U n ( x ) is the Chebyshev polynomials of the second kind

which are orthogonal polynomials of degree n in x defined on the

interval [ −1 , 1] (see Ref. [12] and [30] for more details). 

And the corresponding recurrence relation takes the following

form 

E U 0 (x ) = 1 , E U 1 (x ) = 2 

(
e x − 1 

e x + 1 

)
, 

E U n +1 (x ) = 2 

(
e x − 1 

e x + 1 

)
E U n (x ) − E U n −1 (x ) . n ≥ 1 (6)

2.2. ESC functions are orthogonal 

The ESC functions are orthogonal in the interval ( −∞ , ∞ )

with respect to the weight function w ( x ) which is given by

4 e 3 x/ 2 ( e x + 1 ) −3 , with the orthogonality condition 〈
E U n (x ) , E U m 

(x ) 
〉
= 

∫ ∞ 

−∞ 

E U n (x ) E U m 

(x ) w (x ) dx = 

π

2 

δnm 

, (7)

where, δnm 

is the Kronecker delta function and 〈 ∗ , ∗〉 is the inner

product notation. 
Also the product relation of ESC functions is given by 

e x − 1 

e x + 1 

)
E n (x ) = 

1 

2 

[ E U n +1 (x ) + E U n −1 (x )] (8)

.3. Function expansion in terms of ESC functions 

A function h ( x ) is well defined over the interval ( −∞ , ∞ ) and

an be expanded in terms of ESC functions as 

 (x ) = 

∞ ∑ 

i =0 

a i E 
U 
i (x ) , (9)

here 

 i = 

2 

π

∫ ∞ 

−∞ 

E U i (x ) h (x ) w (x ) dx . 

If the summation in expression ( 9 ) is truncated to N where N <

 it takes the following form 

 (x ) ∼= 

N ∑ 

i =0 

a i E 
U 
i (x ) , (10)

lso, the ( k )th-order derivative of h ( x ) can be written as 

 

(k ) (x ) ∼= 

N ∑ 

i =0 

a i 
(
E U i (x ) 

)(k ) 
(11)

here ( E U n (x ) ) (0) = E U n (x ) . 

.4. The operational matrix 

The new representation of ESC functions is presented as

ollows. 

The Chebyshev polynomials of first kind T n ( x ) can be expressed

n terms of x n in different formulas found in Ref. [12] , one of them

s 

 n (x ) = 

[ n/ 2] ∑ 

k =0 

(−1) 
k 
2 

n −2 k −1 n 

n − k 

(
n − k 

k 

)
x n −2 k , 2 k ≤ n. (12)

imilar relation found in [30,31] for the Chebyshev polynomials of

econd kind U n ( x ) takes the following form 

 n (x ) = 

[ n/ 2] ∑ 

k =0 

(−1) 
k 

(
n − k 

k 

)
( 2 x ) 

n −2 k 
, (13)

y the help of properties of gamma function the previous relation

akes the form 

 n (x ) = 

[ n/ 2] ∑ 

k =0 

(−1) 
k 
2 

n −2 k �( n − k + 1 ) 

�( k + 1 ) �( n − 2 k + 1 ) 
x n −2 k , n > 0 , 

(14)

here, [ n 2 ] denotes the integer part of the value n 
2 . 

If we use the expression v (x ) = 

e x −1 
e x +1 

in the ESC functions, we

an express it explicitly in terms of powers of v ( x ) as 

 

U 
n (x ) = 

[ n/ 2] ∑ 

k =0 

(−1) 
k 
2 

n −2 k 

(
n − k 

k 

)
( v (x ) ) 

n −2 k 
, (15)

rom previous relation with simple modification we can define: 

if n is even number 

 

U 
n (x ) = E U 2 l (x ) = 

l ∑ 

j=0 

(−1) 
l− j 

2 

2 j 

(
l + j 
l − j 

)
( v (x ) ) 

2 j 
, (16)
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r, if n is odd number 

 

U 
n (x ) = E U 2 l+1 (x ) = 

n ∑ 

j=0 

(−1) 
l− j 

2 

2 j+1 

(
l + j + 1 

l − j 

)
( v (x ) ) 

2 j+1 
. (17)

orm above relations we can deduce general matrix form of ESC

unctions as 

(x ) = V (x ) M 

T , (18)

here E ( x ) and V ( x ) are two matrices of the form: 

(x ) = [ E U 0 (x ) E U 1 (x ) . . . E U N (x ) ] V (x ) 

= [ v 0 (x ) v 1 (x ) . . . v n (x ) ] 

nd 

 

0 (x ) = 1 , v 1 (x ) = 

(
e x − 1 

e x + 1 

)
, 

 

2 (x ) = 

(
e x − 1 

e x + 1 

)2 

, . . . ., v n (x ) = 

(
e x − 1 

e x + 1 

)n 

, 

nd M is lower triangle (n + 1) × (n + 1) constant matrix given by 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
0 

0 

)
0 0 

0 2 

(
1 

0 

)
0 

(−1) 2 

0 

(
1 

1 

)
0 2 

2 

(
2 

0 

)

0 (−1) 2 

1 

(
2 

1 

)
0 

. . . 

. . . 

. . . 

(−1) 
l 
2 

0 

(
l 
l 

)
0 (−1) 

l−1 
2 

2 

(
l + 1 

l − 1 

)

0 (−1) 
l 
2 

1 

(
l + 1 

n 

)
0 (−

n this case, we are going to use the last row for odd values of

 = 2 l + 1 , otherwise ( n = 2 l) previous one will be the last row of

he matrix M . 

Now, from ( 18 ) we can obtain the ( k )th-order derivative of the

atrix E ( x ) as: 

E (0) (x ) = V (x ) M 

T , 

E (1) (x ) = V 

(1) (x ) M 

T , 

E (2) (x ) = V 

(2) (x ) M 

T , . . . 

hen, by induction the ( k )th-order derivative of the matrix E ( x ) de-

ned as: 

 

(k ) (x ) = V 

(k ) (x ) M 

T (19)

nd Eq. (19) represents the new operational matrix of derivatives

f the ESC functions. 

. Fundamental matrix relations 

Let us first assume that the solution φ( x ) of Eq. (3) can be ex-

ressed in the form ( 9 ). If φ( x ) is truncated Chebyshev series in

erms of ESC functions as 

(x ) ∼= 

N ∑ 

i =0 

a i E 
U 
i (x ) , (20) 

hen, φ( x ) and its derivative φ( k ) ( x ) can be represented in the ma-

rix forms as 
0 . . . 0 0 

0 . . . 0 0 

0 . . . 0 0 

 

3 

(
3 

0 

)
0 0 

. . . 

. . . 

. . . 

0 . . . 2 

2 l 

(
2 l 
0 

)
0 

1 
2 

3 

(
l + 2 

l − 1 

)
. . . 0 2 

2 l+1 

(
2 l + 1 

0 

)

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

 

φ(x ) ] = E(x ) A, (21) 

nd 

φ(k ) (x ) 
]

= E (k ) (x ) A, k = 0 , 1 , 2 , . . . , m ≤ N (22)

here 

 

(k ) (x ) = 

[(
E U 0 (x ) 

)(k) (
E U 1 (x ) 

)(k) 
. . . 

(
E U N (x ) 

)(k) ]
, 

A = [ a 0 a 1 . . . a N ] 
T , 

nd E U 
0 
(x ) , E U 

1 
(x ) , . . . ., E U 

N 
(x ) are the ESC functions and a 0 , a 1 , 

 . . ., a N are coefficients to be determined in expression ( 20 ). 

Consequently, the derivative of the matrix E ( x ) are defined in

 19 ), and from expression ( 22 ), can be obtained as 

 φ(k ) (x ) ] = V 

(k ) (x ) M 

T A, (23)

here 

 

(k ) (x ) = [ ( v 0 (x ) ) 
(k ) 

( v 1 (x ) ) 
(k ) 

. . . ( v N (x ) ) 
(k ) ] . 

Now, let us define the collocation points as follows, where

∞ < x i < ∞ , 

 i = �n 

[
1 + cos ( iπ/N ) 

1 − cos ( iπ/N ) 

]
, i = 1 , . . . , N − 1 (24)

nd at the boundaries ( i = 0 , i = N ) x 0 → ∞ , x N → −∞ , since the

SC functions are convergent at both boundaries ± ∞ , so the ap-

earance of infinity in the collocation points does not cause a loss

r divergence in the method. Then, we substitute the collocation

oints ( 24 ) into Eq. (3) then, we obtain 

m 

 

k =0 

q k ( x i ) φ
(k ) ( x i ) = f ( x i ) , i = 0 , 1 , . . . ., N (25)

he system ( 25 ) can be written in matrix form as 

m 

 

k =0 

Q k �
(k ) = F , (26) 

here 

 k = 

⎡ 

⎢ ⎢ ⎣ 

q k ( x 0 ) 0 . . . 0 

0 q k ( x 1 ) . . . 0 

0 0 

. . . 
. . . 

0 0 . . . q k ( x N ) 

⎤ 

⎥ ⎥ ⎦ 

, 

F = [ f ( x 0 ) f ( x 1 ) . . . f ( x N ) ] 
T 
. 
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By substituting the collocation points x i in ( 22 ), we have the

system [
φ(k ) ( x i ) 

]
= V 

(k ) ( x i ) M 

T A , i = 0 , 1 , . . . , N 

or 

�(k ) = 

⎡ 

⎢ ⎢ ⎣ 

φ(k ) ( x 0 ) 

φ(k ) ( x 1 ) 
. . . 

φ(k ) ( x N ) 

⎤ 

⎥ ⎥ ⎦ 

= V 

(k ) M 

T A, (27)

where 

 

(k ) = 

⎡ 

⎢ ⎢ ⎣ 

V 

(k ) ( x 0 ) 

V 

(k ) ( x 1 ) 
. . . 

V 

(k ) ( x N ) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
v 0 (x ) 

)(k ) 

x = x 0 

(
v 1 (x ) 

)(k ) 

x = x 0 
. . . 

(
v N (x ) 

)(k ) 

x = x 0 (
v 0 (x ) 

)(k ) 

x = x 1 

(
v 1 (x ) 

)(k ) 

x = x 1 
. . . 

(
v N (x ) 

)(k ) 

x = x 1 
. . . 

. . . 
. . . 

. . . (
v 0 (x ) 

)(k ) 

x = x N 

(
v 1 (x ) 

)(k ) 

x = x N 
. . . 

(
v N (x ) 

)(k ) 

x = x N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Consequently, from the matrices form ( 26 ) and ( 27 ), we obtain the

fundamental matrix equation for Eq. (3) in the following form 

m ∑ 

k =0 

Q k V 

(k ) M 

T A = F , (28)

next, we can obtain the corresponding matrices form for the con-

ditions ( 4 ) as follows, using the relation ( 19 ) with same procedures

for x = b j we have the fundamental matrix equation corresponding

to the mixed conditions ( 4 ) as 

m −1 ∑ 

k =0 

J ∑ 

j=0 

d k i j V 

(k ) ( b j ) M 

T A = [ αi ] , 

−∞ < b j < ∞ , i = 0 , 1 , . . . , m − 1 , j = 0 , 1 , . . . , J (29)

4. Description of the collocation method 

The fundamental matrix ( 28 ) for Eq. (3) corresponding to sys-

tem of (N + 1) algebraic equations for the (N + 1) unknown coef-

ficients a 0 , a 1 , . . . ., a N . 

We can write Eq. (28) shortly as 

A = F or [ W ; F ] , (30)

so that 

 = ( w i j ) = 

m ∑ 

k =0 

Q k V 

(k ) M 

T , i, j = 0 , 1 , . . . , N 

we can obtain the matrix form for the mixed conditions by means

of ( 29 ) as 

R i A = [ αi ] or [ R i ;αi ] , i = 0 , 1 , . . . m − 1 (31)

where 

R i = ( r i, j ) = 

m −1 ∑ 

k =0 

J ∑ 

j=0 

d k i j V 

(k ) ( b j ) M 

T . 

To obtain the solution of Eq. (3) under the conditions ( 4 ), we re-

place the rows of matrices ( 31 ) by any m rows of the matrix ( 30 ).
hen, we have the required augmented matrix as 

 

W 

∗; F ∗] = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

w 00 w 01 . . . w 0 N ; f ( x 0 ) 
w 10 w 11 . . . w 1 N ; f ( x 1 ) 
. . . . . . . . . . . . ; . . . 

w N−m, 0 w N−m, 1 . . . w N−m,N ; f ( x N−m 

) 
r 00 r 01 . . . r 0 N ; α0 

r 10 r 11 . . . r 1 N ; α1 

. . . . . . . . . . . . ; . . . 

r m −1 , 0 r m −1 , 1 . . . r m −1 ,N ; αm −1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

(32)

r the corresponding matrix equation 

 

∗A = F ∗, 

e always found that the rank ( W 

∗) = rank [ W 

∗; F ∗] = N + 1 , it

eans that the matrix inverse of W 

∗ can be obtained, then, we

an write 

 = ( W 

∗) −1 F ∗. (33)

hus, the coefficient a i , i = 0 , 1 , . . . , N are uniquely determined by

q. (33) , and the approximate solution of the given differential

quation obtained from Eq. (20) . 

. Illustrative examples 

Now, we take some test examples to examine our method, the

umerical computations are carried out by the MATHMATICA.7.0

oftware program. In the rest of the paper the appendix section

ontains “code form” made for Example 5.1 and 5.4 with results. 

xample 5.1. Consider the following second order non-

omogeneous boundary value problem with variable coefficients

28] 

′′ − 1 

1 + e x 
φ′ − 15 e 2 x 

(1 + e x ) 
2 
φ = 

e 2 x 

(1 + e x ) 
6 
, x ∈ ( −∞ , ∞ ) (34)

here, the boundary conditions are 

φ(x ) = 0 when x → ∞ and φ(x ) = 1 when x → −∞ . 

The fundamental matrix for the pervious equation is 
 

Q 0 V 

(0) ( M 

T ) 
0 + Q 1 V 

(1) ( M 

T ) 
1 + Q 2 V 

(2) ( M 

T ) 
2 
} 

A = F , 

nd 

 0 = 

−15 e 2 x 

( 1 + e x ) 
2 
, q 1 = 

−1 

( 1 + e x ) 
, q 2 = 1 , f (x ) = 

e 2 x 

( 1 + e x ) 
6 
, 

or N = 4 , the collocation points are 

 0 → ∞ , x 1 = �n (3 + 2 

√ 

2 ) , x 2 = 0 , 

 3 = �n (3 − 2 

√ 

2 ) , x 4 → −∞ . 

And, it is clear that Q 2 is the identity matrix where, matrices

 

(0) , V 

(1) , V 

(2) , Q 1 , Q 0 and M are in the following form 

Q 0 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−15 0 0 0 0 

0 

−15 
8 

(3 + 2 

√ 

2 ) 0 0 0 

0 0 

−15 
4 

0 0 

0 0 0 

15 
8 
(−3 + 2 

√ 

2 ) 0 

0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

M = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 0 0 

0 2 0 0 0 

−1 0 4 0 0 

0 −4 0 8 0 

1 0 −12 0 16 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 
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Table 1 

Comparing the approximate and exact solutions for Example 5.2 . 

x Exact solution EC with N = 10 Absolute error EC with N = 16 Absolute error 

−3 .0 0 .0993279 0 .0992278 1.0 ×e-4 0 .0993274 5.13535 ×e-7 

−2 .5 0 .163071 0 .163049 2.18 ×e-5 0 .163071 1.35492 ×e-7 

−2 .0 0 .265802 0 .265983 1.8 ×e-4 0 .265803 7.49985 ×e-7 

−1 .5 0 .425096 0 .425182 8.63 ×e-5 0 .425095 1.00225 ×e-6 

−1 .0 0 .648054 0 .647794 2.6 ×e-4 0 .648055 1.0313 ×e-6 

−0 .5 0 .886819 0 .886899 7.98 ×e-5 0 .886818 7.33901 ×e-7 

0 .0 1 1 .0 0 02 2.02 ×e-4 1 .0 4.2298 ×e-7 

0 .5 0 .886819 0 .886899 7.98 ×e-5 0 .886818 7.33901 ×e-7 

1 .0 0 .648054 0 .647794 2.6 ×e-4 0 .648055 1.0313 ×e-6 

1 .5 0 .425096 0 .425182 8.63 ×e-5 0 .425095 1.00225 ×e-6 

2 .0 0 .265802 0 .265983 1.8 ×e-4 0 .265803 7.49985 ×e-7 

2 .5 0 .163071 0 .163049 2.18 ×e-5 0 .163071 1.35492 ×e-7 

3 .0 0 .0993279 0 .0992278 1.0 ×e-4 0 .0993274 5.13535 ×e-7 

V

V

V

a  

4  

x

 

c  

fi

A

t

φ

a

Table 2 

The L 2 , L ∞ error norms for Example 5.2 . 

L 2 L ∞ 

N = 10 4.354 ×e-7 2.60092 ×e-4 

N = 12 1.00329 ×e-8 3.75879 ×e-5 

N = 16 6.89304 ×e-12 1.0313 ×e-6 

φ

w

E  

[

  

w  

c

 

a

φ

w  

e  

F  

(  

s  

x  

T

L

a  

f

E

�  

w  

[  

d

 

g

g

Q 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 

0 

1 
4 
(−2 + 

√ 

2 ) 0 0 0 

0 0 

−1 
2 

0 0 

0 0 0 

1 
4 
(−2 − √ 

2 ) 0 

0 0 0 0 −1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

 

(0) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 1 1 

1 

1 √ 

2 

1 
2 

1 

2 
√ 

2 

1 
4 

1 0 0 0 0 

1 

−1 √ 

2 

1 
2 

−1 

2 
√ 

2 

1 
4 

1 −1 1 −1 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

 

(1) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 

0 

1 
4 

1 

2 
√ 

2 

3 
8 

1 

2 
√ 

2 

0 

1 
2 

0 0 0 

0 

1 
4 

−1 

2 
√ 

2 

3 
8 

−1 

2 
√ 

2 

0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

 

(2) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 0 

0 

−1 

4 
√ 

2 

−1 
8 

0 

1 
8 

0 0 

1 
2 

0 0 

0 

1 

4 
√ 

2 

−1 
8 

0 

1 
8 

0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

nd the augmented matrix for the boundary conditions with N =
 , is:for x → ∞ , φ = 0 give [ 1 2 3 4 5 ; 0 ] , and when

 → −∞ , φ = 1 give [ 1 −2 3 −4 5 ; 1 ] . 

After the augmented matrices of the system and conditions are

omputed, and the inverse of W 

∗ determined, we obtain the coef-

cients vector as 

 = 

[ 
21 

128 

−3 

16 

27 

256 

−1 

32 

1 

256 

] 
, 

hen, the solution is 

(x ) = 

21 

128 

E U 0 (x ) − 3 

16 

E U 1 (x ) + 

27 

256 

E U 2 (x ) 

− 1 

32 

E U 3 (x ) + 

1 

256 

E U 4 (x ) , 

fter simplifying the previous result we get 
(x ) = 

1 

( 1 + e x ) 
4 
, 

hich is the exact solution of the problem ( 34 ), (see [28] ). 

xample 5.2. Consider the following differential equation

28,29,32] 

 φ = f (x ) , x ∈ ( −∞ , ∞ ) (35)

here, the operator  = [ d 
2 

d x 2 
− 1 ] , and the subjected boundary

onditions is φ( x ) → 0 when | x | → ∞ . 

The analytic exact solution given in [32] by Fourier transform

s 

(x ) = F −1 
[ −1 

1 + ω 

2 
F [ f (x ) ] 

] 
, 

here, F and F −1 are the Fourier and inverse Fourier transform op-

rators, and the function f ( x ) is well defined with respect to the

ourier transform conditions. We apply our present method to Eq.

35) , by taking f (x ) = −2 sec h 
3 (x ) , the approximate and the exact

olutions are compared as given in Table 1 at different N , where

 ∈ [ −3 , 3] . The computing of the error norms L 2 and L ∞ 

given in

able 2 (by taking h = 0.1), where 

L 2 = 

√ 

h 

I ∑ 

i =0 

(
φi 

Exact 
− φi 

Approximat 

)2 
, 

 ∞ 

= Max 
∣∣φi 

Exact − φi 
Approximat 

∣∣
Fig. 1 show the approximate and exact solutions at different N , 

nd x ∈ [ −10 , 10] , while Fig. 2 shows that the error function at dif-

erent N and x ∈ [0, 3] 

xample 5.3. Now, we consider the following problem [28,29] 

 φ = g(x ) , x ∈ ( −∞ , ∞ ) , (36)

here, in this example the differential linear operator is � =
 

d 3 

d x 3 
− 1 ] , (third order differential equation) and the boundary con-

itions is φ( x ) → ±1 when x → ±∞ . 

The exact solution taken as φ(x ) = tanh (x ) , and the function

 ( x ) takes the form 

(x ) = − 2 sec h 

4 
(x ) − tanh (x ) + 4 sec h 

2 
(x ) tanh 

2 
(x ) . 
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Fig. 1. The approximate and exact solutions at different N for Example 5.2 . 

Fig. 2. Error function of Example 5.2 at N = 10, 12 and 16. 

Table 3 

The L 2 , L ∞ error norms for Example 5.3 . 

L 2 L ∞ 

N = 10 1.15884 ×10 −5 1.42591 ×10 −3 

N = 12 3.49288 ×10 −9 3.1855 ×10 −5 

N = 16 8.68131 ×10 −11 5.24761 ×10 −6 
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l  
by applying our present method to Eq. (36) , the funda-

mental matrix is { Q 0 V 
(0) ( M 

T ) 
0 + Q 1 V 

(1) ( M 

T ) 
1 + Q 2 V 

(2) ( M 

T ) 
2 +

Q 3 V 
(3) ( M 

T ) 
3 } A = G , 

Table 3 shows the L 2 and L ∞ 

error norms at different N where

h = 0.1 and x ∈ [ −3 , 3] , and Fig. 3 shows the approximate and exact

solutions, and in Fig. 4 the error function at different N are given,

x ∈ [0, 3] . 

Example 5.4. Finally, we consider the fifth order differential equa-

tion as 

φ(5) + Sec h (x ) φ = θ (x ) , x ∈ ( −∞ , ∞ ) (37)

where, the conditions are in the following form 

φ(x ) = 1 when x → ∞ and φ(x ) = −1 when x → −∞ , 

φ(0) + 3 φ′ (0) = 3 / 2 , 

φ′′ (0) = 0 . 

The fundamental matrix for the pervious equation is 

{ Q 0 V 

(0) ( M 

T ) 
0 + Q 5 V 

(5) ( M 

T ) 
5 } A = �, 

where, Q 1 = Q 2 = Q 3 = Q 4 = 0 , the exact solution taken as φ(x ) =
tanh (x/ 2) , and the function θ ( x ) will be in the form 

θ (x ) = 

1 

16 

{
( 33 − 26 cosh (x ) + cosh (2 x ) ) sec h 

6 
(x/ 2) 

+16 tanh (x/ 2) sec h (x ) } . 
he solution with the present method where N = 8 obtained as 

 = 

[ 
0 

1 

2 

0 0 0 0 0 0 0 

] 
, 

hen, 

(x ) = 

1 

2 

E U 1 (x ) = 

1 

2 

(
2 

(
e x − 1 

e x + 1 

))
= 

(
e x − 1 

e x + 1 

)
= tanh (x/ 2) , 

hich is the same with the exact solution of the problem ( 37 ). 

. Application 

Our application is evaluating Dawson’s integral by solving its

ifferential equation using our introduced method. 

Dawson’s integral is defined by 

 (x ) = e −x 2 
∫ x 

0 

e t 
2 

dt . (38)

awson’s integral can be written in terms of the error function of

maginary argument as 

 (x ) = −e −x 2 i 

2 

√ 

π er f (i x ) . (39)

awson’s integral is important and has many applications, there

re many reports on Dawson’s integral approximation [33–36] . 

In addition, the plasma dispersion function or “Fadeeva func-

ion” is Dawson’s integral. Also, evaluating or approximating the

rror function in the complex plane is reported [37] which is an

mplicitly method for evaluating Dawson’s integral.The differential

quation corresponding to Dawson’s integral is first order differ-

ntial equation with boundary conditions tends to infinity, in the

ollowing form 

 

′ + 2 xu = 1 , x ∈ [ −∞ , ∞ ] . (40)

ith the subjected conditions are that u ( x ) is bounded (equal

ero), as | x | → ∞ , Eq. (40) is non-homogenous first order bound-

ry value problem. The square bracket in Eq. (40) which contains

he infinity seems to be right because of x already tends to ± ∞ .

oyd [36] also used the previous differential equation to approxi-

ate Dawson’s integral using rational function expansion in terms

f Chebyshev polynomial of second kind. 

Now we apply our proposed method to solve Eq. (40) with sub-

ected conditions. 

The fundamental matrix of Eq. (40) is 

 Q 0 V 

(0) ( M 

T ) 
0 + Q 1 V 

(1) ( M 

T ) 
1 } A = F , 

fter simplifying and finding the approximate solution as pervious

xamples with N = 10 , 16 , and 24, the numerical results obtained

s follows. 

In Table 4 the L 2 , L ∞ 

error norms show at the greater N gives

ower error, the computation compared with the exact solution
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Fig. 3. The approximate and exact solution at different N for Example 5.3 . 

Fig. 4. Error function of Example 5.3 at N = 10, 14 and 16. 

Table 4 

Comparing the L 2 , L ∞ norms. 

L 2 L ∞ 

N = 10 5.88292 ×10 −4 1.06548 ×10 −2 

N = 16 8.92815 ×10 −5 4.3758 ×10 −3 

N = 24 1.60695 ×10 −5 2.1532 ×10 −3 

g  

t  

F

7

 

m  

Fig. 6. Error function of Dawson’s integral at N = 10, 16 and 24. 

d  

i  

c  
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t  

t  

n  

o  

b  

t  

p  

D  

T  

o  

T  
iven in ( 39 ) where h = 0.1 and x ∈ [ −3 , 3] , in addition Fig. 5 shows

he approximate and exact solutions where N = 16 and 24, also

ig. 6 shows the error function at different N, x ∈ [0, 3] 

. Conclusion 

A new exponential Chebyshev of second kind (ESC) operational

atrix of derivatives is investigated. The new operational matrix of
Fig. 5. The approximate and exact solution
erivatives of the ESC functions is derived and introduced for solv-

ng high-order linear ordinary differential equations with variable

oefficients in unbounded domains using the collocation method.

he proposed differential equations and the given conditions are

ransformed to matrix equation with unknown ESC coefficients. On

he other hand, the ESC functions approach deals directly with infi-

ite boundaries without singularities or divergence. This variant for

ur method gave us freedom to solve differential equations with

oundary conditions tend to infinity. Illustrative examples are used

o demonstrate the applicability and the effectiveness of the pro-

osed technique. As an application of our method approximating

awson’s integral by solving its differential equation is introduced.

he corresponding differential equation to Dawson’s integral is first

rder boundary value problem with conditions tends to infinity.

he numerical results give good accuracy after comparing with the
 at different N for Dawson’s integral. 
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exact solution. The method can be extended for the case of non-

linear ordinary, systems of linear differential and intgro-differential

equations with variable coefficients which is under investigation by

the authors as future work. 
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Appendix 

Code for Ex.5.1 

n = 4; 

υ[x_] = ( e ∧ x-1)/( e ∧ x+1); 

q[0,x_] = (-15 ∗e ∧ 2 ∗x)/(1+ e ∧ x) 2 ; 

q[1,x_] = -1/(1+ e ∧ x); 

q[2,x_] = 1; 

f[x_] = e ∧ 2x/(1+ e ∧ x) 6 ; 

For[i = 0,i ≤ n,i++,x[i] = Log[(1+Cos[(i ∗π )/n])/(1-Cos[(i ∗π )/n])]]; 

q0 = Array[q00,{n+1,n+1},{0,0}]; 

For[i = 0,i ≤ n,i++,For[j = 0,j ≤ n,j++,q00[i,j] = 0]] 

For[i = 0,i ≤ n,i++,q00[i,i] = Limit[q[0,x],x → x[i]]] 

MatrixForm[q0] 

q1 = Array[q11,{n+1,n+1},{0,0}]; 

For[i = 0,i ≤ n,i++,For[j = 0,j ≤ n,j++,q11[i,j] = 0]] 

For[i = 0,i ≤ n,i++,q11[i,i] = Limit[q[1,x],x → x[i]]] 

MatrixForm[q1] 

q2 = Array[q22,{n+1,n+1},{0,0}]; 

For[i = 0,i ≤ n,i++,For[j = 0,j ≤ n,j++,q22[i,j] = 0]] 

For[i = 0,i ≤ n,i++,q22[i,i] = q[2,x[i]]] 

MatrixForm[q2] 

v0 = Array[v00,{n+1,n+1},{0,0}]; 

For[i = 1,i ≤ n+1,i++,For[j = 1,j ≤ n+1,j++,v00[i,j] = 0]] 

For[i = 0,i ≤ n,i++,v00[i,0] = 1] 

For[i = 1,i ≤ n,i++,For[j = 0,j ≤ n,j++,v00[j,i] = Limit[( υ[x]) i ,x → x[j]]]] 

MatrixForm[v0] 

v1 = Array[v11,{n+1,n+1},{0,0}]; 

For[i = 1,i ≤ n+1,i++,For[j = 1,j ≤ n+1,j++,v11[i,j] = 0]] 

For[i = 0,i ≤ n,i++,v11[i,0] = 0] 

For[i = 1,i ≤ n,i++,For[j = 0,j ≤ n,j++,v11[j,i] = Limit[D[( υ[x]) i ,x],x →
x[j]]]] 

MatrixForm[v1] 

v2 = Array[v22,{n+1,n+1},{0,0}]; 

For[i = 1,i ≤ n+1,i++,For[j = 1,j ≤ n+1,j++,v22[i,j] = 0]] 

For[i = 0,i ≤ n,i++,v22[i,0] = 0] 

For[i = 1,i ≤ n,i++,For[j = 0,j ≤ n,j++,v22[j,i] = Limit[D[D[( υ[x]) i ,x],x], x

→ x[j]]]] 

MatrixForm[v2] 

m = Array[m1,{n+1,n+1},{0,0}]; 

For[i = 0,i ≤ n+1,i++,For[j = 0,j ≤ n+1,j++,m1[i,j] = 0]] 

m1[0,0] = 1; 

For[i = 1,i ≤ n,i++,If[OddQ[i],For[j = 0,j ≤ (i-1)/2,j++,m1[i,i-2 ∗j] = (-1) j ∗

2 i −2 ∗ j ∗Binomial[(i-j),j]]];If[EvenQ[i],For[j = 0,j ≤ i/2,j++,m1[i,i-2 ∗j] = (-

1) j ∗ 2 i −2 ∗ j ∗Binomial[(i-j),j]]]] 

MatrixForm[m] 

mt = Transpose[m] 

{{1,0,-1,0,1},{0,2,0,-4,0},{0,0,4,0,-12},{0,0,0,8,0},{0,0,0,0,16}} 

va = Array[va1,n+1,0]; 

For[i = 0,i ≤ n,i++,va1[i] = Limit[( υ[x]) i ,x → ∞ ]] 

va.mt 
1,2,3,4,5} 

b = Array[vb1,n+1,0]; 

or[i = 0,i ≤ n,i++,vb1[i] = Limit[( υ[x]) i ,x → −∞ ]] 

b.mt 

1,-2,3,-4,5} 

1 = Array[f11,n+1,0]; 

or[i = 0,i ≤ n,i++,f11[i] = Limit[f[x],x → x[i]]] 

0.v0.mt+q1.v1.mt+q2.v2.mt 

 = { { \ %},va.mt, vb.mt} 

Inv = Inverse[w] 

implify[wInv.f1] 

21/128,-(3/16),27/256,-(1/32),1/256} 

implify[21/128 ChebyshevU[0,( e ∧ x-1)/( e ∧ x+1)]-3/16 ChebyshevU

1,( e ∧ x-1)/( e ∧ x+1)]+27/256 ChebyshevU[2,( e ∧ x-1)/( e ∧ x+1)]-1/32

hebyshevU[3,( e ∧ x-1)/( e ∧ x+1)]+1/256 ChebyshevU[4,( e ∧ x-1)/( e ∧ x
1)]] 

/(1+ e ∧ x) 4 

ode for Ex.5.4 

 = 8; 

[x_] = ( e ∧ x-1)/(g e ∧ x+1); 

[0,x_] = Sech[x]; 

[5,x_] = 1; 

[x_] = 1/16 ((33-26 Cosh[x]+Cosh[2 x]) Sech[x/2] 6 +16 Sech[x] Tanh

x/2]); 

or[i = 0,i ≤ n,i++,x[i] = Log[(1+Cos[(i ∗π )/n])/(1-Cos[(i ∗π )/n])]]; 

0 = Array[q00,{n+1,n+1},{0,0}]; 

or[i = 0,i ≤ n,i++,For[j = 0,j ≤ n,j++,q00[i,j] = 0]] 

or[i = 0,i ≤ n,i++,q00[i,i] = Limit[q[0,x],x → x[i]]] 

atrixForm[q0] 

5 = Array[q55,{n+1,n+1},{0,0}]; 

or[i = 0,i ≤ n,i++,For[j = 0,j ≤ n,j++,q55[i,j] = 0]] 

or[i = 0,i ≤ n,i++,q55[i,i] = Limit[q[5,x],x → x[i]]] 

atrixForm[q5] 

5 = Array[v55,{n+1,n+1},{0,0}]; 

or[i = 1,i ≤ n+1,i++,For[j = 1,j ≤ n+1,j++,v55[i,j] = 0]] 

or[i = 0,i ≤ n,i++,v55[i,0] = 0] 

or[i = 1,i ≤ n,i++,For[j = 0,j ≤ n,j++,v55[j,i] = Limit[D[D[D[D[D[( υ[x]) i ,

],x],x],x],x],x → x[j]]]] 

atrixForm[v5] 

 = Array[m1,{n+1,n+1},{0,0}]; 

or[i = 0,i ≤ n+1,i++,For[j = 0,j ≤ n+1,j++,m1[i,j] = 0]] 

1[0,0] = 1; 

or[i = 1,i ≤ n,i++,If[OddQ[i],For[j = 0,j ≤ (i-1)/2,j++,m1[i,i-2 ∗j] = (-1) j ∗

 

i −2 ∗ j ∗Binomial[(i-j),j]]];If[EvenQ[i],For[j = 0,j ≤ i/2,j++,m1[i,i-2 ∗j] = (-

) j ∗2 i −2 ∗ j ∗Binomial[(i-j),j]]]] 

atrixForm[m] 

t = Transpose[m] 

a = Array[va1,n+1,0]; 

or[i = 0,i ≤ n,i++,va1[i] = Limit[( υ[x]) i ,x → ∞ ]] 

a.mt 

1,2,3,4,5,6,7,8,9} 

b = Array[vb1,n+1,0]; 

or[i = 0,i ≤ n,i++,vb1[i] = Limit[( υ[x]) i ,x → −∞ ]] 

b.mt 

1,-2,3,-4,5,-6,7,-8,9} 

c = Array[vc1,n+1,0]; 

or[i = 0,i ≤ n,i++,vc1[i] = Limit[( υ[x]) i ,x → 0]] 

c.mt 

1,0,-1,0,1,0,-1,0,1} 

d = Array[vd1,n+1,0]; 

or[i = 0,i ≤ n,i++,vd1[i] = Limit[D[( υ[x]) i ,x],x → 0]] 

d.mt 

0,1,0,-2,0,3,0,-4,0} 
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e = Array[ve1,n+1,0]; 

or[i = 0,i ≤ n,i++,ve1[i] = Limit[D[D[( υ[x]) i ,x],x],x → 0]] 

e.mt 

0,0,2,0,-6,0,12,0,-20} 

1 = Array[g11,n+1,0]; 

or[i = 0,i ≤ n,i++,g11[i] = Limit[g[x],x → x[i]]] 

0.v0.mt+q5.v5.mt 

 = { %,va.mt, vb.mt,(vc.mt+3 ∗vd.mt),ve.mt} 

Inv = Inverse[w] 

implify[wInv.g1] 

0,0.5,0,0,0,0,0,0,0} 

ullSimplify[0.5 ∗ ChebyshevU[1,( e ∧ x-1)/( e ∧ x+1]] 

anh[x/2] 

eferences 

[1] I.H. Siyyam , Laguerre tau methods for solving higher-order ordinary differen-

tial equations, J. Comput. Anal. Appl. 3 (2) (2001) 173–182 . 
[2] K. Parand , M. Razzaghi , Rational Chebyshev tau method for solving high-

er-order ordinary differential equations, Int. J. Comput. Math. 81 (1) (2004)
73–80 . 

[3] B. Guo , J. Yan , Legendre–Gauss collocation method for initial value problems of
second order ordinary differential equations, Appl. Numer. Math. 59 (6) (2009)

1386–1408 . 

[4] Z. Wang , B. Guo , Legendre-Gauss-Radau collocation method for solving initial
value problems of first order ordinary differential equations, J. Sci. Comput. 52

(1) (2012) 226–255 . 
[5] D.O. Awoyemi , O.M. Idowu , A class of hybrid collocation methods for

third-order ordinary differential equations, Int. J. Comput. Math. 82 (10) (2005)
1287–1293 . 

[6] S. Adjerid , H. Temimi , A discontinuous Galerkin method for higher-order ordi-
nary differential equations, Comput. Methods Appl. Mech. Eng. 197 (1) (2007)

202–218 . 

[7] C.R. Smith , The Sinc-Galerkin method for fourth-order differential equations,
SIAM J. Numer. Anal. 28 (3) (1991) 760–788 . 

[8] W.M. Abd-Elhameed , Hany , M. Ahmed , Y.H. Youssri , A new generalized Ja-
cobi Galerkin operational matrix of derivatives: two algorithms for solving

fourth-order boundary value problems, Adv. Difference Equ. 1 (2016) (2016)
1–16 . 

[9] W.M. Abd-Elhameed , E.H. Doha , Y.H. Youssri , Efficient spectral-Petrov-Galerkin

methods for third-and fifth-order differential equations using general param-
eters generalized Jacobi polynomials, Quaestiones Mathematicae 36 (1) (2013)

15–38 . 
[10] W.M. Abd-Elhameed , Y.H. Youssri , E.H. Doha , A novel operational matrix

method based on shifted Legendre polynomials for solving second-order
boundary value problems involving singular, singularly perturbed and Bratu–

type equations, Math. Sci. 9 (2) (2015) 93–102 . 

[11] E.H. Doha , W.M. Abd-Elhameed , A.H. Bhrawy , New spectral-Galerkin algo-
rithms for direct solution of high even-order differential equations using sym-

metric generalized Jacobi polynomials, Collectanea Mathematica 64 (3) (2013)
373–394 . 

[12] J.C. Mason , D.C. Handscomb , Chebyshev Polynomials, CRC Press, Boca Raton,
2003 . 

[13] K. Wright , Chebyshev collocation methods for ordinary differential equations,

Comput. J. 6 (4) (1964) 358–365 . 
[14] M. Sezer , M. Kaynak , Chebyshev polynomial solutions of linear differential

equations, Int. J. Math. Edu. Sci. Technol. 27 (4) (1996) 607–618 . 
[15] J.P. Boyd , Orthogonal rational functions on a semi-infinite interval, J. Comput.

Phys. 70 (1987) 63–88 . 
[16] J.P. Boyd , Spectral methods using rational basis functions on an infinite inter-

val, J. Comput. Phys. 69 (1987) 112–142 . 
[17] J.P. Boyd , Chebyshev and Fourier Spectral Methods, Second ed., DOVER Publi-
cations, Mineola, 20 0 0 . 

[18] K. Parand , M. Razzaghi , Rational Chebyshev tau method for solving high- order
ordinary differential equations, Int. J. Comput. Math. 81 (2004) 73–80 . 

[19] K. Parand , A. Taghavi , M. Shahini , Comparison between rational Chebyshev and
modified generalized Laguerre functions pseudospectral methods for solving

Lane-Emden and unsteady gas equations, Acta Phys. Pol. B 40 (6) (2009) 1749 .
20] M. Sezer, M. Gulsu, B. Tanay, Rational Chebyshev collocation method for

solving higher-order linear ordinary differential equations, Wiley Online Lib.

(2010), doi: 10.1002/num.20573 . 
[21] S. Yalcinbas , N. Ozsoy , M. Sezer , Approximate solution of higher-order lin-

ear differential equations by means of a new rational Chebyshev collocation
method, Math. Comput. Appl. 15 (1) (2010) 45–56 . 

22] M.A. Ramadan , K.R. Raslan , M.A. Nassar , An approximate analytical solution
of higher-order linear differential equations with variable coefficients using

improved rational Chebyshev collocation method, Appl. Comput. Math. 3 (6)

(2014) 315–322 . 
23] M.A. Ramadan , K.R. Raslan , M.A. Nassar , Numerical solution of system of

higher order linear ordinary differential equations with variable coefficients
using two proposed schemes for rational Chebyshev functions, Global J. Math.

3 (2) (2015) 322–327 . 
24] M.A. Ramadan , K.R. Raslan , M.A. Nassar , An approximate solution of systems

of high-order linear differential equations with variable coefficients by means

of a rational Chebyshev collocation method, Electron. J. Math. Anal. Appl. 4 (1)
(2016) 86–98 . 

25] M.A. Ramadan , K.R. Raslan , A.R. Hadhoud , M.A. Nassar , Rational Chebyshev
functions with new collocation points in semi-infinite domains for solving

higher-order linear ordinary differential equations, J. Adv. Math. 7 (2015)
5403–5410 . 

26] M.A. Ramadan , K.R. Raslan , A .R. Hadhoud , M.A . Nassar , Numerical solution of

high-order linear integro-differential equations with variable coefficients using
two proposed schemes for rational Chebyshev functions, New Trends in Math-

ematical Sciences 4 (3) (2016) 22–35 . 
[27] A .B. Koc , A . Kurnaz , A new kind of double Chebyshev polynomial approxima-

tion on unbounded domains, Boundary Value Prob. 1 (2013) (2013) 1687–2770 .
28] M.A. Ramadan , K.R. Raslan , T.S. El Danaf , M.A. Abd El salam , On the exponen-

tial Chebyshev approximation in unbounded domains: a comparison study for

solving high-order ordinary differential equations, Int. J. Pure Appl. Math. 105
(3) (2015) 399–413 . 

29] M.A. Ramadan , K.R. Raslan , T.S. El Danaf , M.A. Abd El salam , A new exponen-
tial Chebyshev operational matrix of derivatives for solving high-order ordi-

nary differential equations in unbounded domains, J. Mod. Methods Numer.
Math. 7 (1) (2016) 19–30 . 

30] J.C. Mason , Chebyshev polynomials of second, third and fourth kinds in ap-

proximation, indefinite integration, and integral transforms, J. Comput. Appl.
Math. 49 (1993) 169–178 . 

[31] N.H. Sweilam , A.M. Nagy , Adel , A. El-Sayed , Second kind shifted Chebyshev
polynomials for solving space fractional order diffusion equation, Chaos Solit.

Fract. 73 (2015) 141–147 . 
32] A.C. King , J. Billingham , S.R. Otto , Differential Equations Linear, Nonlinear, Or-

dinary, Partial, Cambridge University Press, 2003 . 
33] W.J. Cody , K.A. Paciorek , H.C. Thacher , Chebyshev approximations for Dawson’s

integral, Math. Comput . 23 (1970) 171–178 . 

34] J.P. Coleman , Complex polynomial approximation by the Lanczos-s-method:
Dawson’s integral„ J. Comput. Appl. Math. 20 (1987) 137–151 . 

35] F.G. Lether , Constrained near-minimax rational approximations to Dawson’s in-
tegral, Appl. Math. Comput. 88 (1997) 267–274 . 

36] J.P. Boyd , Evaluating of Dawson’s Integral by solving its differential equa-
tion using orthogonal rational Chebyshev functions, Appl. Math. Comput. 204

(2008) 914–919 . 

[37] J.A.C. Weideman , Computation of the complex error function, SIAM J. Numer.
Anal. 31 (1994) 1497–1518 . 

http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0001
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0001
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0002
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0002
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0002
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0003
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0003
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0003
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0004
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0004
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0004
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0005
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0005
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0005
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0006
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0006
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0006
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0007
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0007
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0008
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0008
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0008
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0008
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0008
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0009
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0009
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0009
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0009
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0010
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0010
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0010
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0010
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0011
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0011
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0011
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0011
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0012
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0012
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0012
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0013
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0013
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0014
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0014
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0014
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0015
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0015
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0016
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0016
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0017
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0017
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0018
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0018
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0018
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0019
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0019
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0019
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0019
http://dx.doi.org/10.1002/num.20573
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0021
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0021
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0021
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0021
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0022
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0022
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0022
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0022
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0023
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0023
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0023
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0023
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0024
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0024
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0024
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0024
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0025
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0025
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0025
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0025
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0025
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref00025
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref00025
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref00025
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref00025
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref00025
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0026
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0026
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0026
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0027
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0027
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0027
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0027
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0027
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0028
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0028
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0028
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0028
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0028
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0029
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0029
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0030
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0030
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0030
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0030
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0030
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0031
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0031
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0031
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0031
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0032
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0032
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0032
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0032
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0033
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0033
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0034
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0034
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0035
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0035
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0036
http://refhub.elsevier.com/S1110-256X(16)30050-5/sbref0036

	An exponential Chebyshev second kind approximation for solving high-order ordinary differential equations in unbounded domains, with application to Dawson's integral
	1 Introduction
	2 The exponential Chebyshev functions of second kind
	2.1 Definition of ESC functions
	2.2 ESC functions are orthogonal
	2.3 Function expansion in terms of ESC functions
	2.4 The operational matrix

	3 Fundamental matrix relations
	4 Description of the collocation method
	5 Illustrative examples
	6 Application
	7 Conclusion
	 Acknowledgment
	 Appendix
	 Code for Ex.5.1
	 Code for Ex.5.4

	 References


