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The stochastic approximation procedure with series of delayed observations is investigated. The proce- 

dure is formed by modifying the Robbins–Monro stochastic approximation procedure to be applicable 

in the presence of series of delayed observations. The modified procedure depends on a new base con- 

cerning the relation between service time of the series and service times of its components. Two loss 

systems are introduced for application to the proposed procedure. This new situation can be applied to 

increase the production of items in many fields such as biological, medical, life time experiments, and 

some industrial projects, where items are realized after random time delays. The efficiency of the proce- 

dure is computed. Our proposal is general and we expect that it can be applied to any other stochastic 

approximation procedure. 
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. Introduction 

Stochastic approximation and related topics, as recursive pa-

ameter estimation, or up and down experimentation, belong to

he so-called on-line methods, where the solution of the problem

akes place in real time, in the course of the process of observa-

ion. Stochastic approximation is a procedure for finding the root

f an equation, or the solution of a system of equations, where

he values of the respective functions can only be observed (mea-

ured) with experimental errors, at recursively determined points.

he procedure is nonparametric with respect to the type of the

unction as well as with respect to the distribution of the experi-

ental error (if an information about this distribution is available,

t can be made use of). 

The procedure for finding the root is called the Robbins –Monro

tochastic approximation procedure [1] . There is an extensive liter-

ture and a lot of papers on this topics (cf. [2–7] ), we shall use the

eview papers [8–13] as references. 
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Typically, in the investigated stochastic approximation proce-

ure, observations follow each other after fixed time-intervals;

here the point of the next observation is corrected according to

he result of the preceding one. However, in some situations, as in

iological or lifetime experiments, it may happen that the result of

n observation becomes known only after a random time delay. 

Recently, the stochastic approximation has been used in clinical

pplications to find optimal dose as in [14] . 

It is meaningful to ask, whether and how stochastic approxima-

ion can then be applied. We answer the question for the modified

tochastic approximation procedure with delayed series of delayed

ultiservice observations (or customers) by investigating two loss

ystems to be applicable in the presence of the modified Robbins–

onro stochastic approximation procedure. A series of delayed ob-

ervations arrives to the system each time unit where the service

ime is an integer-valued random variable. Servers are parallel, and

here is no waiting places if all servers are busy. According to this

ew approach, a server of one of the two loss systems cans serve a

eries of delayed multiservice observations. The number of served

bservations will be increased and the number of lost observa-

ions will be minimized. This approach is not applied in the papers

8,10–13] . In these papers the problem was discussed by applying

pecial loss systems where servers cannot receive (serve) any ob-

ervation during the time between any two consecutive arrivals.
. This is an open access article under the CC BY-NC-ND license. 
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However, in the proposed procedure, we introduced a new situa-

tion by investigating two loss systems, where the server cans re-

ceive an observation or more during the time between any two

consecutive series of observations. In fact, the investigation of the

mentioned two loss systems was inspired exactly by this applica-

tion, where it will minimize the number of lost observations. It is

proved that the service time of a series equals the sum of service

times of its components (observations) where our procedure de-

pends exactly on this new base. The service time of a series is in-

dependent of the number of its components and this can be used

to increase the number of served observations of the series. 

The service time distribution of the loss system, whose arrivals

are series of observations, depends on the service time distribu-

tion of the loss system whose arrivals are multiservice observa-

tions. The probability service time of a series equals the sum of

products of probabilities service times of observations without de-

lay terminated by with delay. If the service times of observations

are terminated with delay, then all next observations are lost, but

if they are terminated without delay, then there is no loss of any

observation. The exact bounded service time distribution of a se-

ries of delayed observations is obtained by approximating the un-

bounded geometric random time delay distribution based on the

procedure [8] , by the bounded service time distribution based on

the modified procedure. The approximation depends on the num-

ber of multiservice observations of the series as well as it depends

on the efficiency of the modified procedure where the number of

observations can be increased. This new approach minimizes the

number of lost observations and increases the number of served

observations, therefore it can be applied to increase the produc-

tion of items in many fields where items are realized after random

time delays. The efficiency of the proposed procedure and its ap-

proximation by the efficiency of the procedure [8] are calculated

where the results obtained show that the approximation seems to

be acceptable. This proves that our proposal can serve as a model

of the Robbins–Monro stochastic approximation procedure. 

The proposed procedure is more general than the procedure

given by the paper [13] . The results in paper [13] can be obtained

in the special case that each series contains one observation only. 

The investigated procedure is new and we expect that it can

be applied to any stochastic approximation or recursive estimation

procedure. 

2. The modified stochastic approximation procedure with 

delayed series of delayed multiservice observations for 

independent random time delay distributions 

The stochastic approximation procedure with delayed observa-

tions is modified to be applicable in the presence of delayed se-

ries of delayed multiservice observations. This application will in-

crease the number of served observations in each series. To obtain

the exact service time distribution of the series of delayed obser-

vation, the unbounded geometric random time delay distribution

based on the procedure [8] , is approximated by the bounded ser-

vice time distribution based on the modified procedure. Two loss

systems are investigated where arrivals are series of multiservice

observations and a series of delayed observations arrives each time

unit, service time is an integer-valued random variable, servers are

parallel stations, and there is no waiting places if all servers are

busy. 

2.1. Stochastic approximation procedure with delayed observations 

The Robbins–Monro stochastic approximation procedure with

delayed observations has been investigated previously for a geo-

metrical delay distribution [8] . To eliminate or diminish time losses
ue to delays of observations, it has been proposed that experi-

ents (or observations ) are allocated into K parallel series in the

ollowing way. 

The experiment is based on three essential elements, that is,

eterministic arrivals, K parallel series, and no queue. The K series

re either open or closed at points x (k ) 
n k 

, where 1 ≤ k ≤ K , n k − 1

s the number of observations realized in the k th series up to time

 − 0 (i.e. immediately before time n ). At the beginning, i. e., before

ime n = 1 , all series are open, all n k are equal to 1, and all x (k )
1 

re equal to the same constant. At time n , an experiment is made

t point x (i ) 
n i 

, where i is the open series with the smallest n i and

mallest i among them. The i th series is then closed at the same

 

(i ) 
n i 

till time ( n + t(n ) + 1 ) − 0 when it opens at the point 

 

( i ) 
n i +1 

= x ( 
i ) 

n i 
− a n i 

(
r 

(
x ( 

i ) 
n i 

)
+ e 

(
n + t ( n ) + 1 , x ( 

i ) 
n i 

))
. 

Here r ( x ) is a function whose zero point θ is to be found;

 ( υ + 1 , x ) is the observational error (noise) corresponding to an

bservation of r made at point x , which becomes known during

he interval [ υ, υ + 1] ; x (i ) 
n i 

is the current approximation to θ in

he i th series at time n − 0 ; a n , n ∈ N, is a zero sequence of posi-

ive constants, typically a n = 

a 
n + n 0 , where n 0 is non-negative; and

 ( n ) is [the integer part of] the delay of the result of an experiment

ade at time n . 

If there is no open series at time n − 0 , no experiment is made

t time n and a time-loss is thus incurred. If l is the steady state

robability of such a time loss, its complement, e = 1 − l, is called

he efficiency of the procedure. 

To find θ , the average of the current approximations over all

eries, θn = 

1 
K 

∑ K 
k =1 x 

(k ) 
n k 

, is chosen as a global approximation of θ
t time n − 0 . Under the usual assumptions on function r and er-

or e ( n, x ), not repeated here, and under the independence of de-

ays t ( n ), the normed approximation n 
1 
2 ( θn − θ ) is asymptotically

ormally distributed with parameters 0 and σ / e , where σ 2 is the

symptotic variance of the same normed approximation in a pro-

edure without delays. Hence, e is also the relative asymptotic ef-

ciency of θn as a statistical estimator. 

.2. Description of the first loss system with delayed series of 

bservations 

Consider the service system GI / GI / K /0 where both the inter-

rrival and the service times are non-negative integer values, but

heir distributions are unspecified, otherwise. K is the total number

f servers (or of parallel service stations) in the system. 0 means

hat there are no waiting places and series are lost if all servers

re busy. We will confine ourselves to the case of purely determin-

stic inter-arrival times, where one series of observations comes

ach time unit n = 1 , 2 , . . . sharp. Such a service system is called

 loss system with delayed series of observations and is denoted

y D / GI / K /0. The service time t is assumed to be an integer valued

andom variable that however could have originated from a con-

inuous one by off-rounding. The service time t will be rounded

own to 0, if the service of a series of observations, who came at

ime n , is finished by or immediately before the time n + 1 (i.e.,

t time n + 1 − 0 ), rounded down to 1, if the service is finished by

he time n + 2 but not before time n + 1 , etc.. Apparently, round-

ng up (to the next larger integer) would be more natural, but we

re inspired by the application treated later on, where a service

ime not exceeding one time is considered as standard, and where

 plays the role of a delay, i.e. of an excess over one time unit. 

Denote by P 0 ; P 1 , ; P 2 ; . . . the distribution of the rounded down

ervice time of a series of observations or by P 0 ; P 1 , ; P 2 , . . . ; P T , if

he (rounded down) service time, of a series of observations, can-

ot exceed T time units. 
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Describe the state of the system at time n − 0 by a K - duple of

ntegers 

0 . . . 0 y j+1 y j+2 , . . . , y K , (1)

ith 

 < y j+1 ≤ y j+2 ≤ . . . ≤ y K , 

here j denotes the number of servers free immediately before

ime n (i.e., at time n − 0 ), while y j+1 y j+2 , . . . , y K denote the re-

aining service times of the occupied servers in a nondecreasing

rder. That is, y i equals 1, if the corresponding server being oc-

upied by a series of observations at time n − 0 , will be freed by

ime n + 1 − 0 ; y i equals 2, if he is freed by time n + 2 − 0 but not

efore time n + 1 , etc.. 

A standard argument of the queuing theory shows that the

ystem with states (1) represents a time-homogeneous, finite or

ountable Markov chain. 

.3. Description of the second loss system with s observations 

Consider the service system GI 1 / GI 1 /1/0 with s observations,

here both the interarrival time and the service time may take

n only nonnegative values 1/ s and t respectively, but their distri-

utions are unspecified, otherwise. The total number of servers in

he system is 1 only, where all the s observations will be served

y this server. In this case, the system has multiservice for the s

bservations. 0 means that there are no waiting places. Such a ser-

ice system is a loss system with s multiservice observations and

ill be denoted by D 1 / GI 1 /1/0, where an observation arrives each

/ s time unit. The service time t will be rounded down to 0, if

he service of an observation, who came at time n , is finished by

he time n + 

1 
s ; rounded down to 1, if the service is finished by

he time n + 

1 
s + 1 but not before n + 1 , etc.. In general, the service

ime t will be rounded down to T , if the service of an observation

who came at time n ) is finished by the time n + 

1 
s + T , where the

ervice time of an observation cannot exceed T time units. 

.4. Application of the two loss systems to the stochastic 

pproximation procedure with delayed observations 

Allocation of experiments into K series is not the only possible

pproach to the problem of stochastic approximation with delays.

n alternative approach not discussed in the papers [8,10–13] , will

e sketched here. 

The new approach is investigated by introducing two loss sys-

ems with series of delayed multiservice observations and inde-

endent random service time. To do this, we modify the Robbins–

onro stochastic approximation procedure to be applicable in the

resence of the introduced two loss systems. 

The described two loss systems can serve as a model of the

tochastic approximation procedure [8] with delayed observations

in case of geometric delay distribution) and with allocation of ex-

eriments into K series. The series of delayed observations in the

wo loss systems are observations in the approximation procedure;

he service time of a series is the delay of an observation in the

pproximation procedure; the K servers of series of delayed obser-

ations are the K series of experiments; and the non-existence of

 waiting room is the impossibility to accept a series of delayed

bservations if all the K servers are occupied. According to this ap-

roach, a new situation can be obtained by approximating the un-

ounded geometric delay distribution of the stochastic approxima-

ion procedure [8] , by the service time distribution of the modified

tochastic approximation procedure with series of delayed obser-

ations; using the method of moments. 
. Investigation of the compound service time distribution of 

he introduced loss systems 

To find the compound service time distribution of the two loss

ystems, we prove the following theorem. 

heorem. the compound service times t 1 of s observations equals

he service time t of the series of s observations. 

roof. the compound service times t 1 of s observations will be

ounded down to 0, if the service of an observation who came at

ime n + 

x −1 
s is finished by the time n + 

x 
s (i.e., before time n + 

x 
s or

t time + 

x 
s − 0) , where the x th observation is served without de-

ay; for all x = 1 , 2 , . . . , s . In this case, the service of a series of s ob-

ervations who started at time n is finished by the time n + 1 , and

he service time of the series will be rounded down to 0 where it

quals the compound service times t 1 of s observations. The com-

ound service times t 1 of s observations will be rounded down

o 1, if the x th observation is served without delay by the time

 + 

x 
s , for all x = 1 , 2 , . . . , s − i ; i = 1 , 2 , . . . , s , and the (s − i + 1) th

bservation is served with time delay (equals one time unit) and

nishes its service by the time n + 

x +1 
s + 1 . The observations com-

ng during the service of the (s − i + 1) th delayed observation will

e lost for there are no waiting places. Consequently, the service

f a series of s observations is finished by the time n + 2 , and

he service time of the series will be rounded down to 1 where

t equals the compound service times t 1 of at most s observa-

ions. Here at most s observations will be served for, the service

ith delay of the ( s − i + 1 ) th observation makes the next com-

ng observations are lost, where the number of lost observations

ay be 1 , 2 , . . . , s − 1 . In general, the compound service times t 1 
f s observations will be rounded down to t = 1 , 2 , . . . , T , if the

 th observation is served without delay by the time n + 

x 
s ; for all

 = 1 , 2 , . . . , s − i ; i = 1 , 2 , . . . , s , and the (s − i + 1) th observation is

erved with time delay (equals t time units) and finishes its service

y the time n + 

x +1 
s + t . Therefore, the service of a series of s ob-

ervations is finished by the time n + t + 1 , and the service time of

he series will be rounded down t where it equals the compound

f the service times t 1 of at most s observations. This completes

he proof of the theorem. 

The compound service time distribution of the introduced two

oss systems is investigated in the following way. 

.1. Service time distribution of the second loss system with s 

bservations 

Denote by p 0 ; p 1 ; p 2 ; . . . , the distribution of the rounded

own service time of observations or by p 0 ; p 1 ; p 2 ; . . . ; p T , if the

rounded down) service time of an observation cannot exceed T

ime units. 

Let A i ( t ) be the event that the x th observation is served without

elay with probability p 0 , for all x = 1 , 2 , . . . , s − i ; i = 1 , 2 , . . . , s ,

nd the ( s − i + 1 ) th observation is served with time delay t =
 , 2 , . . . T time units, with probability p t . Since the service times

f the s observations are independent random variables; it can be

een that 

 ( A i ( t ) ) = p s −i 
0 p t , i = 1 , 2 , . . . , s ; t = 1 , 2 , . . . , T 

= p s 0 , i = 1 ; t = 0 . (2) 

.2. Service time distribution of the first loss system with delayed 

eries of s observations 

Since the events A i (t) ; i = 1 , 2 , . . . , s ; t = 1 , 2 , . . . , T , are the ran-

om service times of a series of s observations, it can be seen that
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the events are mutually exclusive. The service time distribution of

the series is given by the following equation. 

P 

( 

s ∪ 

i =1 
A i ( t ) = 

s ∑ 

i =1 

p( A i ( t ) 

) 

= p t 

s ∑ 

i =1 

p s −i 
0 = 

p t 
(
1 − p s 0 

)
( 1 − p 0 ) 

= P t ;

t = 1 , 2 , . . . , T , (3)

where, P t is the service time distribution of delayed series of s ob-

servations for t = 1 , . . . , T . 

From Eq. (3) , 

P 0 = 1 −
T ∑ 

t=1 

P t = 1 −
(
1 − p s 0 

)
( 1 − p 0 ) 

T ∑ 

t=1 

p t = p s 0 . (4)

Therefore, and by Eqs. (3) and (4) , the compound service time

distribution of the introduced two loss systems is equal to P t for

all t = 0 , 1 , . . . , T , where 

P t = p s 0 ; t = 0 , 

= 

p t 
(
1 − p s 0 

)
( 1 − p 0 ) 

; t = 1 , 2 , . . . , T , (5)

where t is the compound service time of the s observations. 

3.3. A special compound service time distribution of the introduced 

two loss systems 

A special service time distribution of series of s observations

is obtained by considering the compound service times of the s

observations in the case that the service time of the first observa-

tion equals t for t = 1 , 2 , . . . , T time units. Since there is no waiting

places exist in the introduced two loss systems and the server is

busy by the service of the first observation for t = 1 , 2 , . . . , T time

units, then the next coming x th observations for x = 2 , 3 , . . . , s will

be lost. In this case, no observations are served without delay, and

p 0 = 0 . (6)

Substitute (6) into (5) to get the compound service time distri-

bution P t of the delayed series of s observations under the assump-

tion that the first observation is the only served one with time de-

lay equals t for t = 1 , 2 , . . . , T time units, and the rest ( s − 1 ) ob-

servations are lost, where 

P t = p t , t = 1 , 2 , . . . , T 

= 0 , t = 0 , (7)

The ( s − 1 ) lost observations are not allowed to be served by

other service station of the same loss system even they were free,

for this will affect both the number of served arrivals of the two

loss systems and the efficiency of the modified stochastic approxi-

mation procedure with delayed series of s delayed observations. 

As a result of this case, each series of s observations will be-

come a series of one delayed observation and by the last theorem,

the service time of each series equals the service time of its de-

layed observation. Therefore, the service time distribution P t of a

series equals the service time distribution p t of its delayed obser-

vation. We conclude that the number of served observations of a

series of s observations can be maximized if all or at least ( s − 1 )

of them are served without delay, where this will minimizes the

number of lost observations of the series to become zero. 

4. Methodology 

The first topic of the work was studying mathematical models

of two special service systems. 
As the considered systems can be viewed as compound Markov

hains, it was first of all the theory of finite or countable (discrete-

ime) compound Markov chains that were made use of. The com-

ound states of the chain reachable from the initial zero compound

tate, and the equations necessary for the stationary distribution

ere found. Some matrix algebra and methods of solving systems

f linear equations were utilized in connection with the stationary

istribution and with asymptotic efficiency. 

The second topic of the work was investigating the modified

tochastic approximation procedure with delayed series of delayed

bservations and with allocation of the series into parallel series.

ere, the results obtained for the above mentioned service systems

ecame main tool of the investigation. Moreover, results on almost

ure convergence and on asymptotic normality, known for the non-

elayed stochastic approximation, were made use of. 

.1. The stationary distribution of the compound Markov chain 

The set S of compound states that can be reached from the ini-

ial 00…0 under the assumption P i > 0, for all 0 ≤ i ≤ T , together

ith the corresponding matrix of transition probabilities P will be

alled the basic compound Markov chain. We can easily see, still

ssuming P i > 0, for all 0 ≤ i ≤ T , that the basic compound Markov

hain is irreducible, ergodic. Hence, there is a unique stationary

istribution π , determined by the system of equations 

 

T π = π, (8)

here T denotes the transpose of the matrix P . 

.2. Efficiency of the two service systems 

If T < K , then each state α contains at least one 0 and in this

ase no observation will be lost. For T ≥ K , the unknowns πα with

containing no 0 , s can be easily eliminated from the system (8) ,

s successive transitions from these states to states containing 0 , s

ccur deterministically, with probability 1. One of the remaining

quations can always be deleted as superfluous; another one is to

e added, namely the requirement 
 

α

πα = 1 . 

Solving the reduced system of equations and summing the co-

rdinates of the solution, we get the loss probability l , 

 = 

∑ 

α

πα

α containing no 0, or complementarily, the efficiency e of the

wo service systems, where 

 = 

∑ 

α

πα; α contains at least one 0 . (9)

Note that, 

 + e = 1 . 

.3. Applications of the modified stochastic approximation procedure 

Two applications (examples) of the modified procedure are

iven here, the first depends on delayed series of large number of

bservations; the second depends on an approximation based on

eometric time delay distribution of observations. 

.3.1. Application of the modified procedure to series of large number 

f observations 

Assume that T = K = 2 ; the number of observations s = 30 ;

nd the service time distribution of an observation equals
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Table 1 

Comparisons between the exact percentage efficiency e of the modified procedure with delayed series of 30 compound observations each has large probability 

p 0 ; and approximate efficiency e 1 of a procedure with geometrically distributed time delay and parameter p . 

s = 1 

K = 2 K = 3 K = 4 K = 5 K = 6 

p 0 p 1 p 2 p 3 p 4 p 5 p 6 E ( t ) p e e 1 e e 1 e e 1 e e 1 e e 1 

0 .96 0 .035 0 .005 0 0 0 0 0 .045 0 .957 

0 .96 0 .020 0 .015 0 .005 0 0 0 0 .065 0 .939 99 .9 

0 .96 0 .016 0 .010 0 .009 0 .005 0 0 0 .083 0 .923 99 .8 

0 .96 0 .015 0 .009 0 .007 0 .005 0 .004 0 0 .086 0 .921 99 .7 99 .9 

0 .96 0 .014 0 .008 0 .007 0 .006 0 .003 0 .002 0 .102 0 .907 99 .6 99 .9 

s = 30 

0 .29 0 .62 0 .09 0 0 0 0 0 .80 0 .556 94 .6 88 .5 

0 .29 0 .35 0 .26 0 .10 0 0 0 1 .17 0 .461 81 .5 79 .7 98 .1 95 .5 

0 .29 0 .28 0 .18 0 .16 0 .09 0 0 1 .48 0 .403 73 .1 72 .3 92 .9 91 .3 99 .4 98 .4 

0 .29 0 .26 0 .16 0 .12 0 .09 0 .08 0 1 .70 0 .370 68 .7 68 .7 89 .4 88 .4 99 .9 99 .7 

0 .29 0 .25 0 .14 0 .12 0 .11 0 .05 0 .04 1 .82 0 .355 66 .8 66 .5 86 .9 86 .1 

100.0 in all empty cells, and ( P 0 , . . . . . . . . . , P 6 ) are approximated to two digits. 
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( p 0 , p 1 , p 2 ) = ( 0 . 7 , 0 . 2 , 0 . 1 ) . The compound service time distribu-

ion of a series of 30 observations is obtained by substituting s =
0 , and ( p 0 , p 1 , p 2 ) = ( 0 . 7 , 0 . 2 , 0 . 1 ) into Eq. (5) to get the service

ime distribution ( P 0 , P 1 , P 2 ) = ( 2 . 25 −5 
, 0 . 6 6 67 , 0 . 316 ) of the series. 

Substitute ( P 0 , P 1 , P 2 ) in the reduced system of equations

8) and follow the steps stated in Section 4.2 to get the explicit

olution for πα , α contains at least one 0, as π00 = 0 . 14 , π01 =
 . 47 , and π02 = 0 . 19 . To obtain the efficiency e , of the modified

tochastic approximation procedure, substitute the values of π00 ,

01 , π02 in Eq. (9) to get e = 0 . 8 . 

As a result of this application, the modified procedure can serve

 delayed series of large number of observations with high effi-

iency e . This application can be used to increase the production

f items with high efficiency in many fields such as biological,

edical, life time experiments, and some industrial projects, where

tems are realized after random time delays. 

.3.2. Application of the Robbins–Monro procedure to the loss system 

ith series of observations 

This application has been done by approximating the efficiency

 1 of the procedure [8] , based on geometrical random time de-

ay distribution of observations, by the efficiency e of the modi-

ed procedure with delayed series where each series contains 30

bservations. The states S 1 of the procedure [8] are the number of

ervers free at time n − 0 (or immediately before time n ), where S 1 
ogether with the corresponding matrix of transition probabilities

 1 is a Markov chain. Assume that the number of servers K equals

, it can be seen that 

 1 = { 0 , 1 , 2 } , 

P 1 = 

( 

q 2 2 pq p 2 

q 2 2 pq p 2 

0 q p 

) 

, (10) 

The asymptotic efficiency e 1 is approximated by the asymp-

otic efficiency e , where e is obtained by the application given in

ection 4.3.1 and equals 0.8. The method of moments is used to

nd the approximation where the first moment μ of the geomet-

ic random time delay distribution of procedure [8] is set equals to

he first moment E ( t ) of the compound service time distribution of

he investigated loss system to get 

= E ( t ) , 
r, 

(q/p) = 

2 ∑ 

t=0 

t P t , 

p = 1 / 

(
1 + 

2 ∑ 

t=0 

t P t 

)
. 

(11) 

Insert the service time distribution ( P 0 , P 1 , P 2 ) =
( 2 . 25 −5 

, 0 . 6 6 67 , 0 . 316 ) , obtained by the application given in

ection 4.3.1 , into Eq. (11) to get the approximated parameter

 where p = 0 . 435 , and q = 1 − p = 0 . 565 . Substitute p, q in

q. (10) to get the approximated transition matrix 

 1 = 

( 

0 . 319 0 . 492 0 . 189 

0 . 319 0 . 492 0 . 189 

0 0 . 565 0 . 435 

) 

. 

At last, substitute the approximated transition matrix P 1 into

he reduced system of equations (8) and follow the steps stated in

ection (4.2) to solve for the unknowns π0 , π1 , π2 . It can be seen

hat the approximated efficiency e 1 = 0 . 761 , where 

 1 = 1 − π0 

The results obtained show that the approximation of the effi-

iency e 1 by the efficiency e = 0 . 8 is acceptable and consequently,

he investigated loss system with delayed series of s observations

an serve as a model of the Robbins–Monro stochastic approxima-

ion procedure with delayed observations. This model modifies the

tochastic procedure to be applicable in the presence of delayed

eries of s compound observations. Our procedure is called the

odified stochastic approximation procedure with delayed series

f s compound observations. 

.4. New results and discussion 

Table 1 gives a comparison between the exact efficiency e of the

odified procedure with delayed series of 30 delayed compound

bservations, and the approximate efficiency e 1 of the stochastic

rocedure [8] with delayed observations. In Table 2 , the efficiency

 in the case s = 1 is approximately the same as in the case s = 30

nd this gives an important application by increasing the produc-

ion of items with high efficiency in many fields such as biological,

edical, life time experiments, and industrial projects where items

re realized after random time delays. 

The results obtained by Tables 1 and 2 seem to be satisfactory,

ith the difference between the two efficiencies e and e 1 decreas-

ng. Consequently, this show in general that the modified stochas-

ic approximation procedure with delayed series of s compound
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Table 2 

Comparisons between the exact percentage efficiency e of the modified procedure with delayed series of 30 compound observations each has small probability 

p 0 ; and approximate efficiency e 1 , of a procedure with geometrically distributed time delay and parameter p . 

s = 1 

K = 2 K = 3 K = 4 K = 5 K = 6 

p 0 p 1 p 2 p 3 p 4 p 5 p 6 E ( t ) p e e 1 e e 1 e e 1 e e 1 e e 1 

0 .04 0 .4 0 .56 0 0 0 0 1 .52 0 .397 74 .4 71 .2 

0 .04 0 .32 0 .32 0 .32 0 0 0 1 .92 0 .342 64 .8 63 .3 88 .6 84 .2 

0 .04 0 .24 0.24 0 .24 0 .24 0 .24 0 0 2 .4 0 .294 56 .4 55 .6 79 .1 76 .6 94 .8 90 .6 

0 .04 0 .192 0 .192 0 .192 0 .192 0 .192 0 2 .88 0 .258 49 .9 49 .4 71 .2 69 .7 97 .7 94 .3 

0 .04 0 .16 0 .16 0 .16 0 .16 0 .16 .16 3 .36 0 .229 44 .7 44 .4 64 .5 63 .6 99 97 

s = 30 

0 0 .417 0 .583 0 0 0 0 1 .58 0 .387 73 .1 69 .8 

0 0 .333 0 .333 0 .334 0 0 0 2 .00 0 .333 63 .5 61 .9 87 .5 82 .9 

0 0 .250 0 .250 0 .250 0 .250 0 0 2 .50 0 .286 55 .0 54 .2 77 .7 75 .1 94 .0 89 .5 

0 0 .2 0 .2 0 .2 0 .2 0 .2 0 3 .00 0 .250 48 .5 48 .1 69 .6 68 .1 97 .3 93 .4 

0 0 .167 0 .167 0 .167 0 .167 0 .166 0 .166 3 .50 0 .229 43 .4 43 .1 62 .9 61 .9 99 96 

100.0 in all empty cells, and ( P 0 , . . . . . . . . . , P 6 ) are approximated to three digits. 
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observations can serve as a model of the Robbins–Monro stochastic

approximation procedure with delayed observations. Accordingly,

the modified procedure improves the Robbins–Monro procedure by

diminishing the time losses due to the delay of observations. The

results in Tables 1 and 2 are calculated by using the Matlab pro-

gram (version 7) and Maple program (version 16). 

The results obtained by Tables 1 and 2 prove that the investi-

gated procedure is more general than the procedure given by the

paper [13] for all the results given by this paper can be obtained

in the special case that each series contains one observation only. 

In conclusion, our approach is new and we expect that it can be

applied to other stochastic approximation or recursive estimation

procedures. 
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