Contents lists available at ScienceDirect

Journal of the Egyptian Mathematical Society

journal homepage: www.elsevier.com/locate/joems

M. Caldas^a, M. Ganster^b, S. Jafari^{c,*}, T. Noiri^d, V. Popa^e

^a Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ, Brazil

^b Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria

^c College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark

^d 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142, Japan

e Department of Mathematics and Informatics, Faculty of Sciences "Vasile Alecsandri", University of Bacău, 157 Calea Mărășești, Bacău, 600115, Romania

ARTICLE INFO

Article history: Received 27 April 2016 Revised 16 August 2016 Accepted 20 August 2016 Available online 28 August 2016

MSC: Primary 54C08 54C10 Secondary 54C05

keywords: Topological space $\beta\theta$ -Open set $\beta\theta$ -Closed set Almost contra-continuous function Almost contra $\beta\theta$ -continuous function

1. Introduction and preliminaries

Recently, Baker (resp. Ekici, Noiri and Popa) introduced and investigated the notions of contra almost β -continuity [1] (resp. almost contra pre-continuity [2,3]) as a continuation of research done by Caldas and Jafari [4] (resp. Jafari and Noiri [5]) on the notion of contra- β -continuity (resp. contra pre-continuity). In this paper, new generalizations of contra $\beta\theta$ -continuity [6] by using $\beta\theta$ -closed sets called almost contra $\beta\theta$ -continuity are presented. We obtain some characterizations of almost contra $\beta\theta$ -continuous functions and investigate their properties and the relationships between almost contra $\beta\theta$ -continuity and other related generalized forms of continuity.

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces. Let A be a subset of X. We denote the interior, the closure and the complement of a set A by Int(A),

* Corresponding author.

A B S T R A C T

In this paper, we introduce and investigate the notion of almost contra $\beta\theta$ -continuous functions by utilizing $\beta\theta$ -closed sets. We obtain fundamental properties of almost contra $\beta\theta$ -continuous functions and discuss the relationships between almost contra $\beta\theta$ -continuity and other related functions.

> © 2016 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Cl(A) and XA, respectively. A subset A of X is said to be regular open (resp. regular closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A subset *A* of a space *X* is called preopen [7] (resp. semi-open [8], β -open [9], α -open [10]) if $A \subset Int(Cl(A))$ (resp. $A \subset Cl(Int(A))$, $A \subset Cl(Int(Cl(A))), A \subset Int(Cl(Int(A))))$. The complement of a preopen (resp. semi-open, β -open, α -open) set is said to be preclosed (resp. semi-closed, β -closed, α -closed). The collection of all open (resp. closed, regular open, preopen, semiopen, β -open) subsets of X will be denoted by O(X) (resp. C(X), RO(X), PO(X), SO(X), $\beta O(X)$). We set $RO(X, x) = \{U : x \in U \in RO(X, \tau)\}, SO(X, x) = \{U : U \in RO(X, \tau)\}$ $x \in U \in SO(X, \tau)$ and $\beta O(X, x) = \{U : x \in U \in \beta O(X, \tau)\}$. We denote the collection of all regular closed subsets of X by RC(X). We set $RC(X, x) = \{U : x \in U \in RC(X, \tau)\}$. We denote the collection of all β regular (i.e., if it is both β -open and β -closed) subsets of X by $\beta R(X)$. A point $x \in X$ is said to be a θ -semi-cluster point [11] of a subset S of X if $Cl(U) \cap A \neq \emptyset$ for every $U \in SO(X, x)$. The set of all θ -semi-cluster points of A is called the θ -semi-closure of A and is denoted by θ sCl(A). A subset A is called θ -semi-closed [11] if $A = \theta sCl(A)$. The complement of a θ -semi-closed set is called θ -semi-open.

The $\beta\theta$ -closure of A [12], denoted by $\beta Cl_{\theta}(A)$, is defined to be the set of all $x \in X$ such that $\beta Cl(O) \cap A \neq \emptyset$ for every $O \in \beta O(X, \tau)$ with $x \in O$. The set { $x \in X : \beta Cl_{\theta}(O) \subset A$ for some $O \in \beta O(X, x)$ }

http://dx.doi.org/10.1016/j.joems.2016.08.002

CrossMark

 $^{^{\}star}$ Dedicated to our friend and colleague the late Professor Mohamad Ezat Abd El-Monsef

E-mail addresses: gmamccs@vm.uff.br (M. Caldas), ganster@weyl.math.tugraz.ac.at (M. Ganster), jafaripersia@gmail.com (S. Jafari), t.noiri@nifty.com (T. Noiri), v.popa@ub.ro (V. Popa).

¹¹¹⁰⁻²⁵⁶X/© 2016 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

is called the $\beta\theta$ -interior of *A* and is denoted by $\beta Int_{\theta}(A)$. A subset *A* is said to be $\beta\theta$ -closed [12] if $A = \beta Cl_{\theta}(A)$. The complement of a $\beta\theta$ -closed set is said to be $\beta\theta$ -open. The family of all $\beta\theta$ -open (resp. $\beta\theta$ -closed) subsets of *X* is denoted by $\beta\theta O(X, \tau)$ or $\beta\theta O(X)$ (resp. $\beta\theta C(X, \tau)$). We set $\beta\theta O(X, x) = \{U : x \in U \in \beta\theta O(X, \tau)\}$ and $\beta\theta C(X, x) = \{U : x \in U \in \beta\theta C(X, \tau)\}$.

We recall the following two lemmas which were obtained by Noiri [12].

Lemma 1.1 [12]. Let A be a subset of a topological space (X, τ) .

(i) If $A \in \beta O(X, \tau)$, then $\beta Cl(A) \in \beta R(X)$.

(ii) $A \in \beta R(X)$ if and only if $A \in \beta \theta O(X) \cap \beta \theta C(X)$.

Lemma 1.2 [12]. For the $\beta\theta$ -closure of a subset A of a topological space (X, τ) , the following properties are hold:

(i) $A \subset \beta Cl(A) \subset \beta Cl_{\theta}(A)$ and $\beta Cl(A) = \beta Cl_{\theta}(A)$ if $A \in \beta O(X)$.

(ii) If $A \subset B$, then $\beta Cl_{\theta}(A) \subset \beta Cl_{\theta}(B)$.

- (iii) If $A_{\alpha} \in \beta \theta C(X)$ for each $\alpha \in A$, then $\bigcap \{A_{\alpha} \mid \alpha \in A\} \in \beta \theta C(X)$.
- (iv) If $A_{\alpha} \in \beta \theta O(X)$ for each $\alpha \in A$, then $\bigcup \{A_{\alpha} \mid \alpha \in A\} \in \beta \theta O(X)$.
- (v) $\beta Cl_{\theta}(\beta Cl_{\theta}(A)) = \beta Cl_{\theta}(A)$ and $\beta Cl_{\theta}(A) \in \beta \theta C(X)$.

Definition 1. A function $f: X \to Y$ is said to be:

- βθ-continuous [12] if f⁻¹(V) is βθ-closed for every closed set V in Y, equivalently if the inverse image of every open set V in Y is βθ-open in X.
- (2) Almost βθ-continuous if f⁻¹(V) is βθ-closed in X for every regular closed set V in Y.
- (3) Contra *R*-maps [13] (resp. contra-continuous [14], contra $\beta\theta$ continuous [6]) if $f^{-1}(V)$ is regular closed (resp. closed, $\beta\theta$ closed) in *X* for every regular open (resp. open, open) set *V* of *Y*.
- (4) Almost contra pre-continuous [2] (resp. almost contra β continuous [1], almost contra -continuous [1]) if $f^{-1}(V)$ is preclosed (resp. β -closed, closed) in *X* for every regular open set *V* of *Y*.
- (5) Regular set-connected [15] if $f^{-1}(V)$ is clopen in X for every regular open set V in Y.

2. Characterizations

Definition 2. A function $f: X \to Y$ is said to be almost contra $\beta\theta$ -continuous if $f^{-1}(V)$ is $\beta\theta$ -closed in X for each regular open set V of Y.

Definition 3. Let A be a subset of a space (X, τ) . The set $\bigcap \{U \in RO(X) : A \subset U\}$ is called the r-kernel of A [13] and is denoted by *rker*(A).

Lemma 2.1 (Ekici [13]). For subsets A and B of a space X, the following properties hold:

- (1) $x \in rker(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in RC(X, x)$.
- (2) $A \subset rker(A)$ and A = rker(A) if A is regular open in X.
- (3) If $A \subset B$, then $rker(A) \subset rker(B)$.

Theorem 2.2. For a function $f: X \rightarrow Y$, the following properties are equivalent:

- (1) *f* is almost contra $\beta\theta$ -continuous;
- (2) The inverse image of each regular closed set in Y is βθ-open in X;
- (3) For each point x in X and each $V \in RC(Y, f(x))$, there is a $U \in \beta \theta O(X, x)$ such that $f(U) \subset V$;
- (4) For each point x in X and each $V \in SO(Y, f(x))$, there is a $U \in \beta \theta O(X, x)$ such that $f(U) \subset Cl(V)$;
- (5) $f(\beta Cl_{\theta}(A)) \subset rker(f(A))$ for every subset A of X;
- (6) $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(rker(B))$ for every subset B of Y;

- (7) $f^{-1}(Cl(V))$ is $\beta\theta$ -open for every $V \in \beta O(Y)$;
- (8) $f^{-1}(Cl(V))$ is $\beta\theta$ -open for every $V \in SO(Y)$;

(9) $f^{-1}(Int(Cl(V)))$ is $\beta\theta$ -closed for every $V \in PO(Y)$;

(10) $f^{-1}(Int(Cl(V)))$ is $\beta\theta$ -closed for every $V \in O(Y)$;

(11) $f^{-1}(Cl(Int(V)))$ is $\beta\theta$ -open for every $V \in C(Y)$.

Proof. (1) \Leftrightarrow (2): see Definition 2.

(2) \Leftrightarrow (4): Let $x \in X$ and V be any semiopen set of Y containing f(x), then Cl(V) is regular closed. By (2) $f^{-1}(Cl(V))$ is $\beta\theta$ -open and therefore there exists $U \in \beta\theta O(X, x)$ such that $U \subset f^{-1}(Cl(V))$. Hence $f(U) \subset Cl(V)$.

Conversely, suppose that (4) holds. Let *V* be any regular closed set of *Y* and $x \in f^{-1}(V)$. Then *V* is a semiopen set containing f(x) and there exists $U \in \beta \theta O(X, x)$ such that $U \subset f^{-1}(Cl(V)) = f^{-1}(V)$. Therefore, $x \in U \subset f^{-1}(V)$ and hence $x \in U \subset \beta Int_{\theta}(f^{-1}(V))$. Consequently, we have $f^{-1}(V) \subset \beta Int_{\theta}(f^{-1}(V))$. Therefore $f^{-1}(V) = \beta Int_{\theta}(f^{-1}(V))$, i.e., $f^{-1}(V)$ is $\beta \theta$ -open.

(2) \Rightarrow (3): Let $x \in X$ and V be a regular closed set of Y containing f(x). Then $x \in f^{-1}(V)$. Since by hypothesis $f^{-1}(V)$ is $\beta\theta$ -open, there exists $U \in \beta\theta O(X, x)$ such that $x \in U \subset f^{-1}(V)$. Hence $x \in U$ and $f(U) \subset V$.

(3)⇒(5): Let *A* be any subset of *X*. Suppose that $y \notin rker(f(A))$. Then, by Lemma 2.1 there exists $V \in RC(Y, y)$ such that $f(A) \cap V = \emptyset$. For any $x \in f^{-1}(V)$, by (3) there exists $U_x \in \beta \theta O(X, x)$ such that $f(U_x) \subset V$. Hence $f(A \cap U_x) \subset f(A) \cap f(U_x) \subset f(A) \cap V = \emptyset$ and $A \cap U_x = \emptyset$. This shows that $x \notin \beta Cl_{\theta}(A)$ for any $x \in f^{-1}(V)$. Therefore, $f^{-1}(V) \cap \beta Cl_{\theta}(A) = \emptyset$ and hence $V \cap f(\beta Cl_{\theta}(A)) = \emptyset$. Thus, $y \notin f(\beta Cl_{\theta}(A))$. Consequently, we obtain $f(\beta Cl_{\theta}(A)) \subset rker(f(A))$.

 $(5)\Leftrightarrow(6)$: Let B be any subset of Y. By (5) and Lemma 2.1, we have $f(\beta Cl_{\theta}(f^{-1}(B))) \subset rker(ff^{-1}(B)) \subset rker(B)$ and $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(rker(B))$.

Conversely, suppose that (6) holds. Let B = f(A), where A is a subset of X. Then $\beta Cl_{\theta}(A) \subset \beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(rker(f(A)))$. Therefore $f(\beta Cl_{\theta}(A)) \subset rker(f(A))$.

(6) \Rightarrow (1): Let *V* be any regular open set of *Y*. Then, by (6) and Lemma 2.1(2) we have $\beta Cl_{\theta}(f^{-1}(V)) \subset f^{-1}(rker(V)) = f^{-1}(V)$ and $\beta Cl_{\theta}(f^{-1}(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is $\beta \theta$ -closed in *X*. Therefore *f* is almost contra $\beta \theta$ -continuous.

(2) \Rightarrow (7): Let *V* be any β -open set of *Y*. It follows from ([16], Theorem 2.4) that Cl(V) is regular closed. Then by (2) $f^{-1}(Cl(V))$ is $\beta\theta$ -open in *X*.

 $(7) \Rightarrow (8)$: This is clear since every semiopen set is β -open. $(8) \Rightarrow (9)$: Let *V* be any preopen set of *Y*. Then Int(Cl(V)) is regular open. Therefore Y Int(Cl(V)) is regular closed and hence it is semiopen. Then by $(8) X \setminus f^{-1}(Int(Cl(V))) = f^{-1}(Y \setminus Int(Cl(V))) = f^{-1}(Cl(Y \setminus Int(Cl(V))))$ is $\beta\theta$ -open. Hence $f^{-1}(Int(Cl(V)))$ is $\beta\theta$ -closed.

(9) \Rightarrow (1): Let *V* be any regular open set of *Y*. Then *V* is preopen and by (9) $f^{-1}(V) = f^{-1}(Int(Cl(V)))$ is $\beta\theta$ -closed. It shows that *f* is almost contra $\beta\theta$ -continuous.

(1) \Leftrightarrow (10): Let *V* be an open subset of *Y*. Since Int(Cl(V)) is regular open, $f^{-1}(Int(Cl(V)))$ is $\beta\theta$ -closed. The converse is similar.

(2) \Leftrightarrow (11): Similar to (1) \Leftrightarrow (10). \Box

Lemma 2.3 [17]. For a subset A of a topological space (Y, σ) , the following properties hold:

- (1) $\alpha Cl(A) = Cl(A)$ for every $A \in \beta O(Y)$.
- (2) pCl(A) = Cl(A) for every $A \in SO(Y)$.
- (3) sCl(A) = Int(Cl(A)) for every $A \in PO(Y)$.

Corollary 2.4. For a function $f: X \to Y$, the following properties are equivalent:

- (1) *f* is almost contra $\beta\theta$ -continuous;
- (2) $f^{-1}(\alpha Cl(A))$ is $\beta \theta$ -open for every $A \in \beta O(Y)$;
- (3) $f^{-1}(pCl(A))$ is $\beta\theta$ -open for every $A \in SO(Y)$;
- (4) $f^{-1}(sCl(A)))$ is $\beta\theta$ -closed for every $A \in PO(Y)$.

Proof. It follows from Lemma 2.3. □

Theorem 2.5. For a function $f: X \to Y$, the following properties are equivalent:

(1) *f* is almost contra $\beta\theta$ -continuous;

(2) the inverse image of a θ -semi-open set of Y is $\beta\theta$ -open;

(3) the inverse image of a θ -semi-closed set of Y is $\beta\theta$ -closed;

(4) $f^{-1}(V) \subset \beta Int_{\theta}(f^{-1}(Cl(V)))$ for every $V \in SO(Y)$;

(5) $f(\beta Cl_{\theta}(A)) \subset \theta sCl(f(A))$ for every subset A of X;

(6) $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(\theta s Cl(B))$ for every subset B of Y;

(7) $\beta Cl_{\theta}(f^{-1}(V)) \subset f^{-1}(\theta s Cl(V))$ for every open subset V of Y;

(8) $\beta Cl_{\theta}(f^{-1}(V)) \subset f^{-1}(sCl(V))$ for every open subset V of Y;

(9) $\beta Cl_{\theta}(f^{-1}(V)) \subset f^{-1}(Int(Cl(V)))$ for every open subset V of Y.

Proof. (1) \Rightarrow (2): Since any θ -semiopen set is a union of regular closed sets, by using (1) and Theorem 2.2, we obtain that (2) holds.

(2) \Rightarrow (1): Let $x \in X$ and $V \in SO(Y)$ containing f(x). Since Cl(V) is θ -semiopen in Y, there exists a $\beta\theta$ -open set U in X containing x such that $x \in U \subset f^{-1}(Cl(V))$. Hence $f(U) \subset Cl(V)$.

(1)⇒(4): Let $V \in SO(Y)$ and $x \in f^{-1}(V)$. Then $f(x) \in V$. By (1) and Theorem 2.2, there exists a $U \in \beta \theta O(X, x)$ such that $f(U) \subset Cl(V)$. It follows that $x \in U \subset f^{-1}(Cl(V))$. Hence $x \in \beta Int_{\theta}(f^{-1}(Cl(V)))$. Thus $f^{-1}(V) \subset \beta Int_{\theta}(f^{-1}(Cl(V)))$.

(4) \Rightarrow (1): Let *F* be any regular closed set of *Y*. Since $F \in SO(Y)$, then by (4), $f^{-1}(F) \subset \beta Int_{\theta}(f^{-1}(F))$. This shows that $f^{-1}(F)$ is $\beta\theta$ -open, by Theorem 2.2, (1) holds.

(2)⇔(3): Obvious.

(1)⇒(5): Let *A* be any subset of *X*. Suppose that $x \in \beta Cl_{\theta}(A)$ and *G* is any semiopen set of *Y* containing f(x). By (1) and Theorem 2.2, there exists $U \in \beta \theta O(X, x)$ such that $f(U) \subset Cl(G)$. Since $x \in \beta Cl_{\theta}(A)$, $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U) \cap f(A) \subset Cl(G) \cap f(A)$. Therefore, we obtain $f(x) \in \theta SCl(f(A))$ an hence $f(\beta Cl_{\theta}(A)) \subset \theta SCl(f(A))$.

(5)⇒(6): Let *B* be any subset of *Y*. Then $f(\beta Cl_{\theta}(f^{-1}(B))) \subset \theta sCl(f(f^{-1}(B)) \subset \theta sCl(B) \text{ and } \beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(\theta sCl(f(B))).$

(6)⇒(1): Let *V* be any semiopen set of *Y* containing *f*(*x*). Since $Cl(V) \cap (Y \setminus Cl(V)) = \emptyset$. we have $f(x) \notin \theta sCl(Y \setminus ClV)$ and $x \notin f^{-1}(\theta sCl(Y \setminus Cl(V)))$. By (6), $x \notin \beta Cl_{\theta}(f^{-1}(Y \setminus Cl(V)))$. Hence, there exists $U \in \beta \theta O(X, x)$ such that $U \cap f^{-1}(Y \setminus Cl(V)) = \emptyset$ and $f(U) \cap (Y \setminus Cl(V)) = \emptyset$. It follows that $f(U) \subset Cl(V)$. Thus, by Theorem 2.2, we have that (1) holds.

 $(6) \Rightarrow (7)$: Obvious.

(7) \Rightarrow (8): Obvious from the fact that $\theta sCl(V) = sCl(V)$ for an open set *V*.

 $(8) \Rightarrow (9)$: Obvious from Lemma 2.3.

(9)⇒(1): Let $V \in RO(Y)$. Then by (9) $\beta Cl_{\theta}(f^{-1}(V)) \subset f^{-1}(Int(Cl(V))) = f^{-1}(V)$. Hence, $f^{-1}(V)$ is $\beta\theta$ -closed which proves that *f* is almost contra $\beta\theta$ -continuous. \Box

Corollary 2.6. For a function $f: X \to Y$, the following properties are equivalent:

(1) *f* is almost contra $\beta\theta$ -continuous;

(2) $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(\theta sCl(B))$ for every $B \in SO(Y)$.

(3) $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(\theta s Cl(B))$ for every $B \in PO(Y)$.

(4) $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(\theta sCl(B))$ for every $B \in \beta O(Y)$.

Proof. In Theorem 2.5, we have proved that the following are equivalent:

(1) *f* is almost contra $\beta\theta$ -continuous;

(2) $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(\theta sCl(B))$ for every subset *B* of *Y*.

Hence the corollary is proved. \Box

Recall that a topological space (X, τ) is said to be extremally disconnected if the closure of every open set of *X* is open in *X*.

Theorem 2.7. If (Y, σ) is extremally disconnected, then the following properties are equivalent for a function $f: X \to Y$:

f is almost contra βθ-continuous;
f is almost βθ-continuous.

Proof. (1) \Rightarrow (2): Let $x \in X$ and U be any regular open set of Y containing f(x). Since Y is extremally disconnected, by Lemma 5.6 of [18] U is clopen and hence U is regular closed. Then $f^{-1}(U)$ is $\beta\theta$ -open in X. Thus f is almost $\beta\theta$ -continuous.

(2) \Rightarrow (1): Let *B* be any regular closed set of *Y*. Since *Y* is extremally disconnected, *B* is regular open and $f^{-1}(B)$ is $\beta\theta$ -open in *X*. Thus *f* is almost contra $\beta\theta$ -continuous.

The following implications are hold for a function $f: X \rightarrow Y$:

Notation: A = almost contra β -continuity, B = almost contra $\beta\theta$ -continuity, C = contra $\beta\theta$ -continuity, D = almost contracontinuity, E = almost contra pre-continuity, F = contra R-map, G = contra β -continuity, H = almost contra semi-continuity. \Box

Example 2.8. Let (X, τ) be a topological space such that $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Clearly $\beta\theta O(X, \tau) = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let $f: X \to X$ be defined by f(a) = c, f(b) = b and f(c) = a. Then f is almost contra $\beta\theta$ -continuous but f is not contra $\beta\theta$ -continuous, not $\beta\theta$ -continuous and also is not contra continuous.

Other implications not reversible are shown in [2,3,5,6,13,15].

Theorem 2.9. If $f: X \to Y$ is an almost contra $\beta\theta$ -continuous function which satisfies the property $\beta Int_{\theta}((f^{-1}(Cl(V)))) \subset f^{-1}(V)$ for each open set V of Y, then f is $\beta\theta$ -continuous.

Proof. Let *V* be any open set of *Y*. Since *f* is almost contra $\beta\theta$ -continuous by Theorem 2.2 $f^{-1}(V) \subset f^{-1}(Cl(V)) = \beta Int_{\theta}(\beta Int_{\theta}(f^{-1}(Cl(V)))) \subset \beta Int_{\theta}(f^{-1}(V)) \subset f^{-1}(V)$. Hence $f^{-1}(V)$ is $\beta\theta$ -open and therefore *f* is $\beta\theta$ -continuous.

Recall that a topological space is said to be P_{Σ} [19] if for any open set *V* of *X* and each $x \in V$, there exists a regular closed set *F* of *X* containing *x* such that $x \in F \subset V$. \Box

Theorem 2.10. If $f: X \to Y$ is an almost contra $\beta\theta$ -continuous function and Y is P_{Σ} , then f is $\beta\theta$ -continuous.

Proof. Suppose that *V* is any open set of *Y*. By the fact that *Y* is P_{Σ} , so there exists a subfamily Ω of regular closed sets of *Y* such that $V = \bigcup \{F \mid F \in \Omega\}$. Since *f* is almost contra $\beta\theta$ -continuous, then $f^{-1}(F)$ is $\beta\theta$ -open in *X* for each $F \in \Omega$. Therefore $f^{-1}(V)$ is $\beta\theta$ -open in *X*. Hence *f* is $\beta\theta$ -continuous.

Recall that a function $f: X \to Y$ is said to be:

- a) *R*-map [20] (resp. pre $\beta\theta$ -closed [21]) if $f^{-1}(V)$ is regular closed in *X* for every regular closed *V* of *Y* (resp. f(V) is $\beta\theta$ -closed in *Y* for every $\beta\theta$ -closed *V* of *X*).
- b) weakly β -irresolute [12] if $f^{-1}(V)$ is $\beta\theta$ -open in *X* for every $\beta\theta$ -open set *V* in *Y*. \Box

Theorem 2.11. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then the following properties hold:

- (1) If f is almost contra- $\beta\theta$ -continuous and g is an R-map, then $g \circ f: X \to Z$ is almost contra $\beta\theta$ -continuous.
- (2) If f is almost $\beta\theta$ -continuous and g is a contra R-map, then $g \circ f: X \to Z$ is almost contra $\beta\theta$ -continuous.
- (3) If *f* is weakly β -irresolute and *g* is almost contra $\beta\theta$ -continuous, then $g \circ f$ is almost contra $\beta\theta$ -continuous.

Theorem 2.12. If $f: X \to Y$ is a pre $\beta\theta$ -closed surjection and $g: Y \to Z$ is a function such that $g \circ f: X \to Z$ is almost contra $\beta\theta$ -continuous, then g is almost contra $\beta\theta$ -continuous.

Proof. Let *V* be any regular open set in *Z*. Since $g \circ f$ is almost contra $\beta\theta$ -continuous, $f^{-1}(g^{-1}((V))) = (g \circ f)^{-1}(V)$ is $\beta\theta$ -closed. Since *f* is a pre $\beta\theta$ -closed surjection, $f(f^{-1}(g^{-1}((V)))) = g^{-1}(V)$ is $\beta\theta$ -closed. Therefore *g* is almost contra $\beta\theta$ -continuous. \Box

Theorem 2.13. Let $\{X_i : i \in \Omega\}$ be any family of topological spaces. If $f: X \to \prod X_i$ is an almost contra $\beta\theta$ -continuous function, then $Pr_i \circ f: X \to X_i$ is almost contra $\beta\theta$ -continuous for each $i \in \Omega$, where Pr_i is the projection of $\prod X_i$ onto X_i .

Proof. Let U_i be an arbitrary regular open set in X_i . Since Pr_i is continuous and open, it is an *R*-map and hence $Pr_i^{-1}(U_i)$ is regular open in $\prod X_i$. Since *f* is almost contra $\beta\theta$ -continuous, we have by definition $f^{-1}(Pr_i^{-1}(U_i)) = (Pr_i \circ f)^{-1}(U_i)$ is $\beta\theta$ -closed in *X*. Therefore $Pr_i \circ f$ is almost contra $\beta\theta$ -continuous for each $i \in \Omega$. \Box

Definition 4. A function $f: X \to Y$ is called weakly $\beta\theta$ -continuous if for each $x \in X$ and every open set V of Y containing f(x), there exists a $\beta\theta$ -open set U in X containing x such that $f(U) \subset Cl(V)$.

Theorem 2.14. For a function $f: X \rightarrow Y$, the following properties hold:

- (1) If f is almost contra $\beta\theta$ -continuous, then it is weakly $\beta\theta$ -continuous,
- (2) If f is weakly βθ-continuous and Y is extremally disconnected, then f is almost contra βθ-continuous.

Proof.

- (1) Let $x \in X$ and V be any open set of Y containing f(x). Since Cl(V) is a regular closed set containing f(x), by Theorem 2.2 there exists a $\beta\theta$ -open set U containing x such that $f(U) \subset Cl(V)$. Therefore, f is weakly $\beta\theta$ -continuous.
- (2) Let *V* be a regular closed subset of *Y*. Since *Y* is extremally disconnected, we have that *V* is a regular open set of *Y* and the weak $\beta\theta$ -continuity of *f* implies that $f^{-1}(V) \subset \beta Int_{\theta}(f^{-1}(Cl(V))) = \beta Int_{\theta}f^{-1}(V)$. Therefore $f^{-1}(V)$ is $\beta\theta$ -open in *X*. This shows that *f* is almost contra $\beta\theta$ -continuous. \Box

Definition 5. A function $f: X \to Y$ is said to be:

a) neatly $(\beta\theta, s)$ -continuous if for each $x \in X$ and each $V \in SO(Y, f(x))$, there is a $\beta\theta$ -open set U in X containing x such that $Int(f(U)) \subset Cl(V)$.

b) $(\beta\theta, s)$ -open if $f(U) \in SO(Y)$ for every $\beta\theta$ -open set U of X.

Theorem 2.15. If a function $f: X \to Y$ is neatly $(\beta \theta, s)$ -continuous and $(\beta \theta, s)$ -open, then f is almost contra $\beta \theta$ -continuous.

Proof. Suppose that $x \in X$ and $V \in SO(Y, f(x))$. Since f is neatly $(\beta\theta, s)$ -continuous, there exists a $\beta\theta$ -open set U of X containing x such that $Int(f(U)) \subset Cl(V)$. By hypothesis, f is $(\beta\theta, s)$ -open. This implies that $f(U) \in SO(Y)$. It follows that $f(U) \subset Cl(Int(f(U))) \subset Cl(V)$. This shows that f is almost contra $\beta\theta$ -continuous. \Box

3. Some fundamental properties

Definition 6 [6,22]. A topological space (X, τ) is said to be:

- βθ-T₀ (resp. βθ-T₁) if for any distinct pair of points x and y in X, there is a βθ-open set U in X containing x but not y or (resp. and) a βθ-open set V in X containing y but not x.
- (2) $\beta \theta$ - T_2 (resp. β - T_2 [7]) if for every pair of distinct points x and y, there exist two $\beta \theta$ -open (resp. β -open) sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Theorem 3.1. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\beta\theta$ -T₀;
- (2) (X, τ) is $\beta \theta$ -T₁;
- (3) (X, τ) is $\beta\theta$ -T₂;
- (4) (X, τ) is β -T₂;
- (5) For every pair of distinct points $x, y \in X$, there exist $U, V \in \beta O(X)$ such that $x \in U, y \in V$ and $\beta Cl(U) \cap \beta Cl(V) = \emptyset$;
- (6) For every pair of distinct points $x, y \in X$, there exist $U, V \in \beta R(X)$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$.
- (7) For every pair of distinct points $x, y \in X$, there exist $U \in \beta \theta O(X, x)$ and $V \in \beta \theta O(X, y)$ such that $\beta Cl_{\theta}(U) \cap \beta Cl_{\theta}(V) = \emptyset$.

Proof. It follows from ([6], Remark 3.2 and Theorem 3.4). Recall that a topological space (X, τ) is said to be:

- (i) Weakly Hausdorff [23] (briefly weakly-T₂) if every point of X is an intersection of regular closed sets of X.
- (ii) *s*-Urysohn [24] if for each pair of distinct points *x* and *y* in *X*, there exist $U \in SO(X, x)$ and $V \in SO(X, x)$ such that $Cl(U) \cap Cl(V) \neq \emptyset$. \Box

Theorem 3.2. If X is a topological space and for each pair of distinct points x_1 and x_2 in X, there exists a map f of X into a Urysohn topological space Y such that $f(x_1) \neq f(x_2)$ and f is almost contra $\beta\theta$ continuous at x_1 and x_2 , then X is $\beta\theta$ -T₂.

Proof. Let x_1 and x_2 be any distinct points in *X*. Then by hypothesis, there is a Urysohn space *Y* and a function $f: X \to Y$, which satisfies the conditions of the theorem. Let $y_i = f(x_i)$ for i = 1, 2. Then $y_1 \neq y_2$. Since *Y* is Urysohn, there exist open sets U_{y_1} and U_{y_2} of y_1 and y_2 , respectively, in *Y* such that $Cl(U_{y_1}) \cap Cl(U_{y_2}) = \emptyset$. Since *f* is almost contra $\beta\theta$ -continuous at x_i , there exists a $\beta\theta$ -open set W_{x_i} containing x_i in *X* such that $f(W_{x_i}) \subset Cl(U_{y_i})$ for i = 1, 2. Hence we get $W_{x_1} \cap W_{x_2} = \emptyset$ since $Cl(U_{y_1}) \cap Cl(U_{y_2}) = \emptyset$. Hence *X* is $\beta\theta$ - T_2 .

Corollary 3.3. If f is an almost contra $\beta\theta$ -continuous injection of a topological space X into a Urysohn space Y, then X is $\beta\theta$ -T₂.

Proof. For each pair of distinct points x_1 and x_2 in X, f is an almost contra $\beta\theta$ -continuous function of X into a Urysohn space Y such that $f(x_1) \neq f(x_2)$ since f is injective. Hence by Theorem 3.2, X is $\beta\theta$ - T_2 . \Box

Theorem 3.4.

- (1) If f is an almost contra $\beta\theta$ -continuous injection of a topological space X into a s-Urysohn space Y, then X is $\beta\theta$ -T₂.
- (2) If f is an almost contra $\beta\theta$ -continuous injection of a topological space X into a weakly Hausdorff space Y, then X is $\beta\theta$ -T₁.

Proof.

- (1) Let *Y* be *s*-Urysohn. Since *f* is injective, we have $f(x) \neq f(y)$ for any distinct points *x* and *y* in *X*. Since *Y* is *s*-Urysohn, there exist $V_1 \in SO(Y, f(x))$ and $V_2 \in SO(Y, f(y))$ such that $Cl(V_1) \cap Cl(V_2) = \emptyset$. Since *f* is almost contra $\beta\theta$ -continuous, there exist $\beta\theta$ -open sets U_1 and U_2 in *X* containing *x* and *y*, respectively, such that $f(U_1) \subset Cl(V_1)$ and $f(U_2) \subset Cl(V_2)$. Therefore $U_1 \cap U_2 = \emptyset$. This implies that *X* is $\beta\theta$ - T_2 .
- (2) Since Y is weakly Hausdorff and f is injective, for any distinct points x_1 and x_2 of X, there exist $V_1, V_2 \in RC(Y)$ such that $f(x_1) \in V_1$, $f(x_2) \notin V_1$, $f(x_2) \in V_2$ and $f(x_1) \notin V_2$. Since f is almost contra $\beta\theta$ -continuous, by Theorem 2.2 $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are $\beta\theta$ -open sets and $x_1 \in f^{-1}(V_1)$, $x_2 \notin f^{-1}(V_1)$, $x_2 \in f^{-1}(V_2)$, $x_1 \notin f^{-1}(V_2)$. Then, there exists U_1 , $U_2 \in \beta\theta O(X)$ such that $x_1 \in U_1 \subset f^{-1}(V_1)$, $x_2 \notin U_1$, $x_2 \in U_2 \subset f^{-1}(V_2)$ and $x_1 \notin U_2$. Thus X is $\beta\theta$ -T₁. \Box

The union of two $\beta\theta$ -closed sets is not necessarily $\beta\theta$ -closed as shown in the following example.

Example 3.5. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. The subsets $\{a\}$ and $\{b\}$ are $\beta\theta$ -closed in (X, τ) but $\{a, b\}$ is not $\beta\theta$ -closed.

Recall that a topological space is called a $\beta\theta$ c-space [25] if the union of any two $\beta\theta$ -closed sets is a $\beta\theta$ -closed set.

Theorem 3.6. If $f, g: X \to Y$ are almost contra $\beta\theta$ -continuous functions, X is a $\beta\theta$ c-space and Y is s-Urysohn, then $E = \{x \in X \mid f(x) = g(x)\}$ is $\beta\theta$ -closed in X.

Proof. If $x \in X \setminus E$, then $f(x) \neq g(x)$. Since *Y* is *s*-Urysohn, there exist $V_1 \in SO(Y, f(x))$ and $V_2 \in SO(Y, g(x))$ such that $Cl(V_1) \cap Cl(V_2) = \emptyset$. By the fact that *f* and *g* are almost contra $\beta\theta$ -continuous, there exist $\beta\theta$ -open sets U_1 and U_2 in *X* containing *x* such that $f(U_1) \subset Cl(V_1)$ and $g(U_2) \subset Cl(V_2)$. We put $U = U_1 \cap U_2$. Then *U* is $\beta\theta$ -open in *X*. Thus $f(U) \cap g(U) = \emptyset$. It follows that $x \notin \beta Cl_{\theta}(E)$. This shows that *E* is $\beta\theta$ -closed in *X*.

We say that the product space $X = X_1 \times \ldots \times X_n$ has Property $P_{\beta\theta}$ if A_i is a $\beta\theta$ -open set in a topological space X_i , for $i = 1, 2, \ldots n$, then $A_1 \times \ldots \times A_n$ is also $\beta\theta$ -open in the product space $X = X_1 \times \ldots \times X_n$. \Box

Theorem 3.7. Let $f_1: X_1 \to Y$ and $f_2: X_2 \to Y$ be two functions, where

- (1) $X = X_1 \times X_2$ has the Property $P_{\beta\theta}$.
- (2) Y is a Urysohn space.
- (3) f_1 and f_2 are almost contra $\beta\theta$ -continuous. Then $\{(x_1, x_2): f_1(x_1) = f_2(x_2)\}$ is $\beta\theta$ -closed in the product space $X = X_1 \times X_2$.

Proof. Let *A* denote the set $\{(x_1, x_2) : f_1(x_1) = f_2(x_2)\}$. In order to show that *A* is $\beta\theta$ -closed, we show that $(X_1 \times X_2)A$ is $\beta\theta$ -open. Let $(x_1, x_2) \notin A$. Then $f_1(x_1) \neq f_2(x_2)$. Since *Y* is Urysohn, there exist open sets V_1 and V_2 containing $f_1(x_1)$ and $f_2(x_2)$, respectively, such that $Cl(V_1) \cap Cl(V_2) = \emptyset$. Since f_i (i = 1, 2) is almost contra $\beta\theta$ -continuous and $Cl(V_i)$ is regular closed, then $f_i^{-1}(Cl(V_i))$ is a $\beta\theta$ -open set containing x_i in X_i (i = 1, 2). Hence by (1), $f_1^{-1}(Cl(V_1)) \times f_2^{-1}(Cl(V_2)) \subset (X_1 \times X_2) \setminus A$. It follows that $(X_1 \times X_2)A$ is $\beta\theta$ -open. Thus *A* is $\beta\theta$ -closed in the product space $X = X_1 \times X_2$. \Box

Corollary 3.8. Assume that the product space $X \times X$ has the Property $P_{\beta\theta}$. If $f: X \to Y$ is almost contra $\beta\theta$ -continuous and Y is a Urysohn space. Then $A = \{(x_1, x_2) : f(x_1) = f(x_2)\}$ is $\beta\theta$ -closed in the product space $X \times X$.

Theorem 3.9. Let $f: X \to Y$ be a function and $g: X \to X \times Y$ the graph function, given by g(x) = (x, f(x)) for every $x \in X$. Then f is almost contra $\beta\theta$ -continuous if g is almost contra $\beta\theta$ -continuous.

Proof. Let $x \in X$ and V be a regular open subset of Y containing f(x). Then we have that $X \times V$ is regular open. Since g is almost contra $\beta\theta$ -continuous, $g^{-1}(X \times V) = f^{-1}(V)$ is $\beta\theta$ -closed. Hence f is almost contra $\beta\theta$ -continuous. \Box

Recall that for a function $f: X \to Y$, the subset $\{(x, f(x)): x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 7. A function $f: X \to Y$ has a $\beta\theta$ -closed graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $U \in \beta\theta O(X, x)$ and an open set *V* of *Y* containing *y* such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 3.10. The graph, G(f) of a function $f: X \to Y$ is $\beta\theta$ -closed if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$ there exists $U \in \beta\theta O(X, x)$ and an open set V of Y containing y such that $f(U) \cap V = \emptyset$. **Theorem 3.11.** If $f: X \to Y$ is a function with a $\beta\theta$ -closed graph, then for each $x \in X$, $f(x) = \cap \{Cl(f(U)) : U \in \beta\theta O(X, x)\}$.

Proof. Suppose the theorem is false. Then there exists a $y \neq f(x)$ such that $y \in \cap \{Cl(f(U)): U \in \beta \theta O(X, x)\}$. This implies that $y \in Cl(f(U))$, for every $U \in \beta \theta O(X, x)$. So $V \cap f(U) \neq \emptyset$, for every $V \in O(Y, y)$, which contradicts the hypothesis that f is a function with a $\beta \theta$ -closed graph. Hence the theorem. \Box

Theorem 3.12. If $f: X \to Y$ is almost contra $\beta\theta$ -continuous and Y is Haudsorff, then G(f) is $\beta\theta$ -closed.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Then $y \neq f(x)$. Since *Y* is Hausdorff, there exist disjoint open sets *V* and *W* of *Y* such that $y \in V$ and $f(x) \in W$. Then $f(x) \notin Y \setminus Cl(W)$. Since $Y \setminus Cl(W)$ is a regular open set containing *V*, it follows that $f(x) \notin rker(V)$ and hence $x \notin f^{-1}(rker(V))$. Then by Theorem 2.2(6) $x \notin \beta Cl_{\theta}(f^{-1}(V))$. Therefore we have $(x, y) \in (X \setminus \beta Cl_{\theta}((f^{-1}(V))) \times V \subset (X \times Y) \setminus G(f)$, which proves that G(f) is $\beta \theta$ -closed. \Box

Theorem 3.13. Let $f: X \to Y$ have a $\beta\theta$ -closed graph.

(1) If f is injective, then X is $\beta \theta$ -T₁.

(2) If f is surjective, then Y is T_1 .

Proof.

- (1) Let x_1 and x_2 be any distinct points in *X*. Then $(x_1, f(x_2)) \in (X \times Y) \cdot G(f)$. Since *f* has a $\beta \theta$ -closed graph, there exist $U \in \beta \theta O(X, x_1)$ and an open set *V* of *Y* containing $f(x_2)$ such that $f(U) \cap V = \emptyset$. Then $U \cap f^{-1}(V) = \emptyset$. Since $x_2 \in f^{-1}(V), x_2 \notin U$. Therefore *U* is a $\beta \theta$ -open set containing x_1 but not x_2 , which proves that *X* is $\beta \theta$ -*T*₁.
- (2) Let y_1 and y_2 be any distinct points in *Y*. Since *Y* is surjective, there exists $x \in X$ such that $f(x) = y_1$. Then $(x, y_2) \in (X \times Y) \setminus G(f)$. Since *f* has a $\beta \theta$ -closed graph, there exist $U \in \beta \theta O(X, x)$ and an open set *V* of *Y* containing y_2 such that $f(U) \cap V = \emptyset$. Since $y_1 = f(x)$ and $x \in U$, $y_1 \in f(U)$. Therefore $y_1 \notin V$, which proves that *Y* is T_1 . \Box

Theorem 3.14. If $f: X \to Y$ has a $\beta \theta$ -closed graph and X is a $\beta \theta$ -space, then $f^{-1}(K)$ is $\beta \theta$ -closed for every compact subset K of Y.

Proof. Let *K* be a compact subset of *Y* and let $x \in X \setminus f^{-1}(K)$. Then for each $y \in K$, $(x, y) \in (X \times Y) \setminus G(f)$. So there exist $U_y \in \beta \partial O(X, x)$ and an open set V_y of *Y* containing *y* such that $f(U_y) \cap V_y = \emptyset$. The family $\{V_y : y \in K\}$ is an open cover of *K* and hence there is a finite subcover $\{V_{y_i} : i = 1, ..., n\}$. Let $U = \bigcap_{i=1}^n U_{y_i}$. Then $U \in \beta \partial O(X, x)$ and $f(U) \cap K = \emptyset$. Hence $U \cap f^{-1}(K) = \emptyset$, which proves that $f^{-1}(K)$ is $\beta \theta$ -closed in *X*. \Box

Definition 8. A topological space *X* is said to be:

- (1) strongly $\beta\theta$ C-compact [6] if every $\beta\theta$ -closed cover of X has a finite subcover. (resp. $A \subset X$ is strongly $\beta\theta$ C-compact if the subspace A is strongly $\beta\theta$ C-compact).
- (2) nearly-compact [26] if every regular open cover of X has a finite subcover.

Theorem 3.15. If $f: X \to Y$ is an almost contra $\beta\theta$ -continuous surjection and X is strongly $\beta\theta C$ -compact, then Y is nearly compact.

Proof. Let $\{V_{\alpha} : \alpha \in I\}$ be a regular open cover of *Y*. Since *f* is almost contra $\beta\theta$ -continuous, we have that $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a cover of *X* by $\beta\theta$ -closed sets. Since *X* is strongly $\beta\theta$ C-compact, there exists a finite subset I_0 of *I* such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since *f* is surjective $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ and therefore *Y* is nearly compact.

A topological space *X* is said to be almost-regular [27] if for each regular closed set *F* of *X* and each point $x \in X \setminus F$, there exist disjoint open sets *U* and *V* such that $F \subset V$ and $x \in U$. \Box

Theorem 3.16. If a function $f: X \to Y$ is almost contra $\beta\theta$ -continuous and Y is almost-regular, then f is almost $\beta\theta$ -continuous.

Proof. Let *x* be an arbitrary point of *X* and *V* an open set of *Y* containing *f*(*x*). Since *Y* is almost-regular, by Theorem 2.2 of [27] there exists a regular open set *W* in *Y* containing *f*(*x*) such that $Cl(W) \subset Int(Cl(V))$. Since *f* is almost contra $\beta\theta$ -continuous, and Cl(W) is regular closed in *Y*, by Theorem 3.1 there exists $U \in \beta\theta O(X, x)$ such that $f(U) \subset Cl(W)$. Then $f(U) \subset Cl(W) \subset Int(Cl(V))$. Hence, *f* is almost $\beta\theta$ -continuous.

The $\beta\theta$ -frontier of a subset *A*, denoted by $Fr_{\beta\theta}(A)$, is defined as $Fr_{\beta\theta}(A) = \beta Cl_{\theta}(A) \setminus \beta Int_{\theta}(A)$, equivalently $Fr_{\beta\theta}(A) = \beta Cl_{\theta}(A) \cap \beta Cl_{\theta}(X \setminus A)$. \Box

Theorem 3.17. The set of points $x \in X$ which $f: (X, \tau) \to (Y, \sigma)$ is not almost contra $\beta\theta$ -continuous is identical with the union of the $\beta\theta$ -frontiers of the inverse images of regular closed sets of Y containing f(x).

Proof. Necessity. Suppose that f is not almost contra $\beta\theta$ continuous at a point x of X. Then there exists a regular closed set $F \subset Y$ containing f(x) such that f(U) is not a subset of F for every $U \in \beta\theta O(X, x)$. Hence we have $U \cap (X \setminus f^{-1}(F)) \neq \emptyset$ for every $U \in \beta\theta O(X, x)$. It follows that $x \in \beta Cl_{\theta}(X \setminus f^{-1}(F))$. We also have $x \in f^{-1}(F) \subset \beta Cl_{\theta}(f^{-1}(F))$. This means that $x \in Fr_{\beta\theta}(f^{-1}(F))$.

Sufficiency. Suppose that $x \in Fr_{\beta\theta}(f^{-1}(F))$ for some $F \in RC(Y, f(x))$ Now, we assume that f is almost contra $\beta\theta$ -continuous at $x \in X$. Then there exists $U \in \beta\theta O(X, x)$ such that $f(U) \subset F$. Therefore, we have $x \in U \subset f^{-1}(F)$ and hence $x \in \beta Int_{\theta}(f^{-1}(F)) \subset X \setminus Fr_{\beta\theta}(f^{-1}(F))$. This is a contradiction. This means that f is not almost contra $\beta\theta$ -continuous. \Box

References

- C.W. Baker, On contra almost β-continuous functions in topological spaces, Kochi J. Math. 1 (2006) 1–8.
- [2] E. Ekici, Almost contra-precontinuous functions, Bull. Malaysian Math. Sci. Soc. 27 (2006) 53–65.

- [3] T. Noiri, V. Popa, Some properties of almost contra-precontinuous functions, Bull. Malaysian Math. Sci. Soc. 28 (2005) 107–116.
- [4] M. Caldas, S. Jafari, Some properties of contra-β-continuous functions, Mem. Fac. Sci. Kochi Univ. Ser. A (Math.) 22 (2001) 19–28.
- [5] S. Jafari, T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sci. Soc. 25 (2) (2002) 115–128.
- [6] M. Caldas, On contra $\beta\theta$ -continuous functions, Proyecciones J. Math. 39 (4) (2013) 333–342.
- [7] A.S. Mashhour, M.E.A. El-Monsef, S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982) 47–53.
- [8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 68 (1961) 44–46.
- [9] M.E.A. El-Monsef, S.N. Ei-Deeb, R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Assiut Univ. 12 (1983) 77–90.
- [10] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965) 961–970.
- [11] J.E. Joseph, M.H. Kwack, On s-closed spaces, Proc. Amer. Math. Soc. 80 (1980) 341–348.
- [12] T. Noiri, Weak and strong forms of β -irresolute functions, Acta Math. Hungar. 99 (2003) 315–328.
- [13] E. Ekici, Another form of contra-continuity, Kochi J. Math. 1 (2006) 21–29.
- [14] J. Dontchev, Contra-continuous functions and strongly s-closed spaces, Internat. J. Math. Math. Sci. 19 (1996) 303–310.
- [15] J. Dontchev, M. Ganster, I. Reilly, More on almost s-continuity, Indian J. Math. 41 (1999) 139–146.
- [16] D. Andrijevic, Semi-preopen sets, Mat. Vesnik 38 (1986) 24-32.
- [17] T. Noiri, On almost continuous functions, Indian J. Pure Appl. Math. 20 (1989) 571–576.
- [18] M.C. Pal, P. Bhattacharyya, Faint precontinuous functions, Soochow J. Math. 21 (1995) 273–289.
- [19] G.J. Wang, On s-closed spaces, Acta Math. Sinica 24 (1981) 55-63.
- [20] D. Carnahan, Some properties related to compactness in topological spaces, University of Arkansas, 1973 Ph. d. thesis.
- [21] M. Caldas, On θ - β -generalized closed sets and θ - β -generalized continuity in topolological spaces, J. Adv. Math. Studies 4 (2011) 13–24.
- [22] M. Caldas, Weakly sp-θ-closed functions and semipre-hausdorff spaces, Creative Math. Inform. 20 (2) (2011) 112–123.
- [23] T. Soundarajan, Weakly hausdorff space and the cardinality of topological spaces, general topology and its relation to modern analysis and algebra III, in: Proceedings Conference Kampur, 168, Academy Prague, 1971, pp. 301–306.
- [24] S.P. Arya, M.P. Bhamini, Some generalizations of pairwise urysohn spaces, Indian J. Pure Appl. Math. 18 (1987) 1088–1093.
- [25] M. Caldas, Functions with strongly β - θ -closed graphs, J. Adv. Stud. Top. 3 (2012) 1–6.
- [26] M.K. Singal, A. Mathur, On nearly compact spaces, Boll. Un. Mat. Ital. 4 (2) (1969) 702–710.
- [27] M.K. Singal, S.P. Arya, On almost-regular spaces, Glasnik Mat. III 4 (24) (1969) 89–99.