Contents lists available at [ScienceDirect](http://www.ScienceDirect.com)

Journal of the Egyptian Mathematical Society

journal homepage: www.elsevier.com/locate/joems

CrossMark

Original Article Almost contra $\beta\theta$ -continuity in topological spaces $^{\scriptscriptstyle \star}$

M. Caldasª, M. Ganster♭, S. Jafari^{c,}*, T. Noiriª, V. Popa^e

a Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ, Brazil

^b *Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria*

^c *College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark*

^d *2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142, Japan*

e Department of Mathematics and Informatics, Faculty of Sciences "Vasile Alecsandri", University of Bacău, 157 Calea Mărășești, Bacău, 600115, Romania

a r t i c l e i n f o

Article history: Received 27 April 2016 Revised 16 August 2016 Accepted 20 August 2016 Available online 28 August 2016

MSC: Primary 54C08 54C10 Secondary 54C05

keywords: Topological space βθ-Open set βθ-Closed set Almost contra-continuous function Almost contra βθ-continuous function

1. Introduction and preliminaries

Recently, Baker (resp. Ekici, Noiri and Popa) introduced and investigated the notions of contra almost β -continuity [\[1\]](#page-5-0) (resp. almost contra pre-continuity $[2,3]$) as a continuation of research done by Caldas and Jafari [\[4\]](#page-5-0) (resp. Jafari and Noiri [\[5\]\)](#page-5-0) on the notion of contra- $β$ -continuity (resp. contra pre-continuity). In this paper, new generalizations of contra $\beta\theta$ -continuity [\[6\]](#page-5-0) by using βθ-closed sets called almost contra βθ-continuity are presented. We obtain some characterizations of almost contra $\beta\theta$ -continuous functions and investigate their properties and the relationships between almost contra $βθ$ -continuity and other related generalized forms of continuity.

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces. Let *A* be a subset of *X*. We denote the interior, the closure and the complement of a set *A* by *Int*(*A*),

A B S T R A C T

In this paper, we introduce and investigate the notion of almost contra $\beta\theta$ -continuous functions by utilizing $βθ$ -closed sets. We obtain fundamental properties of almost contra $βθ$ -continuous functions and discuss the relationships between almost contra $\beta\theta$ -continuity and other related functions.

> © 2016 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. [\(http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/)

Cl(*A*) and *X**A*, respectively. A subset *A* of *X* is said to be regular open (resp. regular closed) if $A = Int(CI(A))$ (resp. $A = Cl(int(A))$). A subset *A* of a space *X* is called preopen [\[7\]](#page-5-0) (resp. semi-open [\[8\],](#page-5-0) β-open [\[9\],](#page-5-0) α-open [\[10\]\)](#page-5-0) if *A* ⊂ *Int*(*Cl*(*A*)) (resp. *A* ⊂ *Cl*(*Int*(*A*)), *A* ⊂ *Cl*(*Int*(*Cl*(*A*))), *A* ⊂ *Int*(*Cl*(*Int*(*A*)))). The complement of a preopen (resp. semi-open, β -open, α -open) set is said to be preclosed (resp. semi-closed, β -closed, α -closed). The collection of all open (resp. closed, regular open, preopen, semiopen, β -open) subsets of *X* will be denoted by *O*(*X*) (resp. *C*(*X*), *RO*(*X*), *PO*(*X*), *SO*(*X*), *B*O(*X*)). We set $RO(X, x) = \{U : x \in U \in RO(X, \tau)\}, SO(X, x) = \{U : X \in V\}$ $x \in U \in SO(X, \tau)$ and $\beta O(X, x) = \{U : x \in U \in \beta O(X, \tau)\}$. We denote the collection of all regular closed subsets of *X* by *RC*(*X*). We set $RC(X, x) = \{U : x \in U \in RC(X, \tau)\}\)$. We denote the collection of all β regular (i.e., if it is both β-open and β-closed) subsets of *X* by *βR(X)*. A point *x* ∈ *X* is said to be a $θ$ -semi-cluster point [\[11\]](#page-5-0) of a subset *S* of *X* if *Cl*(*U*)∩*A* \neq *Ø* for every *U* ∈ *SO*(*X, x*). The set of all θ-semi-cluster points of *A* is called the θ-semi-closure of *A* and is denoted by θ *sCl*(*A*). A subset *A* is called θ -semi-closed [\[11\]](#page-5-0) if $A = \theta sCl(A)$. The complement of a θ -semi-closed set is called θ -semi-open.

The $\beta\theta$ -closure of *A* [\[12\],](#page-5-0) denoted by $\beta Cl_{\theta}(A)$, is defined to be the set of all $x \in X$ such that $\beta Cl(O) \cap A \neq \emptyset$ for every $O \in \beta O(X, \mathbb{R})$ τ) with $x \in \Omega$. The set $\{x \in X : \beta Cl_{\theta}(0) \subset A \text{ for some } O \in \beta O(X, x)\}$

<http://dx.doi.org/10.1016/j.joems.2016.08.002>

1110-256X/© 2016 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. [\(http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/)

 $*$ Dedicated to our friend and colleague the late Professor Mohamad Ezat Abd El-Monsef

[∗] Corresponding author.

E-mail addresses: gmamccs@vm.uff.br (M. Caldas), ganster@weyl.math.tugraz.ac.at (M. Ganster), [jafaripersia@gmail.com](mailto:ganster@weyl.math.tu-graz.ac.at) (S. Jafari), t.noiri@nifty.com (T. Noiri), v.popa@ub.ro (V. Popa).

is called the $\beta\theta$ -interior of *A* and is denoted by $\beta Int_{\beta}(A)$. A subset *A* is said to be $\beta\theta$ -closed [\[12\]](#page-5-0) if $A = \beta C l_{\theta}(A)$. The complement of a $\beta\theta$ -closed set is said to be $\beta\theta$ -open. The family of all $\beta\theta$ -open (resp. $\beta\theta$ -closed) subsets of *X* is denoted by $\beta\theta O(X, \tau)$ or $\beta\theta O(X)$ (resp. $\beta\theta C(X, \tau)$). We set $\beta\theta O(X, x) = \{U : x \in U \in \beta\theta O(X, \tau)\}\)$ and $\beta\theta C(X, x) = \{U : x \in U \in \beta\theta C(X, \tau)\}.$

We recall the following two lemmas which were obtained by Noiri [\[12\].](#page-5-0)

Lemma 1.1 [\[12\]](#page-5-0). *Let A be a subset of a topological space* (X, τ) *.*

(i) *If* $A \in \beta O(X, \tau)$, *then* $\beta Cl(A) \in \beta R(X)$.

(ii) $A \in \beta R(X)$ *if and only if* $A \in \beta \theta O(X) \cap \beta \theta C(X)$ *.*

Lemma 1.2 [\[12\]](#page-5-0). For the $\beta\theta$ -closure of *a* subset *A* of *a* topological *space* (*X,* τ), *the following properties are hold:*

(i) $A \subset \beta Cl(A) \subset \beta Cl_{\theta}(A)$ and $\beta Cl(A) = \beta Cl_{\theta}(A)$ if $A \in \beta O(X)$.

(ii) *If* $A \subset B$, *then* $\beta Cl_{\theta}(A) \subset \beta Cl_{\theta}(B)$.

- (iii) *If* $A_{\alpha} \in \beta \theta C(X)$ for each $\alpha \in A$, then $\bigcap \{A_{\alpha} \mid \alpha \in A\} \in \beta \theta C(X)$ *.*
- (iv) *If* $A_\alpha \in \beta \theta O(X)$ *for each* $\alpha \in A$ *, then* $\bigcup \{A_\alpha \mid \alpha \in A\} \in \beta \theta O(X)$ *.*
- (v) $\beta Cl_{\theta}(\beta Cl_{\theta}(A)) = \beta Cl_{\theta}(A)$ and $\beta Cl_{\theta}(A) \in \beta \theta C(X)$.

Definition 1. A function $f: X \rightarrow Y$ is said to be:

- (1) $\beta\theta$ -continuous [\[12\]](#page-5-0) if $f^{-1}(V)$ is $\beta\theta$ -closed for every closed set *V* in *Y*, equivalently if the inverse image of every open set *V* in *Y* is βθ-open in *X*.
- (2) Almost $\beta\theta$ -continuous if $f^{-1}(V)$ is $\beta\theta$ -closed in *X* for every regular closed set *V* in *Y*.
- (3) Contra *R*-maps [\[13\]](#page-5-0) (resp. contra-continuous [\[14\],](#page-5-0) contra βθ-continuous [\[6\]\)](#page-5-0) if $f^{-1}(V)$ is regular closed (resp. closed, $\beta\theta$ closed) in *X* for every regular open (resp. open, open) set *V* of *Y*.
- (4) Almost contra pre-continuous [\[2\]](#page-5-0) (resp. almost contra β-continuous [\[1\],](#page-5-0) almost contra -continuous [\[1\]\)](#page-5-0) if $f^{-1}(V)$ is preclosed (resp. β-closed, closed) in *X* for every regular open set *V* of *Y*.
- (5) Regular set-connected [\[15\]](#page-5-0) if $f^{-1}(V)$ is clopen in *X* for every regular open set *V* in *Y*.

2. Characterizations

Definition 2. A function $f: X \rightarrow Y$ is said to be almost contra $\beta\theta$ continuous if $f^{-1}(V)$ is $\beta\theta$ -closed in *X* for each regular open set *V* of *Y*.

Definition 3. Let A be a subset of a space (X, τ) . The set $\bigcap \{U \in$ $RO(X)$: $A \subset U$ } is called the r-kernel of A [\[13\]](#page-5-0) and is denoted by *rker*(*A*).

Lemma 2.1 (Ekici [\[13\]\)](#page-5-0)**.** *For subsets A and B of a space X, the following properties hold:*

- (1) $x \in \text{rker}(A)$ *if* and only *if* $A \cap F \neq \emptyset$ *for* any $F \in RC(X, x)$ *.*
- (2) $A \subset \text{rker}(A)$ and $A = \text{rker}(A)$ if A is regular open in X .
- (3) *If* $A \subset B$, *then* $rker(A) \subset rker(B)$.

Theorem 2.2. For a function $f: X \rightarrow Y$, the following properties are *equivalent:*

- (1) *f is almost contra* βθ*-continuous;*
- (2) *The inverse image of each regular closed set in Y is* βθ*-open in X;*
- (3) *For each point x in X and each* $V \in RC(Y, f(x))$ *, there is a* $U \in$ $\beta \theta O(X, x)$ *such that* $f(U) \subset V$;
- (4) *For each point x in X and each* $V \in SO(Y, f(x))$ *, there is a* $U \in$ $\beta \theta O(X, x)$ *such that* $f(U) \subset Cl(V)$ *;*
- (5) $f(\beta Cl_{\theta}(A)) \subset \text{rker}(f(A))$ *for every subset A of X*;
- (6) $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(rker(B))$ for every subset *B* of *Y*;
- (7) $f^{-1}(Cl(V))$ *is* $\beta\theta$ -open for *every* $V \in \beta O(Y)$;
- (8) $f^{-1}(Cl(V))$ *is* $\beta\theta$ -open for *every* $V \in SO(Y)$;

(9) $f^{-1}(Int(Cl(V)))$ *is* $\beta\theta$ -closed for every $V \in PO(Y)$;

(10) $f^{-1}(Int(Cl(V)))$ *is* $\beta\theta$ -closed for *every* $V \in O(Y)$;

(11) $f^{-1}(Cl(int(V)))$ *is* $\beta\theta$ -open for every $V \in C(Y)$.

Proof. (1) \Leftrightarrow (2): see Definition 2.

(2)⇔(4): Let *x* ∈ *X* and *V* be any semiopen set of *Y* containing *f*(*x*), then *Cl*(*V*) is regular closed. By (2) $f^{-1}(Cl(V))$ is $\beta\theta$ -open and therefore there exists $U \in \beta \theta O(X, x)$ such that $U \subset f^{-1}(Cl(V))$. Hence $f(U) \subset Cl(V)$.

Conversely, suppose that (4) holds. Let *V* be any regular closed set of *Y* and $x \in f^{-1}(V)$. Then *V* is a semiopen set containing $f(x)$ and there exists $U \in \beta \theta O(X, x)$ such that $U \subset f^{-1}(Cl(V)) = f^{-1}(V)$. Therefore, $x \in U \subset f^{-1}(V)$ and hence $x \in U \subset \beta Int_A(f^{-1}(V))$. Consequently, we have $f^{-1}(V) \subset \beta Int_{\theta}(f^{-1}(V))$. Therefore $f^{-1}(V) =$ $\beta Int_{\theta} (f^{-1}(V))$, i.e., $f^{-1}(V)$ is $\beta \theta$ -open.

(2)⇒(3): Let *x* ∈ *X* and *V* be a regular closed set of *Y* containing *f*(*x*). Then $x \in f^{-1}(V)$. Since by hypothesis $f^{-1}(V)$ is $\beta\theta$ -open, there exists $U \in \beta \theta O(X, x)$ such that $x \in U \subset f^{-1}(V)$. Hence $x \in U$ and *f*(*U*) ⊂ *V*.

(3)⇒(5): Let *A* be any subset of *X*. Suppose that $y \notin \text{rker}(f(A))$. Then, by Lemma 2.1 there exists $V \in RC(Y, y)$ such that $f(A) \cap V =$ \emptyset . For any *x* ∈ *f*⁻¹(*V*), by (3) there exists *U_x* ∈ *βθ* O(*X*, *x*) such that $f(U_x) \subset V$. Hence $f(A \cap U_x) \subset f(A) \cap f(U_x) \subset f(A) \cap V = \emptyset$ and $A \cap U_x = \emptyset$. This shows that $x \notin \beta Cl_{\theta}(A)$ for any $x \in f^{-1}(V)$. Therefore, $f^{-1}(V) \cap \beta Cl_{\theta}(A) = \emptyset$ and hence $V \cap f(\beta Cl_{\theta}(A)) = \emptyset$. Thus, *y* ∉*f*(β Cl_{θ}(*A*)). Consequently, we obtain *f*(β Cl_{θ}(*A*)) ⊂ *rker*(*f*(*A*)).

(5)⇔(6): Let B be any subset of *Y*. By (5) and Lemma 2.1, we have $f(\beta Cl_{\theta}(f^{-1}(B))) \subset \text{rker}(f f^{-1}(B)) \subset \text{rker}(B)$ and $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(rker(B)).$

Conversely, suppose that (6) holds. Let $B = f(A)$, where *A* is a subset of *X*. Then $\beta Cl_{\theta}(A) \subset \beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(rker(f(A))).$ Therefore $f(\beta Cl_{\theta}(A)) \subset \text{rker}(f(A)).$

(6)⇒(1): Let *V* be any regular open set of *Y*. Then, by (6) and Lemma 2.1(2) we have $βCl_{θ}(f⁻¹(V)) ⊂ f⁻¹(rker(V)) = f⁻¹(V)$ and $\beta Cl_{\theta}(f^{-1}(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is $\beta \theta$ -closed in X. Therefore *f* is almost contra βθ-continuous.

(2)⇒(7): Let *V* be any *β*-open set of *Y*. It follows from [\(\[16\],](#page-5-0) Theorem 2.4) that *Cl*(*V*) is regular closed. Then by (2) $f^{-1}(Cl(V))$ is βθ-open in *X*.

(7) \Rightarrow (8): This is clear since every semiopen set is β -open. (8)⇒(9): Let *V* be any preopen set of *Y*. Then *Int*(*Cl*(*V*)) is regular open. Therefore *Y* $Int(Cl(V))$ is regular closed and hence it is semiopen. Then by (8) $X \setminus f^{-1}(Int(CI(V))) = f^{-1}(Y\setminus Int(CI(V))) =$ $f^{-1}(Cl(Y\setminus Int(Cl(V))))$ is $\beta\theta$ -open. Hence $f^{-1}(Int(Cl(V)))$ is $\beta\theta$ closed.

(9)⇒(1): Let *V* be any regular open set of *Y*. Then *V* is preopen and by (9) $f^{-1}(V) = f^{-1}(Int(Cl(V)))$ is $\beta\theta$ -closed. It shows that *f* is almost contra $βθ$ -continuous.

(1)⇔(10): Let *V* be an open subset of *Y*. Since *Int*(*Cl*(*V*)) is regular open, $f^{-1}(Int(Cl(V)))$ is $\beta\theta$ -closed. The converse is similar.

 (2) ⇔ (11) : Similar to (1) ⇔ (10) . \Box

Lemma 2.3 [\[17\]](#page-5-0). For a subset A of a topological space (Y, σ) , the *following properties hold:*

- $(1) \alpha C I(A) = C I(A)$ for every $A \in \beta O(Y)$.
- (2) $pCl(A) = Cl(A)$ for every $A \in SO(Y)$.
- (3) $sCl(A) = Int(Cl(A))$ *for every* $A \in PO(Y)$ *.*

Corollary 2.4. For a function $f: X \rightarrow Y$, the following properties are *equivalent:*

- (1) *f is almost contra* βθ*-continuous;*
- (2) $f^{-1}(\alpha C I(A))$ *is* $\beta \theta$ -open for every $A \in \beta O(Y)$;
- (3) $f^{-1}(pCl(A))$ *is* $\beta\theta$ -open for *every* $A \in SO(Y)$;
- (4) $f^{-1}(sCl(A)))$ *is* $\beta\theta$ -closed for *every* $A \in PO(Y)$ *.*

Proof. It follows from [Lemma](#page-1-0) 2.3. □

Theorem 2.5. For a function $f: X \rightarrow Y$, the following properties are *equivalent:*

(1) *f is almost contra* βθ*-continuous;*

(2) *the inverse image of a* θ *-semi-open set of Y is* $\beta\theta$ *-open;*

(3) *the inverse image of a* θ *-semi-closed set of Y is* $\beta\theta$ *-closed;*

 (4) $f^{-1}(V) \subset \beta Int_{\theta} (f^{-1}(Cl(V)))$ *for every* $V \in SO(Y)$ *;*

(5) $f(\beta Cl_{\theta}(A)) \subset \theta$ sCl($f(A)$) for *every* subset *A* of *X*;

(6) $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(\theta sCl(B))$ *for every subset B of Y*;

(7) $\beta Cl_{\theta} (f^{-1}(V)) \subset f^{-1}(\theta \leq C \leq V)$ *for every open subset V* of *Y*;

(8) $\beta Cl_{\theta} (f^{-1}(V)) \subset f^{-1}(sCl(V))$ for every open subset V of Y;

(9) $\beta Cl_{\theta} (f^{-1}(V)) \subset f^{-1}(Int(Cl(V)))$ for every open subset V of Y.

Proof. (1) \Rightarrow (2): Since any θ -semiopen set is a union of regular closed sets, by using (1) and [Theorem](#page-1-0) 2.2, we obtain that (2) holds.

(2)⇒(1): Let $x \in X$ and $V \in SO(Y)$ containing $f(x)$. Since $Cl(V)$ is θ-semiopen in *Y*, there exists a βθ-open set *U* in *X* containing *x* such that $x \in U \subset f^{-1}(Cl(V))$. Hence $f(U) \subset Cl(V)$.

(1)⇒(4): Let *V* ∈ *SO*(*Y*) and $x \in f^{-1}(V)$. Then $f(x) \in V$. By (1) and [Theorem](#page-1-0) 2.2, there exists a $U \in \beta \theta O(X, x)$ such that $f(U) \subset Cl(V)$. It follows that $x \in U \subset f^{-1}(Cl(V))$. Hence $x \in \beta Int_\theta(f^{-1}(Cl(V)))$. Thus *f*⁻¹(*V*) ⊂ β *Int*_{θ}(*f*⁻¹(*Cl*(*V*))).

(4)⇒(1): Let *F* be any regular closed set of *Y*. Since *F* ∈ *SO*(*Y*), then by (4), $f^{-1}(F) \subset \beta Int_{\theta}(f^{-1}(F))$. This shows that $f^{-1}(F)$ is $\beta\theta$ -open, by [Theorem](#page-1-0) 2.2, (1) holds.

(2) \Leftrightarrow (3): Obvious.

(1)⇒(5): Let *A* be any subset of *X*. Suppose that $x \in \beta Cl_0(A)$ and *G* is any semiopen set of *Y* containing *f*(*x*). By (1) and [Theorem](#page-1-0) 2.2, there exists $U \in \beta \theta O(X, x)$ such that $f(U) \subset Cl(G)$. Since $x \in \beta Cl_{\theta}(A)$, *U*∩*A* \neq Ø and hence Ø \neq *f*(*U*)∩ *f*(*A*) ⊂ *Cl*(*G*)∩ *f*(*A*). Therefore, we obtain $f(x) \in \theta$ *sCl*($f(A)$) an hence $f(\beta Cl_{\theta}(A)) \subset \theta$ *sCl*($f(A)$).

(5)⇒(6): Let *B* be any subset of *Y*. Then $f(\beta Cl_{\theta}(f^{-1}(B)))$ ⊂ θ *sCl*($f(f^{-1}(B)) \subset \theta$ *sCl*(B) and β Cl_θ($f^{-1}(B)$) ⊂ $f^{-1}(\theta$ *sCl*($f(B)$).

(6)⇒(1): Let *V* be any semiopen set of *Y* containing *f*(*x*). Since $Cl(V) \cap (Y \setminus Cl(V)) = \emptyset$. we have $f(x) \notin \theta sCl(Y \setminus Cl(V))$ and $x \notin$ *f*⁻¹(θ *sCl*(*Y* \Cl(*V*))). By (6), *x* ∉ β Cl_{θ}($f^{-1}(Y\setminus Cl(V))$). Hence, there exists $U \in \beta \theta O(X, x)$ such that $U \cap f^{-1}(Y \setminus Cl(V)) = \emptyset$ and $f(U) \cap$ $(Y\setminus Cl(V)) = \emptyset$. It follows that $f(U) \subset Cl(V)$. Thus, by [Theorem](#page-1-0) 2.2, we have that (1) holds.

 $(6) \Rightarrow (7)$: Obvious.

(7)⇒(8): Obvious from the fact that θ *sCl*(*V*) = *sCl*(*V*) for an open set *V*.

 $(8) \Rightarrow (9)$: Obvious from [Lemma](#page-1-0) 2.3.

(9)⇒(1): Let *V* ∈ *RO*(*Y*). Then by (9) $\beta Cl_{\theta}(f^{-1}(V)) \subset$ $f^{-1}(Int(CI(V))) = f^{-1}(V)$. Hence, $f^{-1}(V)$ is $\beta\theta$ -closed which proves that *f* is almost contra $\beta\theta$ -continuous. \Box

Corollary 2.6. For a function $f: X \rightarrow Y$, the following properties are *equivalent:*

(1) *f is almost contra* βθ*-continuous;*

(2) $\beta Cl_{\theta} (f^{-1}(B)) \subset f^{-1}(\theta sCl(B))$ *for every* $B \in SO(Y)$ *.*

(3) $\beta Cl_{\theta} (f^{-1}(B)) \subset f^{-1}(\theta sCl(B))$ *for every* $B \in PO(Y)$ *.*

(4) $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(\theta sCl(B))$ *for every* $B \in \beta O(Y)$ *.*

Proof. In Theorem 2.5, we have proved that the following are equivalent:

(1) *f* is almost contra $\beta\theta$ -continuous;

(2) $\beta Cl_{\theta}(f^{-1}(B)) \subset f^{-1}(\theta sCl(B))$ for every subset *B* of *Y*.

Hence the corollary is proved. \Box

Recall that a topological space (X, τ) is said to be extremally disconnected if the closure of every open set of *X* is open in *X*.

Theorem 2.7. *If* (*Y,* σ *) is extremally disconnected, then the following properties are equivalent for a function* $f: X \rightarrow Y$:

(1) *f is almost contra* βθ*-continuous;* (2) *f is almost* βθ*-continuous.*

Proof. (1)⇒(2): Let $x \in X$ and *U* be any regular open set of *Y* containing *f*(*x*). Since *Y* is extremally disconnected, by Lemma 5.6 of [\[18\]](#page-5-0) *U* is clopen and hence *U* is regular closed. Then $f^{-1}(U)$ is $\beta\theta$ open in *X*. Thus *f* is almost $\beta\theta$ -continuous.

(2)⇒(1): Let *B* be any regular closed set of *Y*. Since *Y* is extremally disconnected, *B* is regular open and $f^{-1}(B)$ is $\beta\theta$ -open in *X*. Thus *f* is almost contra βθ-continuous.

The following implications are hold for a function $f: X \rightarrow Y$:

Notation: $A =$ almost contra *β*-continuity, $B =$ almost contra βθ-continuity, $C =$ contra βθ-continuity, $D =$ almost contracontinuity, $E =$ almost contra pre-continuity, $F =$ contra *R*-map, *G* = contra β -continuity, *H* = almost contra semi-continuity. \Box

Example 2.8. Let (X, τ) be a topological space such that $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Clearly $\beta \theta O(X, \tau) =$ $\{\emptyset, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let $f: X \rightarrow X$ be defined by $f(a) =$ *c*, $f(b) = b$ and $f(c) = a$. Then *f* is almost contra $\beta\theta$ -continuous but f is not contra $\beta\theta$ -continuous, not $\beta\theta$ -continuous and also is not contra continuous.

Other implications not reversible are shown in [\[2,3,5,6,13,15\].](#page-5-0)

Theorem 2.9. *If* $f: X \rightarrow Y$ *is an almost contra* $\beta\theta$ *-continuous function which satisfies the property* $\beta Int_{\theta}((f^{-1}(Cl(V)))) \subset f^{-1}(V)$ *for each open set V of Y, then f is* βθ*-continuous.*

Proof. Let *V* be any open set of *Y*. Since *f* is almost contra $\beta\theta$ -continuous by [Theorem](#page-1-0) 2.2 $f^{-1}(V) \subset f^{-1}(Cl(V)) =$ β *Int*_{θ} (β *Int*_{θ}($f^{-1}(Cl(V))$)) ⊂ β *Int*_{θ}($f^{-1}(V)$) ⊂ $f^{-1}(V)$. Hence $f^{-1}(V)$ is $\beta\theta$ -open and therefore *f* is $\beta\theta$ -continuous.

Recall that a topological space is said to be P_{Σ} [\[19\]](#page-5-0) if for any open set *V* of *X* and each $x \in V$, there exists a regular closed set *F* of *X* containing *x* such that $x \in F \subset V$. □

Theorem 2.10. If $f: X \rightarrow Y$ is an almost contra $\beta\theta$ -continuous func*tion and Y is* P_{Σ} , *then f is* $\beta\theta$ -continuous.

Proof. Suppose that *V* is any open set of *Y*. By the fact that *Y* is P_{Σ} , so there exists a subfamily Ω of regular closed sets of *Y* such that $V = \left[\int_{0}^{R} |F \in \Omega \right]$. Since *f* is almost contra $\beta \theta$ -continuous, then *f*⁻¹(*F*) is $\beta\theta$ -open in *X* for each *F* ∈ Ω . Therefore *f*⁻¹(*V*) is $\beta\theta$ open in *X*. Hence *f* is βθ-continuous.

Recall that a function $f: X \rightarrow Y$ is said to be:

- a) *R*-map [\[20\]](#page-5-0) (resp. pre $\beta\theta$ -closed [\[21\]\)](#page-5-0) if $f^{-1}(V)$ is regular closed in *X* for every regular closed *V* of *Y* (resp. $f(V)$ is $\beta\theta$ closed in *Y* for every $\beta\theta$ -closed *V* of *X*).
- b) weakly β -irresolute [\[12\]](#page-5-0) if $f^{-1}(V)$ is $\beta\theta$ -open in *X* for every $\beta\theta$ -open set *V* in *Y*. \square

Theorem 2.11. *Let* $f: X \rightarrow Y$ *and* $g: Y \rightarrow Z$ *be functions. Then the following properties hold:*

- (1) *If f is almost contra-*βθ*-continuous and g is an R-map, then* $g \circ f: X \to Z$ *is almost contra* $\beta\theta$ *-continuous.*
- (2) *If f is almost* βθ*-continuous and g is a contra R-map, then g* ◦ *f*: *X* → *Z is almost contra* βθ*-continuous.*
- (3) If *f* is weakly β -irresolute and g is almost contra $\beta\theta$ *continuous, then g* ◦ *f is almost contra* βθ*-continuous.*

Theorem 2.12. If $f: X \rightarrow Y$ is a pre $\beta\theta$ -closed surjection and $g: Y \rightarrow Y$ *Z* is a function such that $g \circ f : X \to Z$ is almost contra $\beta\theta$ -continuous, *then g is almost contra* βθ*-continuous.*

Proof. Let *V* be any regular open set in *Z*. Since *g* ◦ *f* is almost contra $\beta\theta$ -continuous, $f^{-1}(g^{-1}((V))) = (g \circ f)^{-1}(V)$ is $\beta\theta$ -closed. Since *f* is a pre $\beta\theta$ -closed surjection, $f(f^{-1}(g^{-1}((V)))) = g^{-1}(V)$ is $\beta\theta$ -closed. Therefore *g* is almost contra $\beta\theta$ -continuous. \Box

Theorem 2.13. *Let* $\{X_i : i \in \Omega\}$ *be any family of topological spaces. If f*: $X \rightarrow \prod X_i$ *is an almost contra* $\beta\theta$ *-continuous function, then Pr_i* \circ *<i>f*: $X \rightarrow X_i$ *is almost contra* $\beta\theta$ *-continuous for each* $i \in \Omega$ *, where Pr_i <i>is the projection of* $\prod X_i$ *onto* X_i *.*

Proof. Let U_i be an arbitrary regular open set in X_i . Since Pr_i is continuous and open, it is an *R*-map and hence $Pr_i^{-1}(U_i)$ is regular open in $\prod X_i$. Since *f* is almost contra $\beta\theta$ -continuous, we have by definition $f^{-1}(Pr_i^{-1}(U_i)) = (Pr_i \circ f)^{-1}(U_i)$ is $\beta\theta$ -closed in *X*. Therefore *Pr_i* \circ *f* is almost contra $\beta\theta$ -continuous for each *i* ∈ Ω . \Box

Definition 4. A function $f: X \rightarrow Y$ is called weakly $\beta\theta$ -continuous if for each $x \in X$ and every open set *V* of *Y* containing $f(x)$, there exists a $\beta\theta$ -open set *U* in *X* containing *x* such that $f(U) \subset Cl(V)$.

Theorem 2.14. For a function $f: X \rightarrow Y$, the following properties hold:

- (1) If *f* is almost contra $\beta\theta$ -continuous, then it is weakly $\beta\theta$ *continuous,*
- (2) *If f is weakly* βθ*-continuous and Y is extremally disconnected, then f is almost contra* βθ*-continuous.*

Proof.

- (1) Let $x \in X$ and *V* be any open set of *Y* containing $f(x)$. Since *Cl*(*V*) is a regular closed set containing *f*(*x*), by [Theorem](#page-1-0) 2.2 there exists a βθ-open set *U* containing *x* such that $f(U) \subset Cl(V)$. Therefore, *f* is weakly $\beta\theta$ -continuous.
- (2) Let *V* be a regular closed subset of *Y*. Since *Y* is extremally disconnected, we have that *V* is a regular open set of *Y* and the weak $\beta\theta$ -continuity of *f* implies that $f^{-1}(V) \subset$ $\beta Int_{\theta} (f^{-1}(Cl(V))) = \beta Int_{\theta} f^{-1}(V)$. Therefore $f^{-1}(V)$ is $\beta \theta$ open in *X*. This shows that *f* is almost contra βθ $continuous. \square$

Definition 5. A function $f: X \rightarrow Y$ is said to be:

a) neatly ($\beta\theta$, *s*)-continuous if for each $x \in X$ and each $V \in SO(Y, Y)$ $f(x)$), there is a $\beta\theta$ -open set *U* in *X* containing *x* such that *Int*($f(U)$) ⊂ *Cl*(V).

b) ($\beta\theta$, *s*)-open if $f(U) \in SO(Y)$ for every $\beta\theta$ -open set *U* of *X*.

Theorem 2.15. *If a function f*: $X \rightarrow Y$ *is neatly* ($\beta\theta$, *s*)*-continuous and* (βθ*, s*)*-open, then f is almost contra* βθ*-continuous.*

Proof. Suppose that $x \in X$ and $V \in SO(Y, f(x))$. Since *f* is neatly (βθ*, s*)-continuous, there exists a βθ-open set *U* of *X* containing *x* such that $Int(f(U)) \subset Cl(V)$. By hypothesis, *f* is ($\beta\theta$, *s*)-open. This implies that $f(U)$ ∈ *SO*(*Y*). It follows that $f(U)$ ⊂ *Cl*(*Int*($f(U)$)) ⊂ *Cl*(*V*). This shows that *f* is almost contra $\beta\theta$ -continuous. \Box

3. Some fundamental properties

Definition 6 [\[6,22\]](#page-5-0). A topological space (X, τ) is said to be:

- (1) $\beta\theta$ -*T*₀ (resp. $\beta\theta$ -*T*₁) if for any distinct pair of points *x* and *y* in *X*, there is a $\beta\theta$ -open set *U* in *X* containing *x* but not *y* or (resp. and) a βθ-open set *V* in *X* containing *y* but not *x*.
- (2) $\beta\theta$ -*T*₂ (resp. β -*T*₂ [\[7\]\)](#page-5-0) if for every pair of distinct points *x* and *y*, there exist two βθ-open (resp. β-open) sets *U* and *V* such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Theorem 3.1. For a topological space (X, τ) , the following properties *are equivalent:*

- (1) (*X*, τ) *is* $\beta\theta$ -*T*₀;
- (2) (*X*, τ) *is* $\beta\theta$ -*T*₁;
- (3) (*X*, τ) *is* $\beta\theta$ -*T*₂;
- (4) (X, τ) *is* β -*T*₂;
- (5) For every pair of distinct points $x, y \in X$, there exist $U, V \in$ $\beta O(X)$ *such that* $x \in U$, $y \in V$ *and* $\beta Cl(U) \cap \beta Cl(V) = \emptyset$;
- (6) For every pair of distinct points $x, y \in X$, there exist $U, V \in$ *βR(X) such that* $x \in U$ *,* $y \in V$ *and* $U \cap V = \emptyset$ *.*
- (7) *For every pair of distinct points* $x, y \in X$ *, there exist* $U \in \beta \theta O(X,$ *x*) *and* $V \in \beta \theta O(X, y)$ *such that* $\beta Cl_{\theta}(U) \cap \beta Cl_{\theta}(V) = \emptyset$ *.*

Proof. It follows from [\(\[6\],](#page-5-0) Remark 3.2 and Theorem 3.4). Recall that a topological space (X, τ) is said to be:

- (i) Weakly Hausdorff $[23]$ (briefly weakly- T_2) if every point of *X* is an intersection of regular closed sets of *X*.
- (ii) *s*-Urysohn [\[24\]](#page-5-0) if for each pair of distinct points *x* and *y* in *X*, there exist *U* ∈ *SO*(*X, x*) and *V* ∈ *SO*(*X, x*) such that $Cl(U) \cap Cl(V) \neq ∅$. □

Theorem 3.2. *If X is a topological space and for each pair of distinct* points x_1 *and* x_2 *in X*, *there exists a map f of X into a Urysohn topological space Y such that* $f(x_1) \neq f(x_2)$ *and f is almost contra* $\beta\theta$ *continuous at* x_1 *and* x_2 *, then X is* $\beta\theta$ -*T*₂*.*

Proof. Let x_1 and x_2 be any distinct points in *X*. Then by hypothesis, there is a Urysohn space *Y* and a function $f: X \rightarrow Y$, which satisfies the conditions of the theorem. Let $y_i = f(x_i)$ for $i = 1, 2$. Then $y_1 \neq y_2$. Since *Y* is Urysohn, there exist open sets U_{y_1} and U_{y_2} of y_1 and *y*₂, respectively, in *Y* such that $Cl(U_{y_1}) \cap Cl(U_{y_2}) = \emptyset$. Since *f* is almost contra $\beta\theta$ -continuous at x_i , there exists a $\beta\theta$ -open set W_{x_i} containing x_i in *X* such that $f(W_{x_i}) \subset Cl(U_{y_i})$ for $i = 1, 2$. Hence we get $W_{x_1} \cap W_{x_2} = \emptyset$ since $Cl(U_{y_1}) \cap Cl(U_{y_2}) = \emptyset$. Hence *X* is $\beta \theta$ -*T*₂. \Box

Corollary 3.3. *If f is an almost contra* βθ*-continuous injection of a topological space X into a Urysohn space Y*, *then X is* $\beta\theta$ -*T*₂*.*

Proof. For each pair of distinct points x_1 and x_2 in *X*, *f* is an almost contra βθ-continuous function of *X* into a Urysohn space *Y* such that $f(x_1) \neq f(x_2)$ since f is injective. Hence by Theorem 3.2, *X* is $\beta\theta$ -*T*₂. \Box

Theorem 3.4.

- (1) *If f is an almost contra* βθ*-continuous injection of a topological space X into a s*-*Urysohn space Y*, *then X is* $\beta\theta$ -*T*₂*.*
- (2) *If f is an almost contra* βθ*-continuous injection of a topological space X into a weakly Hausdorff space Y*, *then X is* $\beta\theta$ -*T*₁*.*

Proof.

- (1) Let *Y* be *s*-Urysohn. Since *f* is injective, we have $f(x) \neq f(y)$ for any distinct points *x* and *y* in *X*. Since *Y* is *s*-Urysohn, there exist $V_1 \in SO(Y, f(x))$ and $V_2 \in SO(Y, f(y))$ such that $Cl(V_1) \cap$ $Cl(V_2) = \emptyset$. Since *f* is almost contra $\beta\theta$ -continuous, there exist $\beta\theta$ -open sets U_1 and U_2 in *X* containing *x* and *y*, respectively, such that $f(U_1) \subset Cl(V_1)$ and $f(U_2) \subset Cl(V_2)$. Therefore $U_1 \cap U_2 = \emptyset$. This implies that *X* is $\beta \theta$ -*T*₂.
- (2) Since *Y* is weakly Hausdorff and *f* is injective, for any distinct points x_1 and x_2 of *X*, there exist V_1 , $V_2 \in RC(Y)$ such that *f*(*x*₁) ∈ *V*₁, *f*(*x*₂) ∉ *V*₁, *f*(*x*₂) ∈ *V*₂ and *f*(*x*₁) ∉ *V*₂. Since *f* is almost contra $\beta\theta$ -continuous, by [Theorem](#page-1-0) 2.2 $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are $\beta\theta$ -open sets and $x_1 \in f^{-1}(V_1)$, $x_2 \notin$ *f*⁻¹(*V*₁), *x*₂ ∈ *f*⁻¹(*V*₂), *x*₁ ∉ *f*⁻¹(*V*₂). Then, there exists *U*₁, *U*₂ ∈ $βθ O(X)$ such that $x_1 ∈ U_1 ⊂ f^{-1}(V_1)$, $x_2 ∉ U_1$, $x_2 ∈ U_2 ⊂$ *f*⁻¹(*V*₂) and *x*₁ ∉ *U*₂. Thus *X* is $\beta\theta$ -*T*₁. □

The union of two $\beta\theta$ -closed sets is not necessarily $\beta\theta$ -closed as shown in the following example.

Example 3.5. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}.$ The subsets {*a*} and {*b*} are $\beta\theta$ -closed in (*X, τ*) but {*a, b*} is not $\beta\theta$ -closed.

Recall that a topological space is called a $\beta\theta$ c-space [\[25\]](#page-5-0) if the union of any two $βθ$ -closed sets is a $βθ$ -closed set.

Theorem 3.6. *If f,* $g: X \rightarrow Y$ *are almost contra* $\beta\theta$ *-continuous functions, X is a B* θ *c-space and Y is s*-*Urvsohn, then* $E = \{x \in X \mid f(x) = 0\}$ $g(x)$ } *is* $\beta\theta$ -closed *in X*.

Proof. If $x \in X \setminus E$, then $f(x) \neq g(x)$. Since *Y* is *s*-Urysohn, there exist $V_1 \in SO(Y, f(x))$ and $V_2 \in SO(Y, g(x))$ such that $Cl(V_1) \cap Cl(V_2) =$ ∅. By the fact that *f* and *g* are almost contra βθ-continuous, there exist $\beta\theta$ -open sets U_1 and U_2 in *X* containing *x* such that *f*(*U*₁) ⊂ *Cl*(*V*₁) and *g*(*U*₂) ⊂ *Cl*(*V*₂). We put *U* = *U*₁ ∩ *U*₂. Then *U* is $\beta\theta$ open in *X*. Thus $f(U) \cap g(U) = \emptyset$. It follows that $x \notin \beta Cl_{\theta}(E)$. This shows that *E* is $\beta\theta$ -closed in *X*.

We say that the product space $X = X_1 \times \ldots \times X_n$ has Property *P*_{βθ} if *A_i* is a *βθ*-open set in a topological space *X_i*, for *i* = 1, 2, ... *n*, then $A_1 \times ... \times A_n$ is also $\beta\theta$ -open in the product space $X = X_1 \times \ldots \times X_n$. \Box

Theorem 3.7. *Let* $f_1: X_1 \rightarrow Y$ *and* $f_2: X_2 \rightarrow Y$ *be two functions, where*

- (1) $X = X_1 \times X_2$ *has the Property P_{Bθ}.*
- (2) *Y is a Urysohn space.*
- (3) f_1 *and* f_2 *are almost contra* $\beta\theta$ -*continuous. Then* $\{(x_1, x_2)$: $f_1(x_1) = f_2(x_2)$ } *is* $\beta\theta$ -closed *in* the product space $X = X_1 \times$ *X*2.

Proof. Let *A* denote the set $\{(x_1, x_2) : f_1(x_1) = f_2(x_2)\}\$. In order to show that *A* is $\beta\theta$ -closed, we show that $(X_1 \times X_2)$)*A* is $\beta\theta$ -open. Let $(x_1, x_2) \notin A$. Then $f_1(x_1) \neq f_2(x_2)$. Since *Y* is Urysohn , there exist open sets V_1 and V_2 containing $f_1(x_1)$ and *f*₂(*x*₂), respectively, such that $Cl(V_1) \cap Cl(V_2) = \emptyset$. Since *f_i* (*i* = 1, 2) is almost contra $\beta\theta$ -continuous and *Cl*(*V_i*) is regular closed, then $f_i^{-1}(Cl(V_i))$ is a $\beta\theta$ -open set containing x_i in X_i (*i* = 1, 2). Hence by (1), $f_1^{-1}(Cl(V_1)) \times f_2^{-1}(Cl(V_2))$ is $\beta\theta$ -open. Furthermore (x_1, x_2) ∈ $f_1^{-1}(Cl(V_1)) \times f_2^{-1}(Cl(V_2))$ ⊂ $(X_1 \times X_2) \setminus A$. It follows that $(X_1 \times X_2)$ ^{*A*} is $\beta\theta$ -open. Thus *A* is $\beta\theta$ -closed in the product space $X = X_1 \times X_2$. \Box

Corollary 3.8. *Assume that the product space* $X \times X$ *has the Property P*_{8θ}. If $f: X \rightarrow Y$ *is almost contra* $\beta\theta$ -continuous *and Y is a Urysohn space. Then* $A = \{(x_1, x_2) : f(x_1) = f(x_2)\}$ *is* $\beta\theta$ *-closed in the product space* $X \times X$.

Theorem 3.9. Let $f: X \rightarrow Y$ be a function and $g: X \rightarrow X \times Y$ the *graph function, given by* $g(x) = (x, f(x))$ *for every* $x \in X$ *. Then f is almost contra* βθ*-continuous if g is almost contra* βθ*-continuous.*

Proof. Let $x \in X$ and *V* be a regular open subset of *Y* containing *f*(*x*). Then we have that *X* \times *V* is regular open. Since *g* is almost contra βθ-continuous, $g^{-1}(X \times V) = f^{-1}(V)$ is βθ-closed. Hence *f* is almost contra $\beta\theta$ -continuous. \Box

Recall that for a function *f*: *X* \rightarrow *Y*, the subset {(*x*, *f*(*x*)): *x* ∈ X _{$>$ \subset} X \times *Y* is called the graph of *f* and is denoted by *G*(*f*).

Definition 7. A function $f: X \rightarrow Y$ has a $\beta\theta$ -closed graph if for each $(x, y) \in (X \times Y) \cup G(f)$, there exists $U \in \beta \theta O(X, x)$ and an open set *V* of *Y* containing *y* such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 3.10. *The graph,* $G(f)$ *of a function* $f: X \rightarrow Y$ *is* $\beta\theta$ -closed *if and only if for each* $(x, y) \in (X \times Y) \cap G(f)$ *there exists* $U \in \beta \theta O(X, x)$ *and an open set V of Y containing y such that* $f(U) \cap V = \emptyset$.

Theorem 3.11. *If* $f: X \rightarrow Y$ *is a function with a* $\beta\theta$ *-closed graph, then for each* $x \in X$, $f(x) = \bigcap \{Cl(f(U)) : U \in \beta \theta O(X, x) \}.$

Proof. Suppose the theorem is false. Then there exists a $y \neq f(x)$ such that $y \in \bigcap \{Cl(f(U)) : U \in \beta \theta O(X, x) \}$. This implies that $y \in$ *Cl*($f(U)$), for every $U \in \beta \theta O(X, x)$. So $V \cap f(U) \neq \emptyset$, for every $V \in O(Y, x)$ *y*). which contradicts the hypothesis that *f* is a function with a $\beta\theta$ closed graph. Hence the theorem. \Box

Theorem 3.12. *If* $f: X \rightarrow Y$ *is almost contra* $\beta\theta$ *-continuous and Y is Haudsorff, then G*(*f*) *is* βθ*-closed.*

Proof. Let $(x, y) \in (X \times Y) \cup G(f)$. Then $y \neq f(x)$. Since *Y* is Hausdorff, there exist disjoint open sets *V* and *W* of *Y* such that *y* ∈ *V* and $f(x)$ ∈ *W*. Then $f(x) \notin Y\setminus Cl(W)$. Since $Y\setminus Cl(W)$ is a regular open set containing *V*, it follows that $f(x) \notin \text{rker}(V)$ and hence $x \notin f^{-1}$ (rker(*V*)). Then by [Theorem](#page-1-0) 2.2(6) $x \notin \beta Cl_{\theta}$ ($f^{-1}(V)$. Therefore we have $(x, y) \in (X \setminus \beta Cl_{\theta}((f^{-1}(V))) \times V \subset (X \times Y) \setminus G(f)$, which proves that *G*(*f*) is $\beta\theta$ -closed. \Box

Theorem 3.13. *Let* $f: X \rightarrow Y$ *have a* $\beta\theta$ -closed graph.

(1) *If f* is *injective*, *then X is* $\beta\theta$ -*T*₁*.*

(2) If *f* is surjective, then *Y* is T_1 .

Proof.

- (1) Let x_1 and x_2 be any distinct points in *X*. Then $(x_1, f(x_2)) \in$ $(X \times Y)$ \G(*f*). Since *f* has a $\beta\theta$ -closed graph, there exist $U \in$ $\beta\theta$ O(*X*, *x*₁) and an open set *V* of *Y* containing $f(x_2)$ such that *f*(*U*) ∩ *V* = ∅. Then *U* ∩ *f*⁻¹(*V*) = ∅. Since $x_2 \in f^{-1}(V)$, $x_2 \notin U$. Therefore *U* is a $\beta\theta$ -open set containing x_1 but not x_2 , which proves that *X* is $\beta\theta$ -*T*₁.
- (2) Let y_1 and y_2 be any distinct points in *Y*. Since *Y* is surjective, there exists $x \in X$ such that $f(x) = y_1$. Then $(x, y_2) \in$ $(X \times Y)$ \G(*f*). Since *f* has a $\beta\theta$ -closed graph, there exist $U \in$ $\beta\theta$ O(*X*, *x*) and an open set *V* of *Y* containing y_2 such that *f*(*U*) ∩ *V* = ∅. Since $y_1 = f(x)$ and $x \in U$, $y_1 \in f(U)$. Therefore $y_1 \not\in V$, which proves that *Y* is T_1 . \Box

Theorem 3.14. *If* $f: X \rightarrow Y$ *has a* $\beta\theta$ -closed graph *and X is a* $\beta\theta$ *cspace, then* $f^{-1}(K)$ *is* $\beta\theta$ -closed for every compact subset K of Y.

Proof. Let *K* be a compact subset of *Y* and let $x \in X \setminus f^{-1}(K)$. Then for each $y \in K$, $(x, y) \in (X \times Y) \setminus G(f)$. So there exist $U_y \in \beta \theta O(X, x)$ and an open set V_v of *Y* containing *y* such that $f(U_v) \cap V_v = \emptyset$. The family $\{V_v : y \in K\}$ is an open cover of *K* and hence there is a finite subcover $\{V_{y_i} : i = 1, ..., n\}$. Let $U = \bigcap_{i=1}^n U_{y_i}$. Then $U \in \beta \theta O(X, x)$ and $f(U) \cap K = \emptyset$. Hence $U \cap f^{-1}(K) = \emptyset$, which proves that $f^{-1}(K)$ is $\beta\theta$ -closed in *X*. \Box

Definition 8. A topological space *X* is said to be:

- (1) strongly βθC-compact [\[6\]](#page-5-0) if every βθ-closed cover of *X* has a finite subcover. (resp. $A \subset X$ is strongly $\beta\theta C$ -compact if the subspace *A* is strongly βθC-compact).
- (2) nearly-compact [\[26\]](#page-5-0) if every regular open cover of *X* has a finite subcover.

Theorem 3.15. If $f: X \rightarrow Y$ is an almost contra $\beta\theta$ -continuous sur*jection and X is strongly* βθ*C-compact, then Y is nearly compact.*

Proof. Let $\{V_\alpha : \alpha \in I\}$ be a regular open cover of *Y*. Since *f* is almost contra $\beta\theta$ -continuous, we have that $\{f^{-1}(V_\alpha): \alpha \in I\}$ is a cover of *X* by $\beta\theta$ -closed sets. Since *X* is strongly $\beta\theta$ C-compact, there exists a finite subset *I*⁰ of *I* such that $X = \iint_{\alpha} f^{-1}(V_{\alpha}) : \alpha \in$ *I*₀}. Since *f* is surjective $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$ and therefore *Y* is nearly compact.

A topological space *X* is said to be almost-regular [\[27\]](#page-5-0) if for each regular closed set *F* of *X* and each point $x \in X \setminus F$, there exist disjoint open sets *U* and *V* such that $F \subset V$ and $x \in U$. \Box

Theorem 3.16. *If a function f*: $X \rightarrow Y$ *is almost contra* $\beta\theta$ *-continuous and Y is almost-regular, then f is almost* βθ*-continuous.*

Proof. Let *x* be an arbitrary point of *X* and *V* an open set of *Y* containing *f*(*x*). Since *Y* is almost-regular, by [Theorem](#page-1-0) 2.2 of [27] there exists a regular open set *W* in *Y* containing *f*(*x*) such that $Cl(W) \subset Int(Cl(V))$. Since *f* is almost contra $\beta\theta$ -continuous, and *Cl*(*W*) is regular closed in *Y*, by [Theorem](#page-3-0) 3.1 there exists *U* $\in \beta \theta O(X, x)$ such that $f(U) \subset Cl(W)$. Then $f(U) \subset Cl(W) \subset Int(Cl(V))$. Hence, *f* is almost βθ-continuous.

The $\beta\theta$ -frontier of a subset *A*, denoted by $Fr_{\beta\theta}(A)$, is defined as $Fr_{\beta\theta}(A) = \beta Cl_{\theta}(A) \setminus \beta Int_{\theta}(A)$, equivalently $Fr_{\beta\theta}(A) = \beta Cl_{\theta}(A) \cap$ βCl_{θ} (*X*\A). \Box

Theorem 3.17. *The set of points* $x \in X$ *which* $f: (X, \tau) \rightarrow (Y, \sigma)$ *is not almost contra βθ*-continuous *is identical* with the union of the $βθ$ *frontiers of the inverse images of regular closed sets of Y containing f*(*x*)*.*

Proof. Necessity. Suppose that *f* is not almost contra $\beta\theta$ continuous at a point *x* of *X*. Then there exists a regular closed set $F \subset Y$ containing $f(x)$ such that $f(U)$ is not a subset of *F* for every $U \in \beta\theta O(X, x)$. Hence we have $U \cap (X \setminus f^{-1}(F)) \neq \emptyset$ for every *U* ∈ $\beta\theta O(X, x)$. It follows that $x \in \beta Cl_{\theta}(X \setminus f^{-1}(F))$. We also have *x* ∈ *f*⁻¹(*F*) ⊂ *βCl*_θ(*f*⁻¹(*F*)). This means that *x* ∈ *Fr*_{*B*θ}(*f*⁻¹(*F*)).

Sufficiency. Suppose that $x \in Fr_{\beta\theta}(f^{-1}(F))$ for some $F \in RC(Y,$ *f*(*x*)) Now, we assume that *f* is almost contra $\beta\theta$ -continuous at *x* ∈ *X*. Then there exists *U* ∈ βθ*O*(*X, x*) such that *f*(*U*) ⊂ *F*. Therefore, we have $x \in U \subset f^{-1}(F)$ and hence $x \in \beta Int_{\theta}(f^{-1}(F)) \subset X \setminus$ *Fr*_{*B* θ} ($f^{-1}(F)$). This is a contradiction. This means that *f* is not almost contra $\beta\theta$ -continuous. \Box

References

- [1] C.W. [Baker,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0001) On contra almost β [-continuous](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0001) functions in topological spaces Kochi J. Math. 1 (2006) 1–8.
- [2] E. [Ekici,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0002) Almost [contra-precontinuous](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0002) functions, Bull. Malaysian Math. Sci. Soc. 27 (2006) 53–65.
- [3] T. [Noiri,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0003) V. [Popa,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0003) Some properties of almost [contra-precontinuous](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0003) functions, Bull. Malaysian Math. Sci. Soc. 28 (2005) 107–116.
- [4] M. [Caldas,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0004) S. [Jafari,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0004) Some properties of contra-β[-continuous](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0004) functions, Mem. Fac. Sci. Kochi Univ. Ser. A (Math.) 22 (2001) 19–28.
- [5] S. [Jafari,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0005) T. [Noiri,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0005) On [contra-precontinuous](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0005) functions, Bull. Malaysian Math. Sci. Soc. 25 (2) (2002) 115–128.
- [6] M. [Caldas,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0006) On contra $\beta\theta$ -continuous functions, [Proyecciones](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0006) J. Math. 39 (4) (2013) 333–342.
- [7] A.S. [Mashhour,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0007) M.E.A. [El-Monsef,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0007) S.N. [El-Deeb,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0007) On [precontinuous](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0007) and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982) 47–53.
- [8] N. [Levine,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0008) Semi-open sets and [semi-continuity](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0008) in topological spaces, Amer. Math. Monthly 68 (1961) 44–46.
- [9] M.E.A. [El-Monsef,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0009) S.N. [Ei-Deeb,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0009) R.A. [Mahmoud,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0009) β-open sets and β[-continuous](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0009) mappings, Bull. Fac. Assiut Univ. 12 (1983) 77–90.
- [10] O. [Njastad,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0010) On some classes of nearly open sets, Pacific J. Math. 15 (1965) [961–970.](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0010)
- [11] J.E. [Joseph,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0011) M.H. [Kwack,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0011) On *s*-closed spaces, Proc. Amer. Math. Soc. 80 (1980) [341–348.](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0011)
- [12] T. [Noiri,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0012) Weak and strong forms of β [-irresolute](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0012) functions, Acta Math. Hungar. 99 (2003) 315–328.
- [13] E. [Ekici,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0013) Another form of [contra-continuity,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0013) Kochi J. Math. 1 (2006) 21–29.
- [14] J. [Dontchev,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0014) [Contra-continuous](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0014) functions and strongly s-closed spaces, Internat. J. Math. Math. Sci. 19 (1996) 303–310.
- [15] J. [Dontchev,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0015) M. [Ganster,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0015) I. [Reilly,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0015) More on almost [s-continuity,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0015) Indian J. Math. 41 (1999) 139–146.
- [16] D. [Andrijevic,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0016) [Semi-preopen](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0016) sets, Mat. Vesnik 38 (1986) 24–32.
- [17] T. [Noiri,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0017) On almost [continuous](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0017) functions, Indian J. Pure Appl. Math. 20 (1989) 571–576.
- [18] [M.C.](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0018) Pal, P. [Bhattacharyya,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0018) Faint precontinuous functions, Soochow J. Math. 21 (1995) 273–289.
- [19] G.J. [Wang,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0019) On *s*[-closed](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0019) spaces, Acta Math. Sinica 24 (1981) 55–63.
- [20] D. [Carnahan,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0020) Some properties related to [compactness](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0020) in topological spaces, University of Arkansas, 1973 Ph. d. thesis.
- [21] M. [Caldas,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0021) On θ - β -generalized closed sets and θ - β -generalized continuity in [topolological](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0021) spaces, J. Adv. Math. Studies 4 (2011) 13–24.
- [22] M. [Caldas,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0022) Weakly sp-θ-closed functions and [semipre-hausdorff spaces,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0022) Creative Math. Inform. 20 (2) (2011) 112–123.
- [23] T. [Soundarajan,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0023) Weakly [hausdorff space](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0023) and the cardinality of topological spaces, general topology and its relation to modern analysis and algebra III, in: Proceedings Conference Kampur, 168, Academy Prague, 1971, pp. 301–306.
- [24] S.P. [Arya,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0024) M.P. [Bhamini,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0024) Some [generalizations](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0024) of pairwise urysohn spaces, Indian J. Pure Appl. Math. 18 (1987) 1088–1093.
- [25] M. [Caldas,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0025) [Functions](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0025) with strongly β - θ -closed graphs, J. Adv. Stud. Top. 3 (2012) 1–6.
- [26] M.K. [Singal,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0026) A. [Mathur,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0026) On nearly compact spaces, Boll. Un. Mat. Ital. 4 (2) (1969) [702–710.](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0026)
- [27] M.K. [Singal,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0027) S.P. [Arya,](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0027) On [almost-regular](http://refhub.elsevier.com/S1110-256X(16)30052-9/sbref0027) spaces, Glasnik Mat. III 4 (24) (1969) 89–99.