

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

ORIGINAL ARTICLE

Extremal A-statistical limit points via ideals $^{\stackrel{\wedge}{\sim}}$

Mehmet Gürdal *, Halil Sarí

Suleyman Demirel University, Department of Mathematics, 32260 Isparta, Turkey

Received 2 April 2013; accepted 12 June 2013 Available online 26 July 2013

KEYWORDS

Density of sets; Ideal of sets; Statistical convergence; $A^{\mathcal{I}}$ -statistical convergence; $A^{\mathcal{I}}$ -statistical cluster point **Abstract** In this paper, following the line of recent work of Savaş et al. [20] we apply the notion of ideals to A-statistical limit superior and inferior for a sequence of real numbers.

2000 MATHEMATICS SUBJECT CLASSIFICATION: Primary 40A35; Secondary 40C05

© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

Open access under CC BY-NC-ND license.

1. Introduction and background

In [8] Fridy and Orhan introduced the concepts of statistical limit superior and inferior. In [1] Connor and Kline extended the concept of a statistical limit (cluster) point of a number sequence to a A-statistical limit (cluster) point where A is a nonnegative regular summability matrix. In [3] Demirci extended the concepts of statistical limit superior and inferior to A-statistical limit superior and inferior and given some A-statistical analogue of properties of statistical limit superior and inferior for a sequence of real numbers. More works on matrix summability can be seen from [4] where many references can be found.

On the other hand, the notion of ideal convergence was introduced first by Kostyrko et al. [12] as an interesting gener-

E-mail addresses: gurdalmehmet@sdu.edu.tr (M. Gürdal), halilsar-i32@hotmail.com (H. Sarí).

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

[★] This work is supported by Suleyman Demirel University with Project 3463-YL1-13.

alization of statistical convergence [5,22]. More recent applications of ideals can be seen from [2,9–11,13,15–19,23] where more references can be found.

Naturally the purpose of this paper is to unify the above approaches and present the idea of *A*-summability with respect to ideal concept and make certain observations.

First we introduce some notation. Let $A = (a_{nk})$ denote a summability matrix which transforms a number sequence $x = (x_k)$ into the sequence Ax whose nth term is given by $(Ax)_n = \sum_{k=1}^{\infty} a_{nk} x_k$.

The notion of a statistically convergent sequence can be defined using the asymptotic density of subsets of the set of positive integers $\mathbb{N} = \{1, 2, \ldots\}$. For any $K \subseteq \mathbb{N}$ and $n \in \mathbb{N}$ we denote

$$K(n) := cardK \cap \{1, 2, \dots, n\}$$

and we define lower and upper asymptotic density of the set K by the formulas

$$\underline{\delta}(K) := \lim \inf_{n \to \infty} \frac{K(n)}{n}; \quad \bar{\delta}(K) := \lim \sup_{n \to \infty} \frac{K(n)}{n}.$$

If $\underline{\delta}(K) = \overline{\delta}(K) =: \delta(K)$, then the common value $\delta(K)$ is called the asymptotic density of the set K and

$$\delta(K) = \lim_{n \to \infty} \frac{K(n)}{n}.$$

1110-256X © 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. Open access under CC BY-NC-ND license http://dx.doi.org/10.1016/j.joems.2013.06.005

^{*} Corresponding author.

56 M. Gürdal, H. Sarí

Obviously all three densities $\underline{\delta}(K)$, $\bar{\delta}(K)$ and $\delta(K)$ (if they exist) lie in the unit interval [0,1].

$$\delta(K) = \lim_{n} \frac{1}{n} |K_n| = \lim_{n} (C_1 \chi_K)_n = \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \chi_K(k),$$

if it exists, where C_1 is the Cesaro mean of order one and χ_K is the characteristic function of the set K [6].

The notion of statistical convergence was originally defined for sequences of numbers in the paper [5] and also in [21]. We say that a number sequence $x = (x_k)_{k \in \mathbb{N}}$ statistically converges to a point L if for each $\varepsilon > 0$ we have

$$\delta(K(\varepsilon)) = 0,$$

where

$$K(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \geqslant \varepsilon\}$$

and in such situation we will write L = st-lim x_k .

Statistical convergence can be generalized by using a regular nonnegative summability matrix A in place of C_1 . Following Freedman and Sember [6], we say that a set $K \subseteq \mathbb{N}$ has A-density if

$$\delta_A(K) = \lim_n \sum_{k \in K} a_{nk} = \lim_n \sum_{k=1} a_{nk} \chi_K(k) = \lim_n (A \chi_K)_n$$

exists where A is a nonnegative regular summability matrix.

The number sequence $x=(x_k)_{k\in\mathbb{N}}$ is said to be A-statistically convergent to L if for every $\varepsilon>0,\ \delta_A(\{k\in\mathbb{N}:|x_k-L|\geqslant\varepsilon\})=0$. In this case it is denoted as st_A -lim $x_k=L$ [1,14].

The notion of statistical convergence was further generalized in the paper [12,13] using the notion of an ideal of subsets of the set \mathbb{N} . We say that a non-empty family of sets $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is an ideal on \mathbb{N} if \mathcal{I} is hereditary (i.e. $B \subseteq A \in \mathcal{I} \Rightarrow B \in \mathcal{I}$) and additive (i.e. $A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$). An ideal \mathcal{I} on \mathbb{N} for which $\mathcal{I} \neq \mathcal{P}(\mathbb{N})$ is called a proper ideal. A proper ideal \mathcal{I} is called admissible if \mathcal{I} contains all finite subsets of \mathbb{N} . If not otherwise stated in the sequel \mathcal{I} will denote an admissible ideal.

Recall the generalization of statistical convergence from [12,13].

Let $\mathcal I$ be an admissible ideal on $\mathbb N$ and $x=(x_k)_{k\in\mathbb N}$ be a sequence of points in a metric space $(X,\ \rho)$. We say that the sequence x is $\mathcal I$ -convergent (or $\mathcal I$ -converges) to a point $\xi\in X$, and we denote it by $\mathcal I-\lim x=\xi$, if for each $\varepsilon>0$ we have

$$A(\varepsilon) = \{k \in \mathbb{N} : \rho(x_k, \xi) \geqslant \varepsilon\} \in \mathcal{I}.$$

This generalizes the notion of usual convergence, which can be obtained when we take for \mathcal{I} the ideal \mathcal{I}_f of all finite subsets of \mathbb{N} . A sequence is statistically convergent if and only if it is \mathcal{I}_{δ} -convergent, where $\mathcal{I}_{\delta} := \{K \subset \mathbb{N} : \delta(K) = 0\}$ is the admissible ideal of the sets of zero asymptotic density.

The concept of $A^{\mathcal{I}}$ -statistically convergent was studied in [20] and the following definition was given:

Definition 1. Let $A = (a_{nk})$ be a non-negative regular matrix. A sequence $(x_k)_{k \in \mathbb{N}}$ is said to be $A^{\mathcal{I}}$ -statistically convergent to L if for any $\varepsilon > 0$ and $\delta > 0$

$$\left\{n \in \mathbb{N} : \sum_{k \in K(\varepsilon)} a_{nk} \geqslant \delta\right\} \in \mathcal{I}$$

where $K(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}$. In this case we write $L = \mathcal{I}\text{-st}_A$ - $\lim x_k$. We denote the class of all $A^{\mathcal{I}}$ -statistically convergent sequences by $S_A(\mathcal{I})$.

We say that a set $K \subseteq \mathbb{N}$ has $A^{\mathcal{I}}$ -density if

$$\delta_{A^{\mathcal{I}}}(K) := \mathcal{I} - \lim_{n} \sum_{k \in K} a_{nk} = \mathcal{I} - \lim_{n} \sum_{k=1} a_{nk} \chi_{K}(k) = \mathcal{I} - \lim_{n} (A \chi_{K})_{n},$$

exists where A is a nonnegative regular summability matrix. Then a sequence $x = (x_k)_{k \in \mathbb{N}}$ is said to be $A^{\mathcal{I}}$ -statistically convergent to L if for each $\varepsilon > 0$ the set $K(\varepsilon)$ has $A^{\mathcal{I}}$ -density zero, where $K(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}$.

Let \mathcal{I}_f be the family of all finite subsets of \mathbb{N} . Then \mathcal{I}_f is an admissible ideal in \mathbb{N} and $A^{\mathcal{I}}$ -statistically convergent is the A-statistical convergence introduced by [1,14]. Also $A^{\mathcal{I}}$ -density coincides with usual A-density in [6].

2. Main results

In this section we study the concepts of extremal $A^{\mathcal{I}}$ - statistical limit points ($A^{\mathcal{I}}$ -statistical liminf x, $A^{\mathcal{I}}$ -statistical lim supx). The result are analogues to those given by Fridy [7], Fridy and Orhan [8] and Kostyrko et al. [13]. These notions generalize the notions of A-statistical limit point and A-statistical cluster point.

Following the line of Savaş et al. [20] we now introduce the following definition using ideals.

Definition 2. Let \mathcal{I} be an ideal of $\mathcal{P}(\mathbb{N})$. A number ζ is said to be an $A^{\mathcal{I}}$ -statistical cluster point of the number sequence $x = (x_k)$ if for each $\varepsilon > 0$, $\delta_{A^{\mathcal{I}}}(K_{\varepsilon}) \neq 0$ where $K_{\varepsilon} = \{k \in \mathbb{N} : |x_k - \zeta| < \varepsilon\}$. We denote the set of all $A^{\mathcal{I}}$ -statistically cluster points of x by $\Gamma_{A^{\mathcal{I}}}(x)$.

Note that the statement $\delta_{A^{\mathcal{I}}}(K_{\varepsilon}) \neq 0$ means that either $\delta_{A^{\mathcal{I}}}(K_{\varepsilon}) > 0$ or K_{ε} fails to have $A^{\mathcal{I}}$ -density.

Throughout the paper $A = (a_{nk})$ will be a nonnegative regular matrix summability method. For a number sequence $x = (x_k)$, we write

$$M_t = \{k : x_k > t\}$$
 and $M^t = \{k : x_k < t\}$, for $t \in \mathbb{R}$.

Definition 3. Let $A=(a_{nk})$ be a nonnegative regular matrix summability method and x be a number sequence. Then if there is a $t\in\mathbb{R}$ such that $\delta_{A^{\mathcal{I}}}(M_t)\neq 0$, we define

 \mathcal{I} - st_A - $\limsup x = \sup\{t \in \mathbb{R} : \delta_{A^{\mathcal{I}}}(M_t) \neq 0\}.$

If $\delta_{A^{\mathcal{I}}}(M_t) = 0$ holds for each $t \in \mathbb{R}$, then we define \mathcal{I} - st_A - $\limsup x = -\infty$.

Also, if there is a $t \in \mathbb{R}$ such that $\delta_{A^{\mathcal{I}}}(M^t) \neq 0$, we define

 \mathcal{I} - st_A - $\liminf x = \inf\{t \in \mathbb{R} : \delta_{A^{\mathcal{I}}}(M^t) \neq 0\}.$

If $\delta_{A^T}(M^t) = 0$ holds for each $t \in \mathbb{R}$ then we define \mathcal{I} - st_A - $\liminf x = +\infty$.

Remark 1. If $\mathcal{I} = \mathcal{I}_f$, then the above Definition 3 yields the usual definition of *st*-lim $\sup_{k\to\infty} x_k$ and *st*-lim $\inf_{k\to\infty} x_k$ introduced by [8].

Definition 4. The real number sequence $x = (x_k)$ is said to be $A^{\mathcal{I}}$ -statistically bounded if there is a number K such that $\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N} : |x_k| > K\}) = 0$.

Note that if we take $A = C_1$ (the Cesaro matrix of order 1) and $\mathcal{I} = \mathcal{I}_f$ in Definitions 1 and 2, then we get Definitions 1 and 2 of [8].

The next statement is an analogue of Theorems 1 and 2 of [3].

Theorem 1. $\beta = \mathcal{I}\text{-st}_A\text{-}\limsup x_k \text{ if and only if for each } \varepsilon > 0$,

$$\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N} : x_k > \beta - \varepsilon\}) \neq 0 \quad \text{and} \quad \delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N} : x_k > \beta + \varepsilon\}) = 0.$$
 (2.1)

Proof. We prove the necessity first. Let $\varepsilon > 0$ be given. Since $\beta + \varepsilon > \beta$, we have $(\beta + \varepsilon) \notin \{t : \delta_{A^{\mathcal{I}}}(M_t) \neq 0\}$ and $\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N} : x_k > \beta + \varepsilon\}) = 0$. Similarly, since $\beta - \varepsilon < \beta$, there exists some t' such that $\beta - \varepsilon < t' < \beta$ and $t' \in \{t : \delta_{A^{\mathcal{I}}}(M_t) \neq 0\}$. Thus $\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N} : x_k > t'\}) \neq 0$ and $\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N} : x_k > \beta - \varepsilon\}) \neq 0$.

Now let us prove the sufficiency. If $\varepsilon > 0$ then $(\beta + \varepsilon) \notin \{t : \delta_{A^{\mathcal{I}}}(M_t) \neq 0\}$ and \mathcal{I} - st_A - $\limsup x \leqslant \beta + \varepsilon$. On the other hand, we already have \mathcal{I} - st_A - $\limsup x \geqslant \beta - \varepsilon$, and this means that \mathcal{I} - st_A - $\limsup x = \beta$, as desired. \square

The dual statement for \mathcal{I} -st_A- $\liminf x$ is as follows.

Theorem 2. $\alpha = \mathcal{I}\text{-st}_A\text{-}\liminf x \text{ if and only if for each } \epsilon > 0$,

$$\begin{split} \delta_{A^{\mathcal{I}}}(\{k\in\mathbb{N}:x_{k}<\alpha+\varepsilon\}) &\neq 0 \quad \text{and} \quad \delta_{A^{\mathcal{I}}}(\{k\in\mathbb{N}:x_{k}\\ &<\alpha-\varepsilon\}) = 0. \end{split} \tag{2.2}$$

Proof. Similarly as in Theorem 1. \square

By Definition 2 we see that Theorem 1 can be interpreted by saying that \mathcal{I} - st_A - $\limsup x$ and \mathcal{I} - st_A - $\liminf x$ are the greatest and the least $A^{\mathcal{I}}$ -statistically cluster points of (x_k) . The next theorem reinforces this observation.

Theorem 3. For every real sequence x,

 \mathcal{I} - st_A - $\lim \inf x \leq \mathcal{I}$ - st_A - $\lim \sup x$.

Proof. If x_k is any real number sequence then we have three possibilities:

- (1) \mathcal{I} -st_A- $\limsup x_k = +\infty$. In this case there is nothing to prove
- (2) \mathcal{I} -st_A- $\limsup x_k = -\infty$. If this is the case, then we have $t \in \mathbb{R} \Rightarrow \delta_{A^{\mathcal{I}}}(M_t) = 0$

and

$$t \in \mathbb{R} \Rightarrow \delta_{A^{\mathcal{I}}}(M^t) \neq 0.$$

Thus, \mathcal{I} - st_A - $\liminf x_k = \inf\{t : \delta_{A^{\mathcal{I}}}(M^t) \neq 0\} = \inf \mathbb{R} = -\infty$ and \mathcal{I} - st_A - $\liminf x_k \leq \mathcal{I}$ - st_A - $\limsup x_k$.

(3) $-\infty < \mathcal{I}\text{-}st_A\text{-}\limsup x_k < +\infty$. For this case there exists a $\beta \in \mathbb{R}$ such that $\beta = \mathcal{I}\text{-}st_A\text{-}\limsup x_k = \sup\{t : \delta_{A^\mathcal{I}}(M_t) \neq 0\}$. For any $t \in \mathbb{R}$,

$$\beta < t \Rightarrow \delta_{A^{\mathcal{I}}}(M_t) = 0$$
 and $\delta_{A^{\mathcal{I}}}(M^t) \neq 0$.

But this means that \mathcal{I} -st_A- $\liminf x_k = \inf\{t : \delta_{\mathcal{A}^{\mathcal{I}}}(M^t) \neq 0\} \leq \beta$. \square

Remark 2. If \mathcal{I} -st_A- $\lim x_k$ exists, then a sequence x_k is $A^{\mathcal{I}}$ -statistically bounded.

Remark 3. Note that ideal boundedness of real number sequences implies that \mathcal{I} - st_A - \limsup and \mathcal{I} - st_A - \liminf are finite.

Theorem 4. A real number sequence x_k is \mathcal{I} -st_A-convergent if and only if \mathcal{I} -st_A- $\lim \inf x = \mathcal{I}$ -st_A- $\lim \sup x$.

Proof. We prove the necessity first. Let $L = \mathcal{I}$ -st_A- $\lim x_k$. Then

$$\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N} : x_k > L + \varepsilon\}) = 0$$
 and $\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N} : x_k < L - \varepsilon\}) = 0$.

Then for any $t \geqslant L + \varepsilon$ and $t' < L - \varepsilon$, the sets $\delta_{A^{\mathcal{I}}}(M_t) = 0$ and $\delta_{A^{\mathcal{I}}}(M') = 0$. We conclude $\sup\{t : \delta_{A^{\mathcal{I}}}(M_t) \neq 0\} \leqslant L + \varepsilon$ and $\inf\{t' : \delta_{A^{\mathcal{I}}}(M') \neq 0\} \geqslant L - \varepsilon$. Combining with Theorem 3, we conclude that $L = \mathcal{I}\text{-st}_A\text{-}\liminf x_k = \mathcal{I}\text{-st}_A\text{-}\limsup x_k$.

To prove sufficiency, let $\varepsilon > 0$ and $L = \mathcal{I}$ - st_A - $\lim \inf x_k = \mathcal{I}$ - st_A - $\lim \sup x_k$. Since

$$\{k \in \mathbb{N} : |x_k - L| \geqslant \varepsilon\} \subseteq \{k \in \mathbb{N} : x_k > L + \varepsilon\} \cup \{k \in \mathbb{N} : x_k < L - \varepsilon\}$$

and the property of additivity of the ideal \mathcal{I} , the union of these sets on the righ-hand side also belongs to \mathcal{I} . We conclude that $L = \mathcal{I}$ -st₄- $\lim x_k$. \square

We have for bounded sequences the following result.

Theorem 5. Suppose that $x = (x_k)$ is a bounded real sequence. Then

$$\mathcal{I}$$
- st_A - $\limsup x_k = \max \Gamma_{A^{\mathcal{I}}}(x)$

and

 \mathcal{I} - st_A - $\lim \inf x_k = \min \Gamma_{A^{\mathcal{I}}}(x)$.

Proof. Let

 \mathcal{I} -st_A- $\limsup x = L = \sup\{t: \delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N}: x_k > t\}) \neq 0\}.$ If L' > L, then there exists some $\varepsilon > 0$ such that $\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N}: x_k > L' - \varepsilon\}) = 0$. This means that there exists some $\varepsilon > 0$ such that $\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N}: |x_k - L'| < \varepsilon\}) = 0$, that is, $L' \notin \Gamma_{A^{\mathcal{I}}}(x)$.

Now, we show that L is in fact an $A^{\mathcal{I}}$ -statistically cluster point of x. Clearly, for each $\varepsilon > 0$ there exists some $t \in (L - \varepsilon, L + \varepsilon)$ such that $\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N} : x_k > t\}) \neq 0$, and this means $\delta_{A^{\mathcal{I}}}(\{k \in \mathbb{N} : |x_k - L| < \varepsilon\}) \neq 0$. \square

Let $\mathcal{I} = \mathcal{I}_f$. Then all these results imply the similar theorems for A-statistical of a sequence and extremal \mathcal{I} -limit points which are investigated in [3,13].

58 M. Gürdal, H. Sarí

References

- J.A. Connor, J. Kline, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197 (1996) 392–399.
- [2] P. Das, E. Savaş, S.K. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24 (2011) 1509–1514.
- [3] K. Demirci, A-statistical core of a sequence, Demonstr. Math. 33 (2) (2000) 343–353.
- [4] O.H.H. Edely, M. Mursaleen, On statistically A-summability, Math. Comput. Modell. 49 (8) (2009) 672–680.
- [5] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.
- [6] A.R. Freedman, J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981) 10–11.
- [7] J.A. Fridy, Statistical limit points, Proc. Am. Math. Soc. 118 (1993) 1187–1192.
- [8] J.A. Fridy, C. Orhan, Statistical limit superior and inferior, Proc. Am. Math. Soc. 125 (1997) 3625–3631.
- [9] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai. J. Math. 4 (1) (2006) 85–91.
- [10] M. Gürdal, I. Açık, On *I*-cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11 (2) (2008) 349–354.
- [11] M. Gürdal, A. Şahiner, Extremal *I*-limit points of double sequences, Appl. Math. E-Notes 8 (2008) 131–137.
- [12] P. Kostyrko, M. Macaj, T. Salat, *I*-Convergence, Real Anal. Exchange 26 (2) (2000) 669–686.

[13] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, *T*-Convergence and extremal *T*-limit points, Math. Slovaca 55 (2005) 443–464.

- [14] H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Am. Math. Soc. 347 (5) (1995) 1819–1881.
- [15] M. Mursaleen, S.A. Mohiuddine, O.H.H. Edely, On ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl. 59 (2010) 603–611.
- [16] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62 (1) (2012) 49–62.
- [17] A. Nabiev, S. Pehlivan, M. Gürdal, On *I*-Cauchy sequences, Taiwanese J. Math. 11 (2) (2007) 569–576.
- [18] A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (4) (2007) 1477–1484.
- [19] E. Savaş, P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011) 826–830.
- [20] E. Savaş, P. Das, S. Dutta, A note on strong matrix summability via ideals, Appl. Math. Lett. 25 (2012) 733–738.
- [21] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (5) (1959) 362–375.
- [22] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73–74.
- [23] U. Yamanc, M. Gürdal, I-statistical convergence in 2-normed space, Arab J. Math. Sci., (2013). http://dx.doi.org/10.1016/ i.aimsc.2013.03.001.