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In this paper, numerical studies for the mathematical model of tuberculosis (TB), that incorporates three 

strains, i.e., drug - sensitive, emerging multi - drug resistant(MDR) and extensively drug - resistant 

(XDR), are presented. Special class of numerical methods, known as nonstandard finite difference method 

(NSFDM) is introduced to solve this model. Numerical stability analysis of fixed points are studied. The 

obtained results by NSFDM are compared with other known numerical methods such as implicit Euler 

method and fourth-order Runge–Kutta method (RK4). It is concluded that NSFD scheme preserves the 

positivity of the solution and numerical stability in larger region than the other methods. 
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(

. Introduction 

Tuberculosis (TB) is an important international public health is-

ue. It is spread through the air when people who have an ac-

ive TB an infection cough, sneeze, or transmit respiratory fluids

hrough the air. Only approximately 10% of people infected with

ycobacterium tuberculosis develop active TB disease, whereas ap-

roximately 90% of infected people remain latent. Latently infected

B people are asymptomatic and do not transmit TB, but may

rogress to active TB through either endogenous reactivation or

xogenous reinfection, for more details (see [1–3] ), and the refer-

nces cited therein. 

On other hand, mathematical models are quite important and

fficient tool to describe and investigate several problems in nat-

ral sciences disciplines such as biology, physics, weather science

nd many other fields [4,5] . Numerical simulations are sometimes

he only way to solve these mathematical models or to derive the

esired information out of it. The accuracy of these numerical so-

utions is a major factor to consider while deciding on which nu-

erical method is to be used in solving a mathematical model.
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everal papers considered modeling TB, see [6–11] , but the model

onsidered here includes several factors of spreading TB such as

he fast infection, the exogenous reinfection and secondary in-

ection along with the resistance factor. In the case when the

econdary infection generated by an infected individual is below

he unity, very strong and important mathematical results on the

lobal stability of the disease-free equilibrium and the existence

f the backward bifurcation phenomena are proven for the model,

ee [12] . In this case, we use these results to validate NSFD nu-

erical scheme. Moreover, we developed and compared the ob-

ained results with other well known numerical methods such as

mplicit Euler and RK4 methods. When the secondary infection

enerated by an infected individual exceeds one, there are no ana-

ytical results proved for the model, such as the existence and sta-

ility of the endemic equilibrium ( EE ). In this case, we use the de-

eloped NSFD numerical scheme to approximate the endemic so-

ution numerically and investigate its stability. Furthermore, with

he help of the NSFD method, we answer the following question:

iven the data provided by the World Health Organization (2012)

n the current parameters corresponding to the propagation of

he TB in Egypt. What would be the required rate of treatment

o achieve in order to control the disease?. The proposed method

howed its superiority in preserving the positivity (compared to

he other numerical methods considered in this work) of the state
. This is an open access article under the CC BY-NC-ND license. 
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Table 1 

All variables in the system (1) –(8) and their definition. 

Variable Definition 

S ( t ) The susceptible population ,individuals who have never encountered TB. 

L s ( t ) The individuals infected with the drug-sensitive TB strain but who are 

in a latent stage, i . e ., who are neither showing symptoms nor infecting others. 

L m ( t ) Individuals latently infected with MDR - TB. 

L x ( t ) Individuals latently infected with XDR - TB. 

I s ( t ) Individuals infected with the drug-sensitive TB strain who are infectious 

to others (and most likely, showing symptoms as well). 

I m ( t ) Those individuals who are infectious with the MDR - TB strain. 

I x ( t ) Individuals who infectious with the XDR - TB strain. 

R ( t ) Those individuals for whom treatment was successful. 

N ( t ) The total population . 

N = S + L s + L m + L x + I s + I m + I x + R. 
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variables of the systems under study. This is an essential require-

ment when simulating systems especially those arising in biology.

Apart from the works mentioned in, some more research in this

field can be found in [13–16] . We will present different numerical

simulations to test whether our solutions are dynamically consis-

tent with the solution of the continuous mathematical model. In

addition, these simulations allow us to compare the constructed

NSFD scheme with implicit Euler, and RK4 methods to show that

the NSFD scheme preserves numerical stability in larger regions for

the same time step size. 

This paper is organized as follows: In Section 2 , the mathemat-

ical model and the stability analysis of the model are presented.

In Section 3 , the construction of NSFD scheme is introduced. In

Section 4 , the stability and convergence properties of the proposed

method is presented. In Section 5 , numerical results and numerical

simulations are presented to test the numerical stability of NSFD

scheme. Finally, in Section 6 , conclusions. 

2. Mathematical model 

In this section, we introduce a multi-strain TB model which is

given in [12] , this model incorporates three strains: drug sensitive,

MDR, XDR. The population of interest is divided into eight com-

partments, see Table 1 . The adopted model is described by a sys-

tem of nonlinear ODEs as follows: 

˙ S = b − dS − βs 
SI s 

N 

− βm 

SI m 

N 

− βx 
SI x 

N 

, (1)

˙ L s = λs βs 
SI s 

N 

+ σs λs βs 
RI s 

N 

− αss βs 
L s I s 

N 

− αsm 

βm 

L s I m 

N 

−αsx βx 
L s I x 

N 

+ γs I s − (d + ε s + t 1 s ) L s , (2)

˙ L m 

= λm 

βm 

SI m 

N 

+ σm 

λm 

βm 

RI m 

N 

+ αsm 

βm 

λm 

L s I m 

N 

−αmm 

βm 

L m 

I m 

N 

− αmx βx 
L m 

I x 

N 

+ γm 

I m 

− (d + ε m 

) L m 

+(1 − P 1 ) t 1 s L s + (1 − P 2 ) t 2 s I s , (3)

˙ L x = λx βx 
SI x 

N 

+ σx λx βx 
RI x 

N 

+ αsx βx λx 
L s I x 

N 

+ αmx βx λx 
L m 

I x 

N 

−αxx βx 
L x I x 

N 

− (d + ε x ) L x + γx I x + (1 − P 3 ) t 2 m 

I m 

, (4)

˙ I s = αss βs 
L s I s 

N 

+ (1 − λs ) βs 

(
SI s 

N 

+ σs 
RI s 

N 

)
+ ε s L s 

−(d + δs + t 2 s + γs ) I s , (5)

0

˙ 
 m 

= αmm 

βm 

L m 

I m 

N 

+ (1 − λm 

) βm 

(
SI m 

N 

+ σm 

RI m 

N 

+ αsm 

L s I m 

N 

)
+ ε m 

L m 

− (d + δm 

+ t 2 m 

+ γm 

) I m 

, (6)

˙ 
 x = αxx βx 

L x I x 

N 

+ (1 − λx ) βx 

(
SI x 

N 

+ σx 
RI x 

N 

+ αsx 
L s I x 

N 

+ αmx 
L m 

I x 

N 

)
+ ε x L x − (d + δx + t 2 x + γx ) I x , (7)

˙ 
 = P 1 t 1 s L s + P 2 t 2 s I s + P 3 t 2 m 

I m 

+ t 2 x I x − σs βs 
RI s 

N 

−σm 

βm 

RI m 

N 

− σx βx 
RI x 

N 

− dR. (8)

ll variables in above system and their definition in Table 1 , and

ll parameters and their interpretation in Table 2 . 

.1. The basic reproduction number R 0 

efinition 2.1. The basic reproduction number [17] , denoted R 0 , is

he expected number of secondary cases produced, in a completely

usceptible population, by a typical infective individual. If R 0 < 1,

hen on average an infected individual produces less than one new

nfected individual over the course of his infectious period, and the

nfection cannot grow. Conversely, if R 0 > 1, then each infected in-

ividual produces, on average, more than one new infection, and

he disease can invade the population. 

The basic reproduction number R 0 for the system (1) –(8) is

iven by [12] : 

R 0 = max (R 0 s , R 0 m 

, R 0 x ) , where (9)

R 0 s = 

βs (ε s + (1 − λs )(d + t 1 s )) 

(ε s + d + t 1 s )(t 2 s + δs + d) + γs (t 1 s + d) 
, 

 0 m 

= 

βm 

(ε m 

+ (1 − λm 

) d) 

(ε m 

+ d)(t 2 m 

+ δm 

+ d ) + d γm 

, 

R 0 x = 

βx (ε x + (1 − λx ) d) 

(ε x + d)(t 2 x + δx + d ) + d γx 
. 

.2. Some mathematical tools 

roposition 2.1. [12] Given non negative initial conditions, solutions

o (1) –(8) are bounded for all t ≥ 0 . Furthermore, the closed set 

 = 

{
(S, L s , L m , L x , I s , I m , I x , R ) ∈ R 

8 
+ : S + L s + L m + L x + I s + I m + I x + R ≤ b 

d 

}
, 

is attracts of (1) –(8) for any initial condition belongs to R 8 + . 

heorem 2.1. [12] Assume that: 

 ≤ αss ≤ (1 − λs ) , 0 ≤ αmm 

≤ (1 − λm 

) , 0 ≤ αxx ≤ (1 − λx ) . 
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Table 2 

All parameters in the system (1) –(8) and their interpretation. 

Parameter Interpretation 

b Birth/recruitment rate 

d Per capita natural death rate 

Disease dynamics 

β r Transmission coefficient for strain r 

λr Proportion of newly infected individuals developing LTBI with strain r 

1 − λr Proportion of newly infected individuals progressing to active TB with strain r 

due to fast infection 

ε r Per capita rate of endogenous reactivation of L r 
αr 1 , αr 2 Proportion of exogenous reinfection of L r 1 due to contact with I r 2 
γ r Per capita rate of natural recovery to the latent stage L r 
δr Per capita rate of death due to TB of strain r 

Treatment related 

t 1 s Per capita rate of treatment for L s 
t 2 r Per capita rate of treatment for I r . Note that t 2 x is the rate of successful 

treatment of I x , r ∈ { x, m, s } 

1 − σr Efficiency of treatment in preventing infection with strain r 

P 1 Probability of treatment success for L s 
P 2 Probability of treatment success for I s 
P 3 Probability of treatment success for I m 

T  

w  

w

T  

X  

X  

i  

J
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t

i
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a  
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N 
hen the disease-free equilibrium is globally asymptotically stable

hen R 0 < 1 and endemic equilibria is locally asymptotically stable

hen R 0 > 1. 

heorem 2.2. [18] Let us consider the nonlinear system ϕ(X t+1 ) =
 t , where, ϕ : R 

n −→ R 

n , is a C 1 diffeomorphism with a fixed point

 

∗. Then a steady-state equilibria X 

∗, is locally (asymptotically) stable

f and only if the module of all eigenvalues of the Jacobian matrix,

 ( X 

∗), are smaller than one. 

efinition 2.2. [19] The finite-difference method is called uncondi-

ionally positive, if for any value of the step-size h and Z(0) ∈ R 

n + 
ts solution remains positive, i.e., Z n ∈ R 

n + , for n = 1 , 2 , 3 , · · ·. 

. Construction of NSFD scheme 

In this section, we construct the proposed scheme for the sys-

ems (1) –(8) . The main idea of this scheme is to obtain uncon-

itionally stability and positivity in the variables representing the

ubpopulations S ( t ), L s ( t ), L m 

( t ), L x ( t ), I s ( t ), I m 

( t ), I x ( t ) and R ( t ). The

rst motivation is important since large time step sizes can be

sed, saving computational cost when integrating over long time

eriods. The second motivation is important due to the fact that

ariables representing subpopulation must never take negative val-

es [20] . 

efinition 3.1. A numerical scheme is called NSFD discretization if

t least one of the following conditions are satisfied : 

1. The nonlocal approximation is used. 

2. The discretization of the derivative is not traditional and uses a

nonnegative function [21,24] . 

For the construction of the numerical scheme, discretization of

ystem (1) –(8) are made based on the approximations of temporal

erivatives by a generalized forward scheme of first order. Hence,

f f ( t ) ∈ C 1 ( R ), let us define its derivative as follows: 

df (t) 

dt 
= 

f (t + h ) − f (t) 

ϕ(h ) 
+ O (ϕ(h )) , as h → 0 , (10) 

here ϕ( h ) is a real-valued function on R . In our work, we will

lso make use of denominator functions which are little complex

unctions of the time step-size than the classical one [22] . 

emark 1. If the denominator function is different than h,with the

se of nonlocal approximation the scheme is called NSFD-II. 
emark 2. If the denominator function is h , and only uses nonlocal

pproximation the scheme is called nonstandard finite difference

ethod NSFD-I. 

In addition to this replacement, if there are nonlinear terms

uch as y (t) x (t) 
N(t) 

in the differential equation, these are replaced by 

y (t+ h ) x (t) 
N(t) 

or x (t+ h ) y (t) 
N(t) 

, for more details see [23,24] . 

Let us denote by S n , L n s , L 
n 
m 

, L n x , I 
n 
s , I 

n 
m 

, I n x and R n the values of the

pproximations of S ( nh ), L s ( nh ), L m 

( nh ), L x ( nh ), I s ( nh ), I m 

( nh ), I x ( nh )

nd R ( nh ) respectively, for n = 0 , 1 , 2 , · · · and h is the timestep of

he scheme. The sequences S n , L n s , L 
n 
m 

, L n x , I n s , I 
n 
m 

, I n x and R n should

e nonnegative in order to be consistent with the biological nature

f the model [25] . 

.1. NSFD-II discretization 

We apply Micken’s scheme by replacing the step-size h by func-

ions ϕ i ( h ), i = 1 , 2 , 3 , . . . . 8 and use nonlocal representations for

he function terms. Let us discretize the system (1) –(8) as follow-

ng : 

S n +1 − S n 

ϕ 1 (h ) 
= b − dS n +1 − βs 

S n +1 I n s 

N 

n 
− βm 

S n +1 I n m 

N 

n 
− βx 

S n +1 I n x 

N 

n 
, (11) 

L n +1 
s − L n s 

ϕ 2 (h ) 
= λs βs 

S n +1 I n s 

N 

n 
+ σs λs βs 

R n +1 I n s 

N 

n 
+ γs I 

n 
s − αss βs 

L n +1 
s I n s 

N 

n 

−αsm 

βm 

L n +1 
s I n m 

N 

n 
− αsx βx 

L n +1 
s I n x 

N 

n 
− (d + ε s + t 1 s ) L 

n +1 
s , (12) 

L n +1 
m 

− L n m 

ϕ 3 (h ) 
= λm 

βm 

S n +1 I n m 

N 

n 
+ σm 

λm 

βm 

R n +1 I n m 

N 

n 
+ λm 

αsm 

βm 

L n +1 
s I n m 

N 

n 
+ γm 

I n m 

−αmm 

βm 

L n +1 
m 

I n m 

N 

n 
+ (1 − P 1 ) t 1 s L 

n +1 
s + (1 − P 2 ) t 2 s I 

n 
s 

−αmx βx 
L n +1 

m 

I n x 

N 

n 
− (d + ε m 

) L n +1 
m 

, (13) 

L n +1 
x − L n x 

ϕ 4 (h ) 
= λx βx 

S n +1 I n x 

N 

n 
+ σx λx βx 

R n +1 I n x 

N 

n 

+ λx αsx βx 
L n +1 

s I n x 

N 

n 
+ λx αmx βx 

L n +1 
m 

I n x 

N 

n 

+(1 − P 3 ) t 2 m 

I n m 

+ γx I 
n 
x − αxx βx 

L n +1 
x I n x 

n 
− (d + ε x ) L 

n +1 
x , (14) 
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Table 3 

All parameters in the system (1) –(8) and the reference of the 

parameters. 

Parameter Value Reference 

b 3190 Assumed 

d 0 .38 [26] 

βs = βm = βx 14 [26] 

λs = λm = λx 0 .5 Assumed 

ε s = ε m = ε x 0 .5 Assumed 

αr 1, r 2 0 .05 Assumed 

γs = γm = γx 0 .3 Assumed 

t 1 s 0 .88 [26] 

t 2 r : r ∈ ( s, m, x ) t 2 s = 0 . 88 ; t 2 m = t 2 x = 0 . 034 [26] 

σ r 0 .25 [26] 

P r 0 .88 [26] 

δr 0 .045 [26] 

 

 

 

 

 

 

 

 

Table 4 

The spectral radii of the Jacobian matrix 

corresponding to the free disease point 

of NSFD-II when B s = B m = B x = 0 . 1 and 

R 0 < 1. 

h ρ(NSFD-II) 

0 .05 0.9812 (Convergent) 

0 .1 0.9627 (Convergent) 

1 0.7108 (Convergent) 

100 0.5459 (Convergent) 

Table 5 

The spectral radii of the Jacobian matrix 

corresponding to the endemic equilibria 

of NSFD-II when B s = B m = B x = 14 and 

R 0 > 1. 

h ρ(NSFD-II) 

0 .05 0.9939 (Convergent) 

0 .1 0.9823 (Convergent) 

1 0.8947 (Convergent) 

100 0.8190 (Convergent) 

L

 

I

 

I

 

I

 

R  

T  

c  

a  

(  

c  

1

4

 

t  

b  

f

X

B  
I n +1 
s − I n s 

ϕ 5 (h ) 
= αss βs 

L n +1 
s I n s 

N 

n 
+ (1 − λs ) βs 

(
S n +1 I n s 

N 

n 
+ σs 

R n +1 I n s 

N 

n 

)
+ ε s L 

n +1 
s 

−(d + δs ) I 
n +1 
s − (γs + t 2 s ) I 

n 
s , (15)

I n +1 
m 

− I n m 

ϕ 6 (h ) 
= αmm 

βm 

L n +1 
m 

I n m 

N 

n 

+(1 − λm 

) βm 

(
S n +1 I n m 

N 

n 
+ σm 

R n +1 I n m 

N 

n 
+ αsm 

L n +1 
s I n m 

N 

n 

)

+ ε m 

L n +1 
m 

− (d + δm 

) I n +1 
m 

− (γm 

+ t 2 m 

) I n m 

, (16)

I n +1 
x − I n x 

ϕ 7 (h ) 
= αxx βx 

L n +1 
x I n x 

N 

n 
+ (1 − λx ) βm 

(
S n +1 I n x 

N 

n 
+ σx 

R n +1 I n x 

N 

n 
+ αmx 

L n +1 
x I n m 

N 

n 

)

+ ε x L 
n +1 
x − (d + δx ) I 

n +1 
x − (γx + t 2 x ) I 

n 
x , (17)

R n +1 − R n 

ϕ 8 (h ) 
= P 1 t 1 s L 

n +1 
s + P 2 t 2 s I 

n 
s + P 3 t 2 m 

I n m 

+ t 2 x I 
n 
x − dR n +1 − σs βs 

R n +1 I n s 

N 

n 

−σm 

βm 

R n +1 I n m 

N 

n 
− σx βx 

R n +1 I n x 

N 

n 
. (18)

The discretizations for N ( t ) is given as: 

N 

n = S n + L n s + L n m 

+ L n x + I n s + I n m 

+ I n x + R n . 

Where, the nonlocal approximations are used for the nonlinear

terms and the following denominator functions are used: 

ϕ 1 (h ) = 

e dh − 1 

d 
, ϕ 2 (h ) = 

e (d+ ε s + t 1 s ) h − 1 

(d + ε s + t 1 s ) 
, ϕ 3 ( h ) = 

e (d+ ε m ) h − 1 

( d + ε m 

) , 

ϕ 4 (h ) = 

e (d+ ε x ) h − 1 

(d + ε x ) 
, ϕ 5 (h ) = 

1 − e −(d+ δs ) h 

( γs + t 2 s ) 
, ϕ 6 ( h ) = 

1 − e −(d+ δm ) h 

( γm 

+ t 2 m 

) 
, 

ϕ 7 (h ) = 

1 − e −(d+ δx ) h 

(γx + t 2 x ) 
, ϕ 8 (h ) = 

e dh − 1 

d 
. 

Then we obtain: 

S n +1 = 

S n + ϕ 1 (h ) b 

1 + ϕ 1 (h ) d + ϕ 1 (h ) βs I 
n 
s + βm I 

n 
m + βx I 

n 
x 

N n 

, (19)

L n +1 
s = 

L n s + ϕ 2 (h ) βs I 
n 
s 

N n 
λs (S n +1 + σs R 

n +1 ) + ϕ 2 (h ) γs I 
n 
s 

1 + ϕ 2 (h )(d + t 1 s + ε s ) + 

ϕ 2 (h ) 
N n 

(αss βs I 
n 
s + αsm 

βm 

I n m 

+ αsx βx I x ) 
, 

(20)

L n +1 
m = 

L n m + ϕ 3 (h ) βm λm I 
n 
m 

N n 
(S n +1 + σm R 

n +1 + αsm L 
n +1 
s ) + ϕ 3 (h ) t 1 s L 

n +1 
s (1 − P 1 ) 

1 + ϕ 3 (h )(d + ε m ) + 

ϕ 3 (h ) 
N n 

(αmm βm I 
n 
m + αmx βx I 

n 
x ) 

+ 

ϕ 3 (h ) γm I 
n 
m + ϕ 3 (h ) t 2 s I 

n 
s (1 − P 2 ) 

1 + ϕ 3 (h )(d + ε m ) + 

ϕ 3 (h ) 
n (αmm βm I 

n 
m + αmx βx I 

n 
x ) 

, (21)

N s
 

n +1 
x = 

L n x + ϕ 4 (h ) βx λx I 
n 
x 

N n 
(S n +1 + σx R 

n +1 + αsx L 
n +1 
s + αmx L 

n +1 
m ) + ϕ 4 (h ) γx I 

n 
x 

1 + ϕ 4 (h )(d + ε x ) + 

ϕ 4 (h ) 
N n 

(αxx βx I 
n 
x ) 

+ 

ϕ 4 (h ) t 2 m I 
n 
m (1 − P 3 ) 

1 + ϕ 4 (h )(d + ε x ) + 

ϕ 4 (h ) 
N n 

(αxx βx I 
n 
x ) 

, (22)

 

n +1 
s = 

ϕ 5 (h ) βs 
I n s 

N n 
(αss L 

n +1 
s + (1 − λs )(S n +1 + σs R 

n +1 )) + (1 − ϕ 5 (h )(t 2 s + γs )) I n s 

1 + ϕ 5 (h )(d + δs ) 

+ 

ϕ 5 (h ) ε s L n +1 
s 

1 + ϕ 5 (h )(d + δs ) 
, (23)

 

n +1 
m = 

ϕ 6 (h ) βm 
I n m 

N n 
(αmm L 

n +1 
m + (1 − λm )(S n +1 + σm R 

n +1 + αsm L 
n +1 
s )) 

1 + ϕ 6 (h )(d + δm ) 

+ 

(1 − ϕ 6 (h )(t 2 m + γm )) I n m + ϕ 6 (h ) ε m L n +1 
m 

1 + ϕ 6 (h )(d + δm ) 
, (24)

 

n +1 
x = 

ϕ 7 (h ) βx 
I n x 

N n 
(αxx L 

n +1 
x + (1 − λx )(S n +1 + σx R 

n +1 + αsx L 
n +1 
s + αmx L 

n +1 
m )) 

1 + ϕ 7 (h )(d + δx ) 

+ 

(1 − ϕ 7 (h )(t 2 x + γx )) I n x + ϕ 7 (h ) ε x L n +1 
x 

1 + ϕ 7 (h )(d + δx ) 
, (25)

 

n +1 = 

R n + ϕ 8 (h ) t 1 s P 1 L 
n +1 
s + ϕ 8 (h ) P 2 t 2 s I 

n 
s + ϕ 8 (h ) t 2 m P 3 I 

n 
m + ϕ 8 (h ) t 2 x I 

n 
x 

1 + ϕ 8 (h ) d + 

ϕ 8 (h ) 
N n 

(σs βs I 
n 
s + σm βm I 

n 
m + σx βx I 

n 
x ) 

. (26)

he positivity of the solution reflects from the above method be-

ause if the initial conditions S (0), L s (0), L m (0), L x (0), I s (0), I m (0), I x (0)

nd R (0) are non-negative, then the right hand side of equations

19) –(26) admit no negative terms for any of n = 0, 1, 2, 3, ..., be-

ause 0 < ϕ 5 (h )(γs + t 2 s ) < 1 , 0 < ϕ 6 (h )(γm + t 2 m ) < 1 , 0 < ϕ 7 (h )(γx + t 2 x ) <

 , 0 < P i < 1, i = 1 , 2 , 3 , 0 < λi < 1, i ∈ { s, m, x }. 

. Fixed points and stability analysis 

In this section, we study the stability and convergence proper-

ies of fixed points of the proposed NSFD-II. Let us consider X 

∗, to

e the fixed point of the system (11) –(18) , then it will take the

orm: 

 

∗ = ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) . 

y noting that the fixed point X 

∗, of the (11) –(18) can be found by

olving: 
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Table 6 

Result obtained by different numerical methods for B s = B m = B x = 0 . 1 , 

R 0 < 1, and initial condition as (50 0 0, 50, 50, 50, 30, 30, 30, 60) with 

different time step size. 

h Implicit Euler RK4 NSFD-I NSFD-II 

0 .01 Convergent Convergent Convergent Convergent 

0 .1 Convergent Convergent Convergent Convergent 

0 .5 Divergent Convergent Convergent Convergent 

3 Divergent Divergent Convergent Convergent 

10 Divergent Divergent Divergent Convergent 

100 Divergent Divergent Divergent Convergent 

Table 7 

Results obtained by different numerical methods for B s = B m = B x = 14 , 

R 0 > 1 and initial condition as (50 0 0, 50, 50, 50, 30, 30, 30, 60) with 

different time step size. 

h Implicit Euler RK4 NSFD-I NSFD-II 

0 .01 Convergent Convergent Convergent Convergent 

0 .1 Convergent Convergent Convergent Convergent 

1 Divergent Divergent Convergent Convergent 

20 Divergent Divergent Divergent Convergent 

100 Divergent Divergent Divergent Convergent 

W  

b

w

N

I  

fi

·

S

L

L

L

R

T  

 

s  

f  

l  

a  

d

4

 

t

C  
f 1 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) = 

ˆ S , f 2 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) = 

ˆ L s , 

f 3 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) = 

ˆ L m 

, f 4 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) = 

ˆ L x , 

f 5 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) = 

ˆ I s , f 6 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) = 

ˆ I m 

, 

f 7 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) = 

ˆ I x , f 8 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) = 

ˆ R . 

here f i ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) , i = 1 , 2 , 3 , · · ·, 8 , can be obtained

y considering the right hand sides of equations (19) –(26) , i.e., 

f 1 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) 

= 

ˆ S + ϕ 1 (h ) b 

1 + ϕ 1 (h ) d + ϕ 1 (h ) βs ̂ I s + βm ̂  I m + βx ̂ I x 
ˆ N 

, (27) 

f 2 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) 

= 

ˆ L s + ϕ 2 (h ) βs ̂ I s 
ˆ N 

λs ( ̂  S + σs ̂  R ) + ϕ 2 (h ) γs ̂  I s 

1 + ϕ 2 (h )(d + t 1 s + ε s ) + 

ϕ 2 (h ) 
ˆ N 

(αss βs ̂  I s + αsm 

βm ̂

 I m 

+ αsx βx 
ˆ I x ) 

, (28) 

f 3 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) 

= 

ˆ L m 

+ ϕ 3 (h ) βm λm ̂  I m 
N n 

( ̂  S + σm ̂

 R + αsm ̂

 L s ) + ϕ 3 (h ) γm ̂

 I m 

1 + ϕ 3 (h )(d + ε m 

) + 

ϕ 3 (h ) 
ˆ N 

(αmm 

βm ̂

 I m 

+ αmx βx ̂  I x ) 

+ 

ϕ 3 (h ) t 1 s ̂  L s (1 − P 1 ) + ϕ 3 (h ) t 2 s ̂  I s (1 − P 2 ) 

1 + ϕ 3 (h )(d + ε m 

) + 

ϕ 3 (h ) 
ˆ N 

(αmm 

βm ̂

 I m 

+ αmx βx ̂  I x ) 
, (29) 

f 4 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) 

= 

ˆ L x + ϕ 4 (h ) βx λx ̂ I x 
N n 

( ̂  S + σx ̂  R + αsx ̂  L s + αmx ˆ L m 

) 

1 + ϕ 4 (h )(d + ε x ) + 

ϕ 4 (h ) 
ˆ N 

(αxx βx ̂  I x ) 

+ 

ϕ 4 (h ) γx ̂  I x + ϕ 4 (h ) t 2 m ̂

 I m 

(1 − P 3 ) 

1 + ϕ 4 (h )(d + ε x ) + 

ϕ 4 (h ) 
ˆ N 

(αxx βx ̂  I x ) 
, (30) 

f 5 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) 

= 

ϕ 5 (h ) βs 
ˆ I s 
ˆ N 
(αss ̂  L s + (1 − λs )( ̂  S + σs ̂  R )) 

1 + ϕ 5 (h )(d + δs ) 

+ 

(1 − ϕ 5 (h )(t 2 s + γs )) ̂ I s + ϕ 5 (h ) ε s ̂  L s 

1 + ϕ 5 (h )(d + δs ) 
, (31) 
[

f 6 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) 

= 

ϕ 6 (h ) βm 

ˆ I m 
ˆ N 
(αmm 

ˆ L m 

+ (1 − λm 

)( ̂  S + σm ̂

 R + αsm ̂

 L s )) 

1 + ϕ 6 (h )(d + δm 

) 

+ 

(1 − ϕ 6 (h )(t 2 m 

+ γm 

)) ̂  I m 

+ ϕ 6 (h ) ε m 

ˆ L m 

1 + ϕ 6 (h )(d + δm 

) 
, (32) 

f 7 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) 

= 

ϕ 7 (h ) βx 
ˆ I x 
ˆ N 
(αxx ̂  L x + (1 − λx )( ̂  S + σx ̂  R + αsx ̂  L s + αmx ˆ L m 

)) 

1 + ϕ 7 (h )(d + δx ) 

+ 

(1 − ϕ 7 (h )(t 2 x + γx )) ̂  I x + ϕ 7 (h ) ε x ̂  L x 

1 + ϕ 7 (h )(d + δx ) 
, (33) 

f 8 ( ̂  S , ˆ L s , ˆ L m 

, ˆ L x , ̂  I s , ˆ I m 

, ̂  I x , ˆ R ) 

= 

ˆ R + ϕ 8 (h ) t 1 s P 1 ̂  L s + ϕ 8 (h ) P 2 t 2 s ̂  I s + ϕ 8 (h ) t 2 m 

P 3 ̂  I m 

1 + ϕ 8 (h ) d + 

ϕ 8 (h ) 
ˆ N 

(σs βs ̂  I s + σm 

βm ̂

 I m 

+ σx βx ̂  I x ) 

+ 

ϕ 8 (h ) t 2 x ̂  I x 

1 + ϕ 8 (h ) d + 

ϕ 8 (h ) 
ˆ N 

(σs βs ̂  I s + σm 

βm ̂

 I m 

+ σx βx ̂  I x ) 
. (34) 

here, 

ˆ 
 = 

ˆ S + 

ˆ L s + 

ˆ L m 

+ 

ˆ L x + ̂

 I s + 

ˆ I m 

+ 

ˆ I x + 

ˆ R . 

n the above system, if ˆ I s = 0 , ˆ I m 

= 0 , ˆ I x = 0 , and given that the

xed point of different equation satisfied f i (X ∗) = X ∗,i = 1 , 2 , 3 , · ·
, 8 , then : 

ˆ 
 = 

ˆ S + ϕ 1 (h ) b 

1 + dϕ 1 (h ) 
⇒ 

ˆ S = 

b 

d 
, (35) 

ˆ 
 s = 

ˆ L s 

1 + ϕ 2 (h )(d + ε s + t 1 s ) 
⇒ 

ˆ L s = 0 , (36) 

ˆ 
 m 

= 

ˆ L m 

1 + ϕ 3 (h )(d + ε m 

) 
⇒ 

ˆ L m 

= 0 , (37) 

ˆ 
 x = 

ˆ L x 

1 + ϕ 4 (h )(d + ε s ) 
⇒ 

ˆ L x = 0 , (38) 

ˆ 
 = 

ˆ R 

1 + dϕ 8 (h ) 
⇒ 

ˆ R = 0 . (39) 

hen the disease free equilibrium is unique and is given by

( b 
d 
, 0 , 0 , 0 , 0 , 0 , 0 , 0) . 

If at least one of the infected variables is non-zero, then this

olution correspond to the Endemic equilibrium of NSFD-II for the

ull model (11) –(18) . Equations of system (27) –(34) are highly non-

inear in 

ˆ I s , ˆ I m 

and 

ˆ I x , and hence explicit solutions are not obtain-

ble so, we solve the system (19) –(26) numerically to obtain en-

emic fixed point. 

.1. Numerical stability analysis of the fixed points 

In this section, let us consider the following initial condition for

he multi-strain model (1) –(8) : 

(S(0) , L s (0) , L m 

(0) , L x (0) , I s (0) , I m 

(0) , I x (0) , R ) 

= (50 0 0 , 50 , 50 , 50 , 30 , 30 , 30 , 60) . 

oncerning the system parameters, all the parameters are given in

26] or we assume their values as it shown in Table 3 . 
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Fig. 1. Profiles obtained by different numerical methods for h = 0 . 1 , when βs = βm = βx = 0 . 1 , and R 0 < 1. 

 

 

a

In order to determine the stability properties of the equilibria

of system (11) –(18) . We calculate the Jacobian matrix of the system

(11) –(18) , at the disease-free equilibrium point: 

E 0 = 

(
b 

d 
, 0 , 0 , 0 , 0 , 0 , 0 , 0 

)
. 

It will take the following form: 

J(E 0 ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a 11 0 0 0 a 15 a 16 a 17 0 

0 a 22 0 0 a 25 0 0 0 

0 a 32 a 33 0 a 35 a 36 0 0 

0 0 0 a 44 0 a 46 a 47 0 

0 a 52 0 0 a 55 0 0 0 

0 0 a 63 0 0 a 66 0 0 

0 0 0 a 74 0 0 a 77 0 

0 a 82 0 0 a 85 a 86 a 87 a 88 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where: 

a 11 = 

1 

1 + ϕ 1 (h ) 
, a 15 = 

−dβs ϕ 1 (h ) 

b(1 + ϕ 1 (h )) 
, a 16 = 

−dβm 

ϕ 1 (h ) 

b(1 + ϕ 1 (h )) 
, 

a 17 = 

−dβx ϕ 1 (h ) 

b(1 + ϕ 1 (h )) 
, a 22 = 

1 

(d + t 1 s + ε s ) ϕ 2 (h ) 
, 

a 25 = 

(λs βs + γs ) ϕ 2 (h ) 

1 + (d + ε s ) ϕ 2 (h ) 
, a 32 = 

(t 1 s − P 1 t 1 s ) ϕ 3 (h ) 

(d + ε m 

) ϕ 3 (h ) 
, 

a 33 = 

1 

(d + ε m 

) ϕ 3 (h ) 
, a 35 = 

(t 2 s − P 1 t 2 s ) ϕ 3 (h ) 

(d + ε m 

) ϕ 3 (h ) 
, 
a 36 = 

(λm 

βm 

+ γm 

) ϕ 3 (h ) 

1 + (d + ε m 

) ϕ 3 (h ) 
, a 44 = 

1 

(d + ε x ) ϕ 4 (h ) 
, 

a 46 = 

(t 2 m 

− P 2 t 2 m 

) ϕ 4 (h ) 

(d + ε x ) ϕ 4 (h ) 
, a 47 = 

(λx βx + γx ) ϕ 4 (h ) 

1 + (d + ε x ) ϕ 4 (h ) 
, 

a 52 = 

ε s ϕ 5 (h ) 

(1 + (d + δs ) ϕ 5 (h ) 
, 

a 55 = 

1 − ϕ 5 (h )(t 2 s + γs − (1 − λs ) βs ) 

(1 + (d + δs ) ϕ 5 (h ) 
, 

a 63 = 

ε m 

ϕ 6 (h ) 

(1 + (d + δm 

) ϕ 6 (h ) 
, 

 66 = 

1 − ϕ 6 (h )(t 2 m 

+ γm 

− (1 − λm 

) βm 

) 

(1 + (d + δm 

) ϕ 6 (h ) 
, 

a 74 = 

ε x ϕ 7 (h ) 

(1 + (d + δx ) ϕ 7 (h ) 
, 

a 77 = 

1 − ϕ 7 (h )(t 2 x + γx − (1 − λx ) βx ) 

(1 + (d + δx ) ϕ 7 (h ) 
, a 82 = 

ϕ 8 (h ) P 1 t 1 s 
1 + dϕ 8 (h ) 

, 

a 85 = 

ϕ 8 (h ) P 2 t 2 s 
1 + dϕ 8 (h ) 

, a 86 = 

ϕ 8 (h ) P 3 t 2 m 

1 + dϕ 8 (h ) 
, a 87 = 

ϕ 8 (h ) t 2 x 
1 + dϕ 8 (h ) 

, 

a 88 = 

1 

1 + dϕ 8 (h ) 
. 
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Fig. 2. Profiles obtained by different numerical methods for h = 0 . 1 , when βs = βm = βx = 14 and R 0 > 1. 
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The characteristic equation associated with above matrix is

 J(E 0 ) − λI| = 0 ⇒ (a 11 − λ)(a 88 − λ)(λ2 − (a 44 + a 77 ) λ − a 47 a 74 +
 77 a 44 ) (−λ2 + (a 44 + a 66 ) λ − a 66 a 33 + a 36 a 63 )(−λ2 + (a 22 + 

 55 ) λ + a 52 a 25 − a 55 a 22 ) = 0 . Then the eigenvalues of Jacobian ma-

rix are λ1 = a 11 , λ2 = a 88 , λ3 , 4 = 

a 44 + a 77 ±
√ 

(a 2 
44 

−2 a 44 a 77 + a 2 77 
+4 a 74 a 47 ) 

2 ,

5 , 6 = 

a 66 + a 33 ±
√ 

(a 2 
66 

−2 a 66 a 33 + a 2 33 
+4 a 63 a 36 ) 

2 , 

7 , 8 = 

a 55 + a 22 ±
√ 

(a 2 
55 

−2 a 55 a 22 + a 2 22 
+4 a 52 a 25 ) 

2 , which are all less than

ne if R 0 < 1. Thus, by Theorem 2.2 , the scheme (19) –(26) is

nconditionally stable if R 0 < 1. 

However, we will determine the stability of the fixed points of

he system (11) –(18) numerically. In Table 4 we report the spectral

adii of the Jacobian matrix corresponding to the free disease point

f NSFD-II when B s = B m 

= B x = 0 . 1 and R 0 < 1. 

In Table 5 , we report the spectral radii of the Jacobian ma-

rix corresponding to the endemic equilibria of NSFD-II when B s =
 m 

= B x = 14 and R 0 > 1. 

It can be seen from Tables 4 and 5 that, all the spectral radii are

ess than one in magnitude irrespective of the time step size used

n the simulations. Hence, by Theorem 2.2 , we have the following

esult. 

• The disease-free equilibrium E 0 = ( b 
d 
, 0 , 0 , 0 , 0 , 0 , 0 , 0) for the

system (11) –(18) when B s = B m 

= B x = 0 . 1 and R 0 < 1, is un-

conditionally locally asymptotically stable. 

• The endemic equilibrium of the system (11) –(18) when B s =
B m 

= B x = 14, and R > 1, is locally asymptotically stable from
0 
Theorem 2.2 . Moreover, the system (11) –(18) is unconditionally

locally asymptotically stable. 

. Numerical results 

In this section numerical comparisons between NSFD-II method,

mplicit Euler, RK4 and NSFD-I methods are presented. Numerical

imulations for both the disease-free equilibrium and for the en-

emic equilibria are presented. 

.1. Numerical simulation for the disease free equilibrium 

In this section, we report the convergence behavior of numeri-

al methods to the disease-free equilibrium. We provide the results

or B s = B m 

= B x = 0 . 1 and R 0 < 1. It can be seen from Fig. 1 that

ll numerical methods converge almost to the disease-free equilib-

ium. However, in Table 6 , numerical comparisons between NSFD-

I, implicit Euler, fourth-order Runge-Kutta and NSFD-I methods are

resented. It can be concluded that NSFD-II converges to the cor-

ect disease free equilibrium for large h , and preserves the pos-

tivity of the model state variables, so NSFD-II is unconditionally

ositive, as we drive in the previous mathematical analysis. The

ther numerical methods converge to the correct disease free equi-

ibrium for small step-size and diverge for larger h . In addition, it

an be observed from Table 4 that although the spectral radii of

acobian matrix associated with NSFD-II scheme are less than one,

t seems to be unconditionally convergent to the correct disease-

ree steady state of the model. Moreover, the system (11) –(18) is

nconditionally locally asymptotically stable. 
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Fig. 3. Profiles obtained by NSFDM-II for h = 1 when βs = βm = βx = 14 and R 0 > 1. 

Fig. 4. Profiles obtained by RK4 method for h = 1 when βs = βm = βx = 14 and R 0 > 1. 
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Fig. 5. The relationship between some variables of the model by using NSFD-II, when βs = βm = βx = 14 , h = 0 . 33 and R 0 > 1. 

Fig. 6. Profiles obtained by NSFD-II for h = 0 . 1 when βs = βm = βx = 14 , t 2 s = t 2 m = t 2 x = 22 . 
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.2. Numerical simulation for the endemic equilibrium 

In this section, we study the convergence behavior of the nu-

erical methods to endemic equilibria. We provide the results for

 s = B m 

= B x = 14 and R 0 > 1. It can be concluded from Fig. 2 that

ll numerical methods converge almost to the endemic equilib-

ium. However, in Table 7 , numerical comparisons between NSFD-

I, implicit Euler, RK4 and NSFD-I methods are presented. It can be

een that, NSFD-II converge to the correct endemic equilibrium for

arge h , and preserves the positivity of the model state variables

ee Fig. 3 , so NSFD-II is unconditionally positive, supporting the

revious mathematical analysis. Moreover, NSFD-II converges more

ccurately than other methods. The other numerical methods con-

erge to the correct endemic equilibrium for small step-size and

iverge for larger h see Fig. 4 . In addition, it can be observed in

able 5 , although the spectral radii of Jacobian matrix associated

ith NSFD-II scheme are less than one, it seems to be uncondi-

ionally convergent to the correct endemic equilibrium. Moreover,

he system (11) –(18) is unconditionally locally asymptotically sta-

le. Previous Fig. 5 (a-b) illustrate propagation of TB along the time

hen h = 0 . 33 , B s = B m 

= B x = 14 , R 0 > 1 and initial condition as

50 0 0, 50, 50, 50, 30, 30, 30, 60), as following: 

• In Fig. 5 a, the relationship between S ( t ) and I x ( t ), describes the

spread of infection from the members of the third strain to

healthy people, then the number of infectious people will be

increases and the number of healthy people are decreases with

time. 
• In Fig. 5 b, the relationship between R ( t ) and I s ( t ) illustrate that,

there are individuals succeeded treatment with them, may are

exposed to infection again by contagious members I s ( t ) of the

first strain. At the beginning of time period, the number of

I s ( t ) members are increases and the number of R ( t ) members

are decreases, then after time steps the curves are intersect-

ing again and I s ( t ) will be the response to treatment and their

numbers will be decreased. 

Moreover, from these numerical results obtained in this work

e can control the disease and turn the endemic point to the dis-

ase free point as follows: 

Let us consider: 

 0 s < 1 ⇒ 

−t 2 2 s + 5 . 3950 t 2 s + 8 . 6060 

t 2 
2 s 

+ 1 . 6050 t 2 s + 1 . 050 

< 0 , where t 1 s = t 2 s . (40)

 0 m 

< 1 ⇒ 

9 . 1720 − 0 . 8800 t 2 m 

0 . 8800 t 2 m 

+ 0 . 4880 

< 0 , (41)

 0 x < 1 ⇒ 

9 . 1720 − 0 . 8800 t 2 x 
0 . 8800 t 2 x + 0 . 4880 

< 0 , (42)

hen t 1 s = t 2 s ≥ 6 . 6828 , t 2 m 

≥ 10 . 4227 , t 2 x ≥ 10 . 4227 . (43)

 = max { t 2 s ≥ 6 . 6828 , t 2 m 

≥ 10 . 4227 , t 2 x ≥ 10 . 4227 } , 
⇒ T = t 2 m 

= t 2 x ≥ 10 . 4227 . (44) 

o, we derive the rate of treatment required for achieving control

f the disease. 
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For example, if we choose t 2 s = t 2 m 

= t 2 x = 22 , B s = B m 

= B x =
14 , and h = 0 . 1 , by using NSFD-II we obtained the disease free

point (see Fig. 6 ). 

6. Conclusion 

It can be concluded from the numerical results presented

in Sections 5.1 and 5.2 , that NSFD-II scheme is more efficient than

the well known numerical methods and preserves the positivity of

the solution and numerical stability in larger regions, whereas the

solutions obtained by other numerical methods experience difficul-

ties in either preserving the positivity of the solutions or in con-

verging to the correct equilibria for large h . All results were ob-

tained by using MATLAB (R2013a). on a computer machine with

intel(R) core i 3 − 3110 M @ 2.40 GHz and 4 GB RAM. 
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