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Abstract In this work, we deal with the fractional-order SIS epidemic model with constant recruit-
ment rate, mass action incidence and variable population size. The stability of equilibrium points is
studied. Numerical solutions of this model are given. Numerical simulations have been used to ver-

37N25; 34D20; 37M05

© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

Open access under CC BY-NC-ND license.

1. Introduction

The epidemic models incorporate constant recruitment, dis-
ease-induced death and mass action incidence rate.

Some infections do not confer any long lasting immunity.
Such infections do not have a recovered state and individuals
become susceptible again after infection. This type of disease
can be modelled by SIS type. The total population N is divided
into two compartments with N = S + I, where S is the num-
ber of individuals in the susceptible class, 7 is the number of
individuals who are infectious [1,2].

The use of fractional-orders differential and integral opera-
tors in mathematical models has become increasingly wide-
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spread in recent years [3]. Several forms of fractional
differential equations have been proposed in standard models.

Differential equations of fractional order have been the fo-
cus of many studies due to their frequent appearance in vari-
ous applications in fluid mechanics, economic, viscoelasticity,
biology, physics and engineering. Recently, a large amount
of literature has been developed concerning the application
of fractional differential equations in nonlinear dynamics [3].

In this paper, we study the fractional-order SIS model. The
stability of equilibrium points is studied. Numerical solutions
of this model are given.

We like to argue that fractional-order equations are more
suitable than integer order ones in modelling biological, eco-
nomic and social systems (generally complex adaptive systems)
where memory effects are important. In Section 2, the equilib-
rium points and their asymptotic stability of differential equa-
tions of fractional order are studied. In Sections 3 and 4, the
model is presented and discussed. In Section 5 numerical solu-
tions of the model are given.

Now we give the definition of fractional-order integration
and fractional-order differentiation:
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Definition 1.1. The fractional integral of order f € R™ of the
function f{#), t > 0 is defined by

(!
o = [ 1)

and the fractional derivative of order o € (n — 1, n] of f{(¥),
t > 0 is defined by

DAty = D), D=

D= )

For the main properties of the fractional-orders derivatives
and integrals [4-9].

2. Equilibrium points and their asymptotic stability

Let o € (0, 1] and consider the system [10-15]
Dy (1) = fi(»1:32)

. 3)
Dy, (1) = f2(31,72)
with the initial values
1(0) =y, and 3,(0) =y, 4)

To evaluate the equilibrium points, let
Dayi(l):0:>f}(yiq7y§q):07 i=12

from which we can get the equilibrium points y
To evaluate the asymptotic stability, let

yi(t) = yi' +e(1),
eq

so the equilibrium point (y}, 5?) is locally asymptotically sta-
ble if both the eigenvalues of the Jacobian matrix 4

dyy On
o b

oy O

eq eq

1> Vo

evaluated at the equilibrium point satisfies (| arg(4;) > om/2,
|arg(iz)| > om/2) [11,12,14-16]. The stability region of the
fractional-order system with order « is illustrated in Fig. 1
(in which g, w refer to the real and imaginary parts of the
eigenvalues, respectively, and j = v/—1). From Fig. 1, it is easy
to show that the stability region of the fractional-order case is
greater than the stability region of the integer order case.

3. Fractional-order SIS model

Let S(7) be the number of individuals in the susceptible class at
time ¢, I(f) be the number of individuals who are infectious at
time 7.

The fractional-order SIS model is given by

D S(t) = A — BSI — uS + oI,

D I(t) = BSI — (¢ + pn+ o)1, ®)

where 0 < o; < 1 and the parameters are positive constants.
The constant A is the recruitment rate of susceptible corre-
sponding to births and immigration, u is the per capita natural
mortality rate. We assume that a disease may be fatal to some
infectious, so deaths due to disease can be included in a model
using the disease-related death rate from infectious class, a. Let
¢ be the rate at which individuals infectious and return to sus-
ceptible class. This together with N = S + I, implies

DN =A—uN —ol.
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Figure 1  Stability region of the fractional-order system.

Thus, the total population size N may vary in time [2]. To eval-
uate the equilibrium points, let

D*S =0,

D=0,

then (Seq, L) = (ﬁ,O), (S.,1.), are the equilibrium points
where,

1 A H(p +p+ o)
—(p+u+a), L= - .
5 e T R R

For (S, 1Ly) = (ﬁ,O) we find that

S, =

- e

4=
0 E—(p+p+a)

)

and its eigenvalues are

Ap=—-u<0,

A . pA
)Q:%_(<p+ﬂ+oc)<0 1fﬂ7<(go+,u+oc).

Hence the equilibrium point (S, 1) = <ﬁ,0) is locally
asymptotically stable if

[%A<(qo+u+a). (6)

For (Seqa qu) = (S*, I*) we find that

pA (p-+pt+ao)
[l
- A plotpta) 0 ’
(uta) (o)
and its eigenvalues are
" 1 2
T (—(/:A = 0) /(B4 = 0 — 4+ 0’4~ o+ -+ 2] ).
) 1
i = 5ty (A= 00) =B =4+ 27 A = o ).
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Figure 2 o, = 1.0.

A sufficient condition for the local asymptotic stability of the
equilibrium point (S, Ly) = (Sx, I+) is

larg(41)| > aym/2,|arg(4y)] > oym/2. (7)

4. Existence of uniformly stable solution

Let
xi (1) = S(1), x(t) =1(1),

i (0), xa(0) = A — B (1)xa(t) — o (1) + s (1),
and

S0, x(0) = fxi (0%:(0) — (9 + i+ 2)xa(0).
Let

D={x;,x€R:|x(t)| <a, t€[0,T],i=1,2},

then on D we have

< k27

'%fl (x|7x2)

0
<k, ‘87)9}01 (x1,x2)

g k47

0
< ks and ‘szfz(xhxz)

‘%ﬁ(x.,xa

where ki, ko, k3 and k4 are positive constants.

This implies that each of the two functions f}, f> satisfies the
Lipschitz condition with respect to the two arguments x; and
X, then each of the two functions fi, f> is absolutely continu-
ous with respect to the two arguments x; and x,.
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Figure 3 o, = 0.9.
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Figure 6 o = 1.0.

Consider the following initial value problem which repre-
sents the fractional-order SIS model (8) and (9)

D" x; (l) :fl(xl(l),xz(t)), t>0 and X[(O) = Xol, (8)
D“])Cz(l) :fz(xl([),XQ(l‘)), t>0 and Xz(o) = Xp2. (9)

Definition 4.1. By a solution of the fractional-order SIS model
(8) and (9), we mean a column vector (x;() x2(?)°, x; and
xy € C[0, T], T < oo where C[0, T] is the class of continuous
functions defined on the interval [0, 7] and t denote the
transpose of the matrix.
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Now we have the following theorem

Theorem 4.1. The fractional-order SIS model (8) and (9) has a
unique uniformly Lyapunov stable solution.

Proof. Write the model (8) and (9) in the matrix form

D" X(t) = F(X(t)), t>0 and X(0)=2X, (10)

where

X(1) = (x1(1) x2(0))",

and

F(X(1)) = (/1 (xr (), x2(1)) /5001 (1), x2(1)))"

Now applying Theorem 2.1 [17], we deduce that the fractional-
order SIS model (8) and (9) has a unique solution. Also by The-
orem 3.2 [17] this solution is uniformly Lyapunov stable. [

5. Numerical methods and results

An Adams-type predictor-corrector method has been intro-
duced and investigated further in [18-20]. In this paper, we
use an Adams-type predictor-corrector method for the numer-
ical solution of fractional integral equation.

The key to the derivation of the method is to replace the
original problem (5) by an equivalent fractional integral
equations
S(t) = S(0) + I'[A — BST — uS + 1),
1(1) = 1(0) + I" [BSI — (@ + p+ )],
and then apply the PECE (Predict, Evaluate, Correct, Evalu-
ate) method.

The approximate solutions are displayed in Figs. 2-9 for

S(0) = 20.0, 1(0) = 1.0 and different 0 < o; < 1. In Figs. 2-5
wetake 4 = 0.1, = 0.1, u = 0.2, = 0.3, « = 0.1 and found

that the equilibrium point (% , 0) = (0.5,0) is locally asymptot-

(11)

ically stable where the condition (6) <ﬁ7A:0.05<

(p+p+a)= 0.6) is satisfied. In Fig. 5 we found that in the

fractional-order case, the peak of the infection is reduced. But
the disease takes a longer time to be eradicated.

In Figs. 6-9 we take 4 = 0.5, § = 0.5, u = 0.3, ¢ = 0.1,
o=0.1 and found that the equilibrium point

(A 0) = (1.66667,0) is unstable where the condition (6) is

Eu
not satisfied (ﬁTA =0.833333 > (¢ + p+o) = 0.5) and the

equilibrium point (Sx, /) is locally asymptotically stable where
the condition (7) is satisfied where the equilibrium point and
the eigenvalues are given as:

(Sv, 1) = (1.0, 0.5),
Jia = —0275 + 0.156125i.

The equilibrium point (Sx, I+) = (1.0, 0.5), is locally asymp-
totically stable where | arg (}~2,3)| = 2.62524 > oyn/2. In Fig. 9
we found that in the fractional-order case, the peak of the
infection is reduced. But the disease takes a longer time to
be eradicated.

6. Conclusions

In this paper we study the fractional-order SIS model. The sta-
bility of equilibrium points is studied. Numerical solutions of
this model are given.

The reason for considering a fractional-order system in-
stead of its integer order counterpart is that fractional-order
differential equations are generalizations of integer order dif-
ferential equations. Also using fractional-order differential
equations can help us to reduce the errors arising from the ne-
glected parameters in modelling real life phenomena.
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We like to argue that fractional-order equations are more
suitable than integer order ones in modelling biological, eco-
nomic and social systems (generally complex adaptive systems)
where memory effects are important.

The stability of equilibrium points is studied. Numerical
solutions of these models are given. Numerical simulations
have been used to verify the theoretical analysis.
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