Contents lists available at ScienceDirect

Journal of the Egyptian Mathematical Society

journal homepage: www.elsevier.com/locate/joems

A COMPARED OF COMP

CrossMark

Original Article Homomorphisms and subalgebras of decomposable *MS*-algebras

Abd El-Mohsen Badawy^{a,*}, Ragaa. El-Fawal^b

^a Department of Mathematics, Faculty of Science, Tanta University, Egypt

^b Department of Mathematics, Faculty of Science (girls branch), El-Azhar University, Egypt

ARTICLE INFO

Article history: Received 2 January 2016 Revised 17 July 2016 Accepted 2 October 2016 Available online 13 October 2016

2010 MSC: 06D05 06D30

Keywords: MS-algebras Decomposable MS-algebras Homomorphisms Subalgebras

1. Introduction

Blyth and Varlet [2] have studied a new variety of the so-called Morgan Stone algebras (briefly MS-algebras) as a common abstraction of the classes of de Morgan and Stone algebras. Such algebras are bounded distributive lattices with a unary operation satisfying certain identities. Blyth and Varlet [3] described the lattice of subvarieties of the variety MS of all MS-algebras. The class MS contains the well-known classes such as Boolean algebras, de Morgan algebras, Kleene algebras and Stone algebras. In 2012 Badawy et al. [1] presented a simple triple construction of principal MSalgebras and they showed that there exists a one-to-one correspondence between the principal MS-algebras and the principal MS-triples. They also introduced the class of decomposable MSalgebras which contains the class of principal MS-algebras and they presented a triple construction of decomposable MS-algebras generalizing the construction of principal MS-algebras. Moreover, they investigated that there exists a one-to-one correspondence between the decomposable MS-algebras and the decomposable MStriples. Luo [4] considered special kind of Principal congruences on MS-algebras. Also, Luo [5] investigated the relationship between principal congruence and Kernel ideals of Symmetric de-Morgan

E-mail addresses: abdel-mohsen.mohamed@science.tanta.edu.eg,

ABSTRACT

Decomposable *MS*-algebras were introduced and characterized by Badawy et al. [1] in terms of decomposable *MS*-triple (M, D, φ), where M is a de Morgan algebra, D is a distributive lattice with unit and φ is a bounded lattice homomorphism of M into the lattice of filters of D. In this paper we study homomorphisms, subalgebras and solve the "Fill-in" problem for such decomposable *MS*-algebras.

© 2016 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

algebras. Also, Badawy [6] introduced the notion of d_L -filters of principal *MS*-algebras. S. El-Assar and A. Badawy [7] studied homomorphisms and subalgebras of *MS*-algebras for the class K_2 . Recently, Badawy [8] characterized a subclass of the class of modular generalized *MS*-algebras which contains the class of K_2 -algebras by means of quadruples. Moreover, Badawy [9] constructed principal generalized K_2 -algebras in terms of triples.

According to the characterization [1] of decomposable *MS*algebras by means of the decomposable *MS*-triple (M, D, φ), we study some properties of this triple. In Section 3, we define the homomorphism between two decomposable *MS*-triples. We show that homomorphisms of decomposable *MS*-algebras are the same as the homomorphisms of their associated decomposable *MS*triples. In Section 4, using decomposable *MS*-triples, we characterize subalgebras of decomposable *MS*-algebras. Also, we solve the following fill in problem:

"Let *L* be a decomposable *MS*-algebra, M_1 a subalgebra of $L^{\circ\circ}$, and D_1 a sublattice of D(L) containing 1. We can fill in $(M_1, D_1, ?)$ such that it will become the decomposable *MS*-triple associated with a subalgebra of *L*."

Moreover, we solve the above fill in problem to obtain K_2 -subalgebras and Stone subalgebras of a decomposable *MS*-algebra *L*.

Finally, a subalgebra of a decomposable *MS*-algebra $L = \{(a, a^{\circ}\varphi \vee [x)) : a \in M, x \in D\}$ associated with the decomposable *MS*-triple (*M*, *D*, φ) is characterized. Also, the greatest Stone subalgebra of *L* is determined.

http://dx.doi.org/10.1016/j.joems.2016.10.001

1110-256X/© 2016 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

^{*} Corresponding author. Fax: +20403302785.

abdelmohsen.badawy@yahoo.com (A.E.-M. Badawy), Ragaa.ramadan257@yahoo.com (Ragaa. El-Fawal).

2. Preliminaries

In this section, we present certain definitions and results. We refer the reader to Refs. [1-3,9-12] as a guide references.

A de Morgan algebra is an algebra $(L; \lor, \land, ^-, 0, 1)$ of type (2,2,1,0,0) where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and $^-$ the unary operation of involution satisfies:

$$\overline{x} = x, (x \lor y) = \overline{x} \land \overline{y}, (x \land y) = \overline{x} \lor \overline{y}.$$

An *MS*-algebra is an algebra $(L; \lor, \land, \circ, 0, 1)$ of type (2,2,1,0,0) where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation \circ satisfies:

 $x \leq x^{\circ\circ}, (x \wedge y)^{\circ} = x^{\circ} \vee y^{\circ}, 1^{\circ} = 0.$

The class **MS** of all *MS*-algebras is equational. A de Morgan algebra is an *MS*-algebra satisfying the identity, $x = x^{\circ\circ}$. A K_2 -algebra is an *MS*-algebra satisfying the additional two identities,

$$x \wedge x^{\circ} = x^{\circ} \wedge x^{\circ\circ}, (x \wedge x^{\circ}) \vee (y \vee y^{\circ}) = y \vee y^{\circ}.$$

The class **S** of Stone algebras is a subclass of **MS** and is characterized by the identity $x \wedge x^{\circ} = 0$. A Boolean algebra is an *MS*-algebra satisfying the identity $x \vee x^{\circ} = 1$.

We recall some of the basic properties of *MS*-algebras which were proved in [2] or [11].

Theorem 2.1. [2] For any two elements a, b of an MS-algebra L, we have

 $\begin{array}{ll} (1) \ 0^{\circ} = 1, \\ (2) \ a \leq b \Rightarrow b^{\circ} \leq a^{\circ}, \\ (3) \ a^{\circ\circ\circ} = a^{\circ}, \\ (4) \ (a \lor b)^{\circ} = a^{\circ} \land b^{\circ}, \\ (5) \ (a \lor b)^{\circ\circ} = a^{\circ\circ} \lor b^{\circ\circ}, \\ (6) \ (a \land b)^{\circ\circ} = a^{\circ\circ} \land b^{\circ\circ}. \end{array}$

Definition 2.2. [11] A bounded sublattice L_1 of an *MS*-algebra *L* is called a subalgebra of *L* if $x^{\circ} \in L_1$ for every $x \in L_1$.

Definition 2.3. A subalgebra L_1 of an *MS*-algebra L is called a de Morgan (Boolean) subalgebra of L if $x^{\circ\circ} = x$ ($x \lor x^{\circ} = 1$) for every $x \in L_1$.

Definition 2.4. A de Morgan subalgebra L_1 of an *MS*-algebra *L* is called a Kleene subalgebra of *L* if $x \wedge x^\circ \leq y \vee y^\circ$ for every *x*, $y \in L_1$.

Theorem 2.5. [1] Let L be an MS-algebra. Then

(1) $L^{\circ\circ} = \{x \in L : x = x^{\circ\circ}\}$ is a de Morgan subalgebra of L, (2) $D(L) = \{x \in L : x^{\circ} = 0\}$ is a filter (filter of dense elements) of L.

For any lattice *L*, let *F*(*L*) denote to the set of all filters of *L*. It is known that (*F*(*L*); \land , \lor) is a distributive lattice if and only if *L* is a distributive lattice, where

$$F \land G = F \cap G$$
 and $F \lor G = \{x \in L : x \ge f \land g, f \in F, g \in G\}$
for every $F, G \in F(L)$.

If *L* is a distributive lattice, then $F \lor G = \{x \in L : x = f \land g, f \in F, g \in G\}$. Also, $[a] = \{x \in L : x \ge a\}$ is a principal filter of *L* generated by *a*.

Definition 2.6. [12] Let $L = (L; \lor, \land, 0_L, 1_L)$ and $L_1 = (L_1; \lor, \land, 0_{L_1}, 1_{L_1})$ be bounded lattices. The map $h: L \to L_1$ is called (0,1) lattice homomorphism if

(1) $0_L h = 0_{L_1}$ and $1_L h = 1_{L_1}$,

- (2) *h* is a \vee -homomorphism, that is, $(x \vee y)h = xh \vee yh$ for every $x, y \in L$,
- (3) *h* is a \wedge -homomorphism, that is, $(x \wedge y)h = xh \wedge yh$ for every $x, y \in L$.

Now we recall some important definitions and results from [1] which needed throughout this paper.

Definition 2.7. [1] An *MS*-algebra (L; \lor , \land , \circ , 0, 1) is called decomposable *MS*-algebra if for every $x \in L$ there exists $d \in D(L)$ such that $x = x^{\circ\circ} \land d$.

The class of decomposable *MS*-algebras contains the class \mathbf{M} of all de Morgan algebras and the class \mathbf{S} of all Stone algebras.

Definition 2.8. [1] A decomposable *MS*-triple is (M, D, φ) , where

- (i) *M* is a de Morgan algebra,
- (ii) *D* is a distributive lattice with 1,
- (iii) φ is a (0, 1)-homomorphism from *M* into *F*(*D*)

such that for every element $a \in M$ and for every $y \in D$ there exists an element $t \in D$ with $a\varphi \cap [y] = [t]$.

Let *L* be a decomposable *MS*-algebra. Define $\varphi(L)$: $L^{\circ\circ} \to F(D(L))$ by

 $a\varphi(L) = [a^{\circ}) \cap D(L)$ for all $a \in L^{\circ \circ}$.

It is known that $\varphi(L)$ is a (0,1) lattice homomorphism and $a\varphi(L) \cap [y)$ is a principal filter of D(L) (see [1]). The triple $(L^{\circ\circ}, D(L), \varphi(L))$ is called the decomposable *MS*-triple associated with *L*.

The following Theorem presents a triple construction for decomposable *MS*-algebras which was proved in [1].

Theorem 2.9. [1] Let (M, D, φ) be a decomposable MS-triple. Then

 $L = \{(a, a^{\circ}\varphi \vee [x)) : a \in M, x \in D\}$

is a decomposable MS-algebra, if we define

 $(a, a^{\circ}\varphi \vee [x)) \vee (b, b^{\circ}\varphi \vee [y)) = (a \vee b, (a^{\circ}\varphi \vee [x)) \cap (b^{\circ}\varphi \vee [y))),$ $(a, a^{\circ}\varphi \vee [x)) \wedge (b, b^{\circ}\varphi \vee [y)) = (a \wedge b, (a^{\circ}\varphi \vee [x)) \vee (b^{\circ}\varphi \vee [y))),$ $(a, a^{\circ}\varphi \vee [x))^{\circ} = (a^{\circ}, a\varphi),$

 $1_L = (1, [1)),$ $0_L = (0, D).$

Conversely, every decomposable MS-algebra L can be associated with the decomposable MS-triple ($L^{\circ\circ}$, D(L), $\varphi(L)$), where $a\varphi(L) = [a^{\circ}) \cap D(L)$.

The decomposable *MS*-algebra *L* constructed by Theorem 2.9 is called the decomposable *MS*-algebra associated with the decomposable *MS*-triple(*M*, *D*, φ), the construction of *L* described in Theorem 2.9 is called a decomposable *MS*-construction and Theorem 2.9 is called the construction Theorem.

Lemma 2.10. [1] Let L be a decomposable MS-algebra associated with the decomposable MS-triple (M, D, φ). Then

(1) $L^{\circ\circ} = \{(a, a^{\circ}\varphi) : a \in M\},\$

(2)
$$D(L) = \{(1, [x)) : x \in D\},\$$

(3) $D\cong D(L)$ and $M\cong L^{\circ\circ}$.

3. Homomorphisms of decomposable MS-algebras

In this section, we define a homomorphisms between two decomposable *MS*-triples. A one-to-one correspondence between homomorphisms of decomposable *MS*-algebras and homomorphisms of decomposable *MS*-triples is obtained.

Definition 3.1. A (0,1) lattice homomorphism $h: L \to L_1$ of an *MS*-algebra *L* into an *MS*-algebra L_1 is called a homomorphism if $x^{\circ}h = (xh)^{\circ}$ for all $x \in L$.

Let $h: L \to L_1$ be a homomorphism of an *MS*-algebra into an *MS*-algebra L_1 . Then, we use $h_{L^{\infty}}, h_{D(L)}$ to denote the restrictions of a homomorphism h to L^{∞} and D(L), respectively.

Lemma 3.2. A homomorphism h: $L \rightarrow L_1$ of a decomposable MSalgebra into a decomposable MS-algebra L_1 is onto (one-to-one) if and only if $h_{L^{\infty}}$ and $h_{D(L)}$ are onto (one-to-one).

Proof. Combine homomorphism's properties with Definition 2.7. □

Now, we define a homomorphism of decomposable MS-triples.

Definition 3.3. Let (M, D, φ) and (M_1, D_1, φ_1) be decomposable *MS*-triples. A homomorphism of the triple (M, D, φ) into (M_1, D_1, φ_1) is a pair (f, g), where f is a homomorphism of M into M_1, g is a homomorphism of D into D_1 preserving 1 such that for every $a \in M$,

$$a\varphi g \subseteq af\varphi_1 \tag{1}$$

Lemma 3.4. Let (f, g) be a homomorphism of a decomposable MStriple (M, D, φ) into a decomposable MS-triple (M_1, D_1, φ_1) . Let $a, b \in M$ and $x, y, t \in D$. Then

(i)
$$a\varphi \cap [y] = [t]$$
 implies $af\varphi_1 \cap [yg] = [tg]$,

(ii)
$$(a^{\circ}f\varphi_1 \vee [xg)) \cap (b^{\circ}f\varphi_1 \vee [yg)) = (a \vee b)^{\circ}f\varphi_1 \vee [tg)$$

Proof.

- (i) Let $a\varphi \cap [y] = [t)$. Then $t = x_1 \vee y, x_1 \in a\varphi$, so $x_1g \in a\varphi g \subseteq af\varphi_1$. If $t_1 \in af\varphi_1 \cap [yg)$, then $t_1 \ge x_1g \vee yg = (x_1 \vee y)g = tg$. Hence $af\varphi_1 \cap [yg) \subseteq [tg)$. Conversely, $af\varphi_1 \cap [yg) \supseteq a\varphi g \cap [yg) = (a\varphi \cap [y))g = [t)g = [tg]$.
- (ii) Let $a^{\circ}\varphi \cap [y] = [t_1)$ and $b^{\circ}\varphi \cap [x] = [t_2)$ for some $t_1, t_2 \in D$. Then by $(1), a^{\circ}f\varphi_1 \cap [yg] = [t_1g]$ and $b^{\circ}f\varphi_1 \cap [xg] = [t_2g]$. So by distributivity of $F(D_1)$, we get

 $(a^{\circ}f\varphi_1) \vee [xg)) \cap (b^{\circ}f\varphi_1 \vee [yg))$

$$= (a^{\circ}f\varphi_{1} \cap (b^{\circ}f\varphi_{1} \vee [yg))) \vee ([xg) \cap (b^{\circ}f\varphi_{1} \vee [yg)))$$

$$= (a^{\circ}f\varphi_{1}) \cap b^{\circ}f\varphi_{1}) \vee (a^{\circ}f\varphi_{1} \cap [yg)) \vee ([xg) \cap b^{\circ}f\varphi_{1})$$

$$\vee ([xg) \cap [yg))$$

 $= (a \lor b)^{\circ} f \varphi_1 \lor [t_1g) \lor [t_2g) \lor [(x \lor y)g)$

$$= (a \lor b)^{\circ} f \varphi_1 \lor [(t_1 \land t_2 \land (x \lor y))g = (a \lor b)^{\circ} f \varphi_1 \lor [tg],$$

where, $t = t_1 \land t_2 \land (x \lor y) \in D.$

The following Theorem shows that homomorphisms of decomposable *MS*-algebras are the same as homomorphisms of decomposable *MS*-triples.

Theorem 3.5. Let *L* and *L*₁ be decomposable MS-algebras, (M, D, φ) and (M_1, D_1, φ_1) be the associated decomposable MS-triples, respectively. Let *h* be a homomorphism of *L* into *L*₁ and *h*_M, *h*_D the restrictions of *h* to *M* and *D*, respectively. Then (h_M, h_D) is a homomorphism of the decomposable MS-triples. Conversely, every homomorphism (f, g) of the decomposable MS-triples uniquely determines a homomorphism *h* of *L* into *L*₁ with $h_M = f, h_D = g$ by the following rule:

$$xh = x^{\circ\circ} f \wedge dg$$
, for all $x \in L$,

where $x = x^{\circ\circ} \wedge d$ for some $d \in D(L)$.

Proof. To prove the first statement, we have to verify that $a\varphi g \subseteq af\varphi_1$, $\forall a \in M$ with $g = h_D$ and $f = h_M$. Evidently,

$$a\varphi h = \{xh : x \in a\varphi\}$$

= $\{xh : x \in [a^\circ) \cap D\}$
 $\subseteq \{y : y \in [(ah)^\circ) \cap D_1\}$

 $=ah\varphi_1.$

Then (h_M, h_D) is a homomorphism of the decomposable *MS*-triples (M, D, φ) and (M_1, D_1, φ_1) .

Conversely, let $a\varphi g \subseteq af\varphi_1$, $\forall a \in M$ holds. We represent the elements of *L* and *L*₁ as in the construction Theorem (Theorem 2.9), that is,

$$L = \{(a, a^{\circ}\varphi \vee [x)) : a \in M, x \in D\},\$$

and

c / · · ·

$$L_1 = \{ (b, b^{\circ}\varphi_1 \lor [y)) : b \in M_1, y \in D_1 \}.$$

Define $h: L \to L_1$ by
 $(a, a^{\circ}\varphi \lor [x])h = (af, (a^{\circ}f)\varphi_1 \lor [xg))$

We will show that *h* is well defined. Let $(a, a^{\circ}\varphi \vee [x)) = (b, b^{\circ}\varphi \vee [y))$. Then a = b and $a^{\circ}\varphi \vee [x) = b^{\circ}\varphi \vee [y)$. Hence, $x \ge x_1 \land y$ and $y \ge y_1 \land x$ for some $x_1, y_1 \in a^{\circ}\varphi$. Since *g* is a homomorphism and $a\varphi g \subseteq af\varphi_1$, $\forall a \in M$, we have $xg \ge x_1g \land yg$ and $yg \ge y_1g \land xg$ for some $x_1g, y_1g \in a^{\circ}\varphi g \subseteq a^{\circ}f\varphi_1$. So we obtain $(a^{\circ}f)\varphi_1 \vee [xg) = (b^{\circ}f)\varphi_1 \vee [yg)$. Thus $(a, a^{\circ}\varphi \vee [x))h = (b, b^{\circ}\varphi_1 \vee [y))h$. Therefore *h* is a map of *L* into L_1 . Obviously, $h_M = f$ and $h_D = g$.

To prove that *h* is a homomorphism, let $(a, a^{\circ}\varphi \vee [x)), (b, b^{\circ}\varphi \vee [y)) \in L$. We get

 $((a, a^{\circ}\varphi \vee [x)) \wedge (b, b^{\circ}\varphi \vee [y)))h$ = $(a \wedge b, (a^{\circ}\varphi \vee [x)) \vee (b^{\circ}\varphi \vee [y)))h$ = $(a \wedge b, (a \wedge b)^{\circ}\varphi \vee [x \wedge y))h$ = $((a \wedge b)f, (a \wedge b)^{\circ}f\varphi \vee [(x \wedge y)g))$ = $(af, (a^{\circ}f)\varphi_{1} \vee [xg)) \wedge (bf, (b^{\circ}f)\varphi_{1} \vee [yg))$ = $(a, a^{\circ}\varphi \vee [x))h \wedge (b, b^{\circ}\varphi \vee [y))h$, Let $a^{\circ}\varphi \cap [y] = [t_{1})$ and $b^{\circ}\varphi \cap [y] = [t_{2})$ for t_{2} .

Let $a^{\circ}\varphi \cap [y] = [t_1)$ and $b^{\circ}\varphi \cap [x] = [t_2)$ for $t_1, t_2 \in D$. Thus by Lemma 4.2 (ii), we have

 $((a, a^{\circ}\varphi \vee [x)) \vee (b, b^{\circ}\varphi \vee [y)))h$

- $= (a \lor b, (a^{\circ} \varphi \lor [x)) \cap (b^{\circ} \varphi \lor [y)))h$
- $= (a \lor b, (a \lor b)^{\circ} \varphi \lor [t))h$
- $= ((a \lor b)f, (a \lor b)^{\circ}f\varphi_1 \lor [tg))$
- $= ((a \lor b)f, (a^{\circ}f\varphi_1 \lor [xg)) \cap (b^{\circ}f\varphi_1 \lor [yg))$
- $= (af, a^{\circ}f\varphi_1 \vee [xg)) \vee (bf, b^{\circ}f\varphi_1 \vee [yg))$
- $= (a, a^{\circ}\varphi \vee [x))h \vee (b, b^{\circ}\varphi \vee [y))h,$

where

$$(a^{\circ}\varphi \vee [x)) \cap (b^{\circ}\varphi \vee [y))$$

 $= ((a^{\circ}\varphi \vee [x)) \cap b^{\circ}\varphi) \vee ((a^{\circ}\varphi \vee [x)) \cap [y))$

$$= (a^{\circ}\varphi \cap b^{\circ}\varphi) \vee ([x) \cap b^{\circ}\varphi) \vee (a^{\circ}\varphi \cap [y)) \vee ([x) \cap [y))$$

 $= (a \lor b)^{\circ} \varphi \lor [t_1) \lor [t_2) \lor [x \lor y)$

 $= (a \lor b)^{\circ} \varphi \lor [t_1 \land t_2 \land (x \lor y))$

=
$$(a \lor b)^{\circ} \varphi \lor [t]$$
 where $t = t_1 \land t_2 \land (x \lor y)$

Also

$$(a, a^{\circ}\varphi \vee [x))^{\circ}h = (a^{\circ}, a\varphi)h$$

= $(a^{\circ}f, af\varphi_1)$
= $(af, (af)^{\circ}\varphi_1 \vee [xg))^{\circ}$
= $((a, a^{\circ}\varphi \vee [x))h)^{\circ}.$

Therefore *h* s a homomorphism of *L* into L_1 . It is easy to see the uniqueness of *h* with $h_M = f$ and $h_D = g$. \Box

4. Subalgebras of decomposable MS-algebras

According to the characterization of a decomposable *MS*-algebra by means of the decomposable *MS*-triple (M, D, φ), we characterize the subalgebras of decomposable *MS*-algebra and solve the fill-in problem for their associated decomposable *MS*-triples.

Definition 4.1. A bounded sublattice L_1 of a decomposable *MS*-algebra *L* is called a subalgebra of *L* if

(1)
$$x^{\circ} \in L_1$$
 for every $x \in L_1$,

(2) for every $x \in L_1$, there exists $d \in D(L_1)$ such that $x = x^{\circ \circ} \wedge d$.

The decomposable *MS*-triple associated with a subalgebra of a decomposable *MS*-algebras is determined in the following:

Theorem 4.2. Let L_1 be a subalgebra of the decomposable MS-algebra L. Then $L_1^{\infty} = L_1 \cap L^{\infty}$ is a subalgebra of L^{∞} and $D(L_1) = L_1 \cap D(L)$ is a sublattice of D(L) containing 1. The decomposable MS-triple associated with L_1 is $(L_1^{\infty}, D(L_1), \varphi_1)$, where φ_1 is given by $a\varphi_1 = a\varphi \cap D(L_1)$ for every $a \in L_1^{\infty}$.

Proof. Obviously $0, 1 \in L_1 \cap L^{\infty} = L_1^{\infty}$. Let $x, y \in L_1^{\infty}$. Then $x, y \in L_1 \cap L^{\infty}$, so $x \land y, x \lor y \in L_1, L^{\infty}$. Thus $x \land y, x \lor y \in L_1^{\infty}$. Then L_1^{∞} is a bounded sublattice of L^{∞} . Now, let $x \in L_1^{\infty}$. Then $x \in L_1$ and $x \in L^{\infty}$. Thus $x^{\circ} \in L_1$ and $x^{\circ} \in L^{\infty}$ as L_1 is a subalgebra of a decomposable *MS*-algebra *L* and L_1^{∞} is a subalgebra of a de Morgan algebra L^{∞} , respectively. Therefore L_1^{∞} is a subalgebra of L^{∞} . Since each of L_1 and D(L) is a sublattice of *L* containing 1, then $D(L_1) = L_1 \cap D(L)$ is a sublattice of D(L) containing 1. Recall that the map $\varphi \colon L^{\infty} \to F(D(L))$ defined by $a\varphi = [a^{\circ}) \cap D(L)$ is a (0,1) lattice homomorphism. Now, define $\varphi_1 \colon L_1^{\infty} \to F(D(L_1))$ by

 $a\varphi_1 = a\varphi \cap D(L_1)$ for all $a \in L_1^{\circ\circ}$.

We have to show that φ_1 is a (0,1) lattice homomorphism and $a\varphi_1 \cap [x)$ is a principal filter of $D(L_1)$ for every $a \in L_1^{\circ\circ}$ and for every $x \in D(L_1)$. It is clear that $0\varphi_1 = [1)$ and $1\varphi_1 = D(L_1)$. Let $a, b \in L_1^{\circ\circ}$. Then we get

 $(a \wedge b)\varphi_1 = (a \wedge b)\varphi \cap D(L_1)$

= $(a\varphi \cap b\varphi) \cap D(L_1)$ as φ is a \wedge -homomorphism = $(a\varphi \cap D(L_1)) \cap (b\varphi \cap D(L_1))$ by distributivity of $F(D(L_1))$

 $= a\varphi_1 \cap b\varphi_1,$

and

 $(a \lor b)\varphi_1 = (a \lor b)\varphi_1 \cap D(L_1)$

- = $(a\varphi \lor b\varphi) \cap D(L_1)$ as φ is a \lor -homomorphism = $(a\varphi \cap D(L_1)) \lor (b\varphi \cap D(L_1))$ by distributivity of $F(D(L_1))$
- $= a\varphi_1 \vee b\varphi_1.$

For every $a \in L_1^{\circ\circ}$ and every $x \in D(L_1)$, we have

 $a\varphi_1 \cap [x] = a\varphi \cap D(L_1) \cap [x)$ = $a\varphi \cap [x)$ as $x \in D(L_1)$ = $[a^\circ) \cap D(L) \cap [x)$ where $a\varphi = [a^\circ) \cap D(L)$ = $[a^\circ) \cap [x)$ as $x \in D(L)$ = $[a^\circ \lor x)$.

Since $D(L_1)$ is a filter of L_1 and $x \in D(L_1)$, then $a^{\circ} \lor x \in D(L_1)$. Therefore $a\varphi_1 \cap [x)$ is a principal filter of $D(L_1)$ and $(L_1^{\circ\circ}, D(L_1), \varphi_1)$ is the decomposable *MS*-triple associated with L_1 . \Box

A characterization of subalgebras of a decomposable *MS*-algebra is given by solving the following fill-in problem.

Theorem 4.3. Let *L* be a decomposable MS-algebra, M_1 a subalgebra of $L^{\circ\circ}$, and D_1 a sublattice of D(L) containing 1. We can fill-in $(M_1, D_1, ?)$ such that it will become the decomposable MS-triple associated with a subalgebra of *L* iff

$$a \lor d \in D_1$$
 for every $a \in M_1$ and for every $d \in D_1$. (2)

Proof. If (M_1, D_1, φ_1) is the decomposable *MS*-triple associated with a subalgebra L_1 of L, then $M_1 = L_1^{\circ\circ}$ and $D_1 = D(L_1)$. Thus for every $a \in M_1$ and for every $d \in D_1$, we have $a \lor d \in L_1$. Then $(a \lor d)^\circ = a^\circ \land d^\circ = a^\circ \land 0 = 0$ implies that $a \lor d \in D(L)$. Hence $a \lor d \in L_1 \cap D(L)$. Thus by Theorem 4.2, $a \lor d \in D_1$.

Conversely, assume that $a \lor d \in D_1$, $\forall a \in M_1, \forall d \in D_1$. Let $M = L^{\circ\circ}, D = D(L)$ and $\varphi = \varphi(L)$. Represent the elements of *L* as in the construction Theorem (Theorem 2.9), that is,

$$L = \{(a, a^{\circ}\varphi \vee [x)) : a \in M, x \in D\}.$$

Let

 $L_1 = \{(a, a^\circ \varphi \vee [x)) : a \in M_1, x \in D_1\}.$

We will show that L_1 is a subalgebra of L. It is clear that $0_L = (0, D)$ and $1_L = (1, [1))$ belong to L_1 . Now, let $(a, a^\circ \varphi \vee [x)), (b, b^\circ \varphi \vee [y)) \in L_1$. Then we get

$$(a, a^{\circ}\varphi \vee [x)) \wedge (b, b^{\circ}\varphi \vee [y)) = (a \wedge b, (a \wedge b)^{\circ}\varphi \vee [x \wedge y)) \in L_{1},$$

$$(a, a^{\circ}\varphi \vee [x)) \vee (b, b^{\circ}\varphi \vee [y)) = (a \vee b, (a^{\circ}\varphi \vee [x)) \cap (b^{\circ}\varphi \vee [y)))$$

$$= (a \vee b, (a \vee b)^{\circ}\varphi \vee [t) \in L_{1},$$

where

$$(a^{\circ}\varphi \vee [x)) \cap (b^{\circ}\varphi \vee [y))$$

$$= ((a^{\circ}\varphi \vee [x)) \cap b^{\circ}\varphi) \vee ((a^{\circ}\varphi \vee [x)) \cap [y))$$

$$= (a^{\circ}\varphi \cap b^{\circ}\varphi) \vee ([x) \cap b^{\circ}\varphi) \vee (a^{\circ}\varphi \cap [y)) \vee ([x) \cap [y))$$

$$= (a \vee b)^{\circ}\varphi \vee ([b) \cap D \cap [x)) \vee ([a) \cap D \cap [y)) \vee [x \vee y)$$

$$= (a \vee b)^{\circ}\varphi \vee [b \vee x) \vee [a \vee y) \vee [x \vee y) \text{ where } b \vee x, a \vee y \in D_1$$
by (2)

- = $(a \lor b)^{\circ} \varphi \lor [t_1) \lor [t_2) \lor [x \lor y)$ where $t_1 = b \lor x, t_2 = a \lor y$
- $= (a \lor b)^{\circ} \varphi \lor [t)$, where $t = t_1 \land t_2 \land (x \lor y) \in D_1$.

Then L_1 is a bounded sublattice of L. Let $(a, a^{\circ}\varphi \vee [x)) \in L_1$. Then $(a, a^{\circ}\varphi \vee [x))^{\circ} = (a^{\circ}, a\varphi) \in L_1$ as $a^{\circ} \in M_1$. Then L_1 is a subalgebra of an *MS*-algebra L. Now, we show that L_1 is decomposable. It is observed that

$$L_1^{\circ\circ} = \{(a, a^{\circ}\varphi) : a \in M_1\} \text{ and } D(L_1) = \{(1, [x)) : x \in D_1\}.$$

For any $(a, a^{\circ}\varphi \vee [x)) \in L_1$, we have

$$(a, a^{\circ}\varphi \vee [x)) = (a, a^{\circ}\varphi) \wedge (1, [x)) = (a, a^{\circ}\varphi \vee [x))^{\circ\circ} \wedge (1, [x)),$$

where $(1, [x)) \in D(L_1).$

Thus L_1 is a decomposable *MS*-algebra. Therefore L_1 is a subalgebra of *L*.

Now we show that $L_1^{\circ\circ} \cong M_1$ and $D(L_1) \cong D_1$. Define

 $\psi: M_1 \longrightarrow L_1^{\circ \circ}$ by $a\psi = (a, a^{\circ}\varphi)$, for all $a \in M_1$,

and

 $\chi : D_1 \longrightarrow D(L_1)$ by $x\chi = (1, [x))$, for all $a \in D_1$.

By easy computation we can prove that ψ and χ are isomorphisms. Hence we can fill-in $(M_1, D_1, ?)$ by $a\varphi_1 = a\varphi(L_1) = a\varphi(L) \cap D_1$ such that it will become the decomposable *MS*-triple associated with a subalgebra of *L*. \Box

For Stone subalgebras of a decomposable *MS*-algebra, we consider the following fill in problem.

Corollary 4.4. Let L be a decomposable MS-algebra, B a Boolean subalgebra of L^{∞} , and D_1 a sublattice of D(L) containing 1. We can fill in (B, D_1 , ?) such that it will become the decomposable MS-triple associated with a Stone subalgebra S of L iff

 $a \lor d \in D_1$ for every $a \in B$ and for every $d \in D_1$.

Proof. By the above Theorem 4.3, it is observed that

$$S = \{(a, a^{\circ}\varphi \lor [x)) : a \in B, x \in D_1\}$$

is a subalgebra of a decomposable MS-algebra

$$L = \{(a, a^{\circ}\varphi \vee [x)) : a \in L^{\circ\circ}, x \in D(L)\}$$

It reminds only to prove that *S* satisfies the Stone identity, $z^{\circ} \lor z^{\circ\circ} = 1$ for every $z \in S$. Since *B* is a Boolean algebra, then for any *a*

 \in *B*, we have $a \land a^{\circ} = 0$ and $a \lor a^{\circ} = 1$. Let $(a, a^{\circ} \lor [x)) \in S$. Then we have

 $(a, a^{\circ} \vee [x))^{\circ} \vee (a, a^{\circ} \vee [x))^{\circ \circ}$ $= (a^{\circ}, a\varphi) \vee (a, a^{\circ}\varphi)$ $= (a^{\circ} \vee a, a\varphi \cap a^{\circ}\varphi)$ $= (1, (a \wedge a^{\circ})\varphi) \text{ as } \varphi \text{ is a } \vee -homomorphism}$ $= (1, 0\varphi) \text{ where } 0\varphi = [1)$ = (1, [1)).

Therefore S is a Stone subalgebra of L. \Box

Definition 4.5. A subalgebra L_1 of a decomposable *MS*-algebra *L* is called a K_2 -subalgebra of *L* if for every $x, y \in L_1$, the following two condition are hold.

(1) $x \wedge x^\circ = x^{\circ\circ} \wedge x^\circ$, (2) $x \wedge x^\circ \le y \lor y^\circ$.

For K_2 -subalgebras of a decomposable *MS*-algebra, we solve the following fill-in problem.

Theorem 4.6. Let *L* be a decomposable MS-algebra, *K* a Kleene subalgebra of $L^{\circ\circ}$, and D_1 a sublattice of D(L)containing 1. We can fill-in (*K*, D_1 , ?) such that it will become the decomposable MS-triple associated with a K_2 -subalgebra L_1 if the following conditions are hold:

(1) $a \lor d \in D_1$ for every $a \in K$ and for every $d \in D_1$, (2) $a \varphi \lor a^\circ \varphi = D$ for every $a \in K$.

Proof. By Theorem 4.3,

 $L_1 = \{ (a, a^{\circ} \varphi \vee [x)) : a \in K, x \in D_1 \}.$

is a subalgebra of $L = \{(a, a^{\circ}\varphi \vee [x)) : a \in L^{\circ\circ}, x \in D(L)\}$ such that $L_1^{\circ\circ} \cong K$ nd $D(L_1)\cong D_1$. Therefore we can fill-in $(K, D_1, ?)$ by $a\varphi_1 = a\varphi(L_1) = a\varphi(L) \cap D_1$ such that it will become the decomposable *MS*-triple associated with a subalgebra L_1 of *L*.

Now, we have to prove that L_1 satisfies conditions (1) and (2) of Definition 4.5. Let $(a, a^{\circ}\varphi \vee [x)), (b, b^{\circ}\varphi \vee [y)) \in L_1$. Then we get

 $(a, a^{\circ}\varphi \vee [x)) \wedge (a, a^{\circ}\varphi \vee [x))^{\circ}$

- $= (a, a^{\circ}\varphi \vee [x)) \wedge (a^{\circ}, a\varphi)$
- $= (a \wedge a^\circ, a^\circ \varphi \vee a \varphi \vee [x))$
- $= (a \wedge a^{\circ}, a^{\circ}\varphi \vee a\varphi) \text{ as } x \in D = a\varphi \vee a^{\circ}\varphi$
- $= (a, a^{\circ}\varphi) \wedge (a^{\circ}, a\varphi)$
- $= (a, a^{\circ}\varphi \vee [x))^{\circ \circ} \wedge (a, a^{\circ}\varphi \vee [x))^{\circ}.$

Since *K* is a Kleene subalgebra of $L^{\circ\circ}$, then $a \wedge a^{\circ} \leq b \vee b^{\circ}$ for any $a \in K$ and

$$((a, a^{\circ}\varphi \vee [x)) \land (a, a^{\circ}\varphi \vee [x))^{\circ}) \lor ((b, b^{\circ}\varphi \vee [y)) \lor (b, b^{\circ}\varphi \vee [y))^{\circ})$$

- $= ((a, a^{\circ}\varphi \vee [x)) \wedge (a^{\circ}, a\varphi)) \vee ((b, b^{\circ}\varphi \vee [y)) \vee (b^{\circ}, b\varphi))$
- $= (a \wedge a^{\circ}, a^{\circ}\varphi \vee a\varphi \vee [x)) \vee (b \vee b^{\circ}, (b^{\circ}\varphi \vee [y)) \cap b\varphi)$
- $= (a \wedge a^{\circ}, D) \vee (b \vee b^{\circ}, (b^{\circ}\varphi \vee [y)) \cap b\varphi), \text{ as } a^{\circ}\varphi \vee a\varphi = D \supseteq [x)$
- $= ((a \wedge a^{\circ}) \vee (b \vee b^{\circ}), D \cap (b^{\circ}\varphi \vee [y)) \cap b\varphi)$
- $= (b \lor b^{\circ}, (b^{\circ}\varphi \lor [y)) \cap b\varphi) \text{ as } a \land a^{\circ} \le b \lor b^{\circ}$ and $(b^{\circ}\varphi \lor [y)) \cap b\varphi) \subseteq D$

$$= (b, b^{\circ}\varphi \vee [y)) \vee (b^{\circ}, b\varphi)$$

$$= (b, b^{\circ}\varphi \vee [y)) \vee (b, b^{\circ}\varphi \vee [y))^{\circ}.$$

Consequently L_1 is a K_2 -subalgebra of L. \Box

In closing this paper, we introduce important results concerning subalgebras of a decomposable *MS*-algebra constructing from the decomposable *MS*-triple (M, D, φ).

Theorem 4.7. Let *L* be a decomposable MS-algebra associated with the decomposable MS-triple (M, D, φ), M₁ a subalgebra of M, and

 D_1 a sublattice of D containing 1. Then $L_1 = \{(a, a^{\circ}\varphi \vee [x)) \in L : a \in M_1, x \in D_1\}$ is a subalgebra of L iff

$$a\varphi \cap [x)$$
 is a principal filter of D_1 for every $a \in M_1$
and for every $x \in D_1$. (3)

Proof. Let $L_1 = \{(a, a^\circ \varphi \lor [x)) \in L : a \in M_1, x \in D_1\}$ is a subalgebra of a decomposable *MS*-algebra $L = \{(a, a^\circ \varphi \lor [x)) : a \in M, x \in D\}$. Then $L_1^{\circ\circ} = \{(a, a^\circ \varphi) : a \in M_1\} \cong M_1$ and $D(L_1) = \{(1, [x)) : x \in D_1\} \cong D_1$. Also, a map $\varphi(L_1) : L_1^{\circ\circ} \to F(D(L_1))$ defined by $(a, a^\circ \varphi)\varphi(L_1) = [(a, a^\circ \varphi)^\circ) \cap D(L_1)$ is (0,1) lattice homomorphism and $(a, a^\circ \varphi)\varphi(L_1) \cap [(1, [x)))$ is a principal filter of $D(L_1)$ for every $(a, a^\circ \varphi) \in L_1^{\circ\circ}$ and for every $(1, [x)) \in D(L_1)$. Hence

$$(a, a^{\circ}\varphi)\varphi(L_1) \cap [(1, [x))) = [(1, [z)))$$
 for some $z \in D$.

Then

 $\begin{aligned} &(a, a^{\circ}\varphi)\varphi(L_{1}) \cap [(1, [x)) = [(1, [z))) \text{ for some } z \in D_{1} \\ &\Rightarrow [(a, a^{\circ}\varphi)^{\circ}) \cap D(L_{1}) \cap [(1, [x)) = [(1, [z))) \\ &\Rightarrow [(a^{\circ}, a\varphi)) \cap [(1, [x)) = [(1, [z))) \text{ as } (1, [x)) \in D(L_{1}) \\ &\Rightarrow [(a^{\circ}, a\varphi) \vee (1, [x))) = [(1, [z))) \\ &\Rightarrow [(a^{\circ} \vee 1, a\varphi \cap [x)) = [(1, [z))) \\ &\Rightarrow [(1, a\varphi \cap [x))) = [(1, [z))) \\ &\Rightarrow (1, a\varphi \cap [x)) = [(1, [z))) \\ &\Rightarrow a\varphi \cap [x) = [z) \text{ where } z \in D_{1}. \end{aligned}$ Then $a\varphi \cap [x)$ is a principal filter of D_{1} for every $a \in M_{1}$ and for

Then $a\varphi \cap [x]$ is a principal filter of D_1 for every $a \in M_1$ and for every $x \in D_1$. Then condition (3) is hold. Conversely, let

$$L = \{ (a, a^{\circ}\varphi \vee [x)) : a \in M, x \in D \}.$$

be the decomposable *MS*-algebra constructing from (*M*, *D*, φ) (see Theorem 2.9). Then by Lemma 2.10 (1) and (2), respectively, we have

 $L^{\circ\circ} = \{(a, a^{\circ}\varphi) : a \in M\} \text{ and } D(L) = \{(1, [x)) : x \in D_1\}.$

It is clear that (0, D), (1, [1)) $\in L_1$. Let $(a, a^\circ \varphi \lor [x))$, $(b, b^\circ \varphi \lor [y)) \in L_1$. Then we get

 $(a, a^{\circ}\varphi \vee [x)) \wedge (b, b^{\circ}\varphi \vee [y))$ = $(a \wedge b, a^{\circ}\varphi \vee [x) \vee b^{\circ}\varphi \vee [y))$ = $(a \wedge b, (a \wedge b)^{\circ}\varphi \vee [x \wedge y)) \in L_1$ as $a \vee b \in M_1$ and $x \vee y \in D_1$,

and

$$(a, a^{\circ}\varphi \vee [x)) \vee (b, b^{\circ}\varphi \vee [y))$$

= $(a \vee b, (a^{\circ}\varphi \vee [x)) \cap (b^{\circ}\varphi \vee [y)))$
= $(a \vee b, (a \vee b)^{\circ}\varphi \vee [t)) \in L_1$ for some $t \in D_1$

where

- $(a^\circ \varphi \vee [x)) \cap (b^\circ \varphi \vee [y))$
- $= ((a^{\circ}\varphi \vee [x)) \cap b^{\circ}\varphi) \vee ((a^{\circ}\varphi \vee [x)) \cap [y)) \text{ by distributivity}$ $= (a^{\circ}\varphi \cap b^{\circ}\varphi) \vee ((b^{\circ}\varphi \cap [x)) \vee ((a^{\circ}\varphi \cap [y)) \vee ([x) \cap [y))$
- by distributivity
- $= (a \lor b)^{\circ} \varphi \lor [t_1) \lor [t_2) \lor [x \lor y) \text{ as } b^{\circ} \varphi \cap [x] = [t_1), t_1 \in D_1$ and $a^{\circ} \varphi \cap [y] = [t_2), t_2 \in D_1$ by (3)
- $= (a \lor b)^{\circ} \varphi \lor [t)$ where $t = t_1 \land t_2 \land (x \lor y) \in D_1$.

Hence L_1 is a bounded sublattice of *L*. Also, let $(a, a^\circ \varphi \vee [x]) \in L_1$. Then $(a, a^\circ \varphi \vee [x])^\circ = (a^\circ, a\varphi) \in L_1$, because $a^\circ \in M_1$. Now,

$$D(L_1) = \{ (a, a^\circ \varphi \lor [x)) \in L_1 : (a, a^\circ \varphi \lor [x))^\circ = (0, D) \}$$

= $\{ (a, a^\circ \varphi \lor [x)) \in L_1 : (a^\circ, a\varphi) = (0, D) \}$
= $\{ (a, a^\circ \varphi \lor [x)) \in L_1 : a = 1 \}$
= $\{ (1, [x)) : x \in D_1 \}$

 $\cong D_1.$

If $(a, a^{\circ}\varphi \vee [x)) \in L_1$, then $(1, [x)) \in D(L_1)$ and $(a, a^{\circ}\varphi \vee [x))^{\circ\circ} \wedge (1, [x)) = (a, a^{\circ}\varphi) \wedge (1, [x))$ $= (a \wedge 1, a^{\circ}\varphi \vee [x))$ $= (a, a^{\circ}\varphi \vee [x)).$

Therefore L_1 is a subalgebra of L. Consequently, $L_1^{\circ\circ}$ is a subalgebra of $L^{\circ\circ}$ and

$$L_1^{\circ\circ} = \{ (a, a^\circ \varphi \vee [x))^{\circ\circ} : (a, a^\circ \varphi \vee [x)) \in L_1 \}$$

= $\{ (a, a^\circ \varphi) : a \in M_1 \}$
 $\cong M_1,$

completing the proof of Theorem 4.7. \Box

Let $(L; \lor, \land, \circ, 0, 1)$ be a de Morgan algebra. Consider the set

 $Z(L) = \{x \in L : x \lor x^\circ = 1\}$

The set Z(L) is called the center of *L*. Then we verify the following:

Lemma 4.8. Let $(L; \lor, \land, \circ, 0, 1)$ be a de Morgan algebra. Then the center Z(L) is the greatest Boolean subalgebra of L.

Proof. Clearly, 0, $1 \in Z(L)$. Let $x, y \in Z(L)$. Then $x \lor x^\circ = 1$ and $y \lor y^\circ = 1$. Now

$$(x \lor y) \lor (x \lor y)^{\circ} = (x \lor y) \lor (x^{\circ} \land y^{\circ})$$

= $(x \lor y \lor x^{\circ}) \land (x \lor y \lor y^{\circ})$
= 1,
$$(x \land y) \lor (x \land y)^{\circ} = (x \land y) \lor (x^{\circ} \lor y^{\circ})$$

= $(x \lor x^{\circ} \lor y^{\circ}) \land (y \lor x^{\circ} \lor y^{\circ})$

Thus Z(L) is a bounded sublattice of L. Let $x \in Z(L)$. Thus

$$x^{\circ} \lor x^{\circ \circ} = x^{\circ} \lor x = 1$$
 as $x = x^{\circ \circ}$ for all $x \in L$.

= 1.

Then $x^{\circ} \lor x^{\circ \circ} = 1$ implies $x^{\circ} \in Z(L)$. Therefore Z(L) is a subalgebra of *L*. Now, suppose that *B* is any Boolean subalgebra of *L*. Let $x \in B$. Thus $x \lor x^{\circ} = 1$. Then $x \in Z(L)$. This deduce that $B \subseteq Z(L)$ and Z(L) is the largest Boolean subalgebra of *L*. \Box

In the following Theorem we obtain the greatest Stone subalgebra of a decomposable *MS*-algebra constructing from the decomposable *MS*-triple (M, D, φ).

Theorem 4.9. Let *L* be a decomposable MS-algebra associated with the decomposable MS-triple (M, D, φ), *Z*(*M*) the center of *M* and *D*₁ = *D*. Then we have

- (1) $Z(L^{\circ\circ}) = \{(a, a^{\circ}\varphi) : a \in Z(M)\},\$
- (2) $L_1 = \{(a, a^{\circ}\varphi \vee [x)) \in L : a \in Z(M)\}$ is the greatest Stone subalgebra of L such that $D(L_1) = D(L)$ and $L_1^{\circ\circ} = Z(L^{\circ\circ})$.

Proof. Since *L* is constructed from the decomposable *MS*-triple (*M*, *D*, φ), then by Theorem 2.9, we have

$$L = \{(a, a^{\circ}\varphi \vee [x)) : a \in M, x \in D\}.$$

Consequently by Corollary 2.10 (1) and (2), respectively, we have

$$L^{\circ\circ} = \{ (a, a^{\circ}\varphi) : a \in M \}.$$

and

 $D(L) = \{ (1, [x)) : x \in D \}.$

(1) By Lemma 4.8, the center $Z(L^{\circ\circ})$ of $L^{\circ\circ}$ is the greatest Boolean subalgebra of the de Morgan algebra $L^{\circ\circ}$. Now we get

$$Z(L^{\circ\circ}) = \{(a, a^{\circ}\varphi) \in L^{\circ\circ} : (a, a^{\circ}\varphi)^{\circ} \lor (a, a^{\circ}\varphi)^{\circ\circ} = (1, [1))\}$$

$$= \{ (a, a^{\circ}\varphi) \in L^{\circ\circ} : (a^{\circ}, a\varphi) \lor (a, a^{\circ}\varphi) = (1, [1)) \}$$
$$= \{ (a, a^{\circ}\varphi) \in L^{\circ\circ} : (a \lor a^{\circ}, (a \lor a^{\circ})\varphi) = (1, [1)) \}$$
$$= \{ (a, a^{\circ}\varphi) \in L^{\circ\circ} : a \lor a^{\circ} = 1 \}$$

 $=\{(a, a^{\circ}\varphi)\in L^{\circ\circ}: a\in Z(M)\}.$

(2) Since $D_1 = D$, then $a\varphi \cap [x)$ is a principal filter of D for every $a \in Z(M)$ and for every $x \in D$. Hence the sufficient condition (3) of Theorem 4.7 holds. Thus by Theorem 4.7, $L_1 = \{(a, a^\circ \varphi \vee [x)) \in L : a \in Z(M), x \in D\}$ is a subalgebra of a decomposable *MS*-algebra L such that $L_1^{\circ\circ} \cong Z(M)$ and $D(L_1)\cong D_1$.

It is observed that

$$D(L_1) = \{(a, a^{\circ}\varphi \vee [x)) \in L_1 : (a, a^{\circ}\varphi \vee [x))^{\circ} = (0, D)\} \\= \{(a, a^{\circ}\varphi \vee [x)) \in L_1 : (a^{\circ}, a\varphi)^{\circ} = (0, D)\} \\= \{(a, a^{\circ}\varphi \vee [x)) \in L_1 : a = 1, x \in D\} \\= \{(1, [x)) : x \in D\} \\= D(L),$$

and

 $L_1^{\circ\circ} = \{(a, a^\circ \varphi \lor [\mathbf{x}))^{\circ\circ} : (a, a^\circ \varphi \lor [\mathbf{x})) \in L_1\}$ = $\{(a, a^\circ \varphi) : a \in Z(M)\}$ = $Z(L^{\circ\circ}).$

Now we will verify that the Stone identity, $z^{\circ} \lor z^{\circ \circ} = 1$ holds for every $z = (a, a^{\circ} \varphi \lor [x)) \in L_1$.

$$(a, a^{\circ}\varphi \vee [x))^{\circ} \vee (a, a^{\circ}\varphi \vee [x))^{\circ \circ} = (a^{\circ}, a\varphi) \vee (a, a^{\circ}\varphi)$$
$$= (a \vee a^{\circ}, (a \vee a^{\circ})\varphi)$$
$$= (1, [1)) \text{ as } a \in Z(M).$$

Therefore L_1 is a Stone subalgebra of a decomposable *MS*-algebra L. To prove that L_1 is the greatest Stone subalgebra of L, let S be any Stone subalgebra of L. Let $(a, a^\circ \varphi \lor [x)) \in S$. Hence $(a, a^\circ \varphi \lor [x))^\circ \lor (a, a^\circ \varphi \lor [x))^{\circ\circ} = (1, [1))$. Then $a \lor a^\circ = 1$ implies $a \in Z(M)$. This deduce that $(a, a^\circ \varphi \lor [x)) \in L_1$. Therefore $S \subseteq L_1$. \Box

Acknowledgement

The authors would like to thank the editors and referees for their valuable comments and suggestions to improve this presentation.

References

- [1] A. Badawy, D. Guffova, M. Haviar, Triple construction of decomposable MS-algebras, Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 51 (2) (2012) 53–65.
- [2] T.S. Blyth, J.C. Varlet, On a common abstraction of de morgan algebras and stone algebras, Proc. Roy. Soc. Edinburgh 94A (1983) 301–308.
- [3] T.S. Blyth, J.C. Varlet, Subvarieties of the class of MS-algebras, Proc. Roy. Soc. Edinburgh 95A (1983) 157–169.
- [4] C. Luo, A special kind of principal congruences on MS-algebras, Acta Scientific (2) (2008) 315–320.
- [5] C. Luo, Principal congruence and kernel ideals of symmetric de-Morgan algebras, Quant. Logics Soft Comput. (2012) 557–564.
- [6] A. Badawy, d_L-filters of principal MS-algebras, J. Egyptian Math. Soc. 23 (2015) 463–469.
- [7] S. El-Assar, A. Badawy, Homomorphisms and subalgebras of MS-algebras, Quter Univ. Sci. J. 15 (2) (1995) 279–289.
- [8] A. Badawy, On a construction of modular GMS-algebras, Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 54 (1) (2015) 19–31.
- [9] A. Badawy, On a certain triple construction of GMS-algebras, Appl. Math. Inf. Sci. Lett. 3 (3) (2015) 115–121.
- [10] T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer Verlag, London Limited, 2005.
- [11] T.S. Blyth, J.C. Varlet, Ockham Algebras, Oxford University Press, Oxford, 1994.
- [12] G. Grätzer, Lattice Theory, First Concepts and Distributive Lattices, Lecture Notes, Freeman, San Francisco, California, 1971.