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In this paper, the relativistic harmonic oscillator equation which is a nonlinear ordinary
differential equation is investigated by Homotopy perturbation method. Selection of a linear oper-
ator, which is a part of the main operator, is one of the main steps in HPM. If the aim is to obtain a
periodic solution, this choice does not work here. To overcome this lack, a linear operator is
imposed, and Fourier series of sines will be used in solving the linear equations arise in the
HPM. Comparison of the results, with those of resulted by Differential Transformation and Har-
monic Balance Method, shows an excellent agreement.
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1. Introduction

Mathematical model of Physical and mechanical oscillatory
systems are often leads to a nonlinear differential equations
of the second order. Many researchers are interested to study
these equations. To solve nonlinear differential equations,
there are several semianalytical methods known, such as
Harmonic Balance [1-3], Differential Transformation [4-6],
Adomian decomposition [7,8], and Homotopy perturbation
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[9-16]. But it is important to find the periodic solution to some
of these equations. The relativistic harmonic oscillator intro-
duced by Penfield and Zatzkis [17] in 1956. Mickens [1] has
shown that all solutions to the relativistic oscillator are peri-
odic and he has introduced a method for calculating an ana-
Iytic approximation to the solution. This paper applies
Homotopy perturbation method to find a periodic solution
for relativistic oscillator, but in prior, a special linear operator
should be imposed in the homotopy. HPM uses the parameter
p to transfer a nonlinear problem into an infinite number of
linear sub-problems, and then approximate it by the sum of
solutions of the first several sub-problems. Fourier series of
sines is used to solve these equations.

2. Definition of the problem

Consider the relativistic motion of a particle of rest mass m in a
one dimensional harmonic oscillator force, F = —kx. Where k is
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the elastic constant and X is the displacement (dimensional vari-
able). Newton’s equation of motion can be written in the form

dp
F=2= 1
“, 1)
where 7 is the time coordinate (dimensional variable) and p is
the relativistic momentum which can be written as follows,

my (2)

pzq/l—vz/cf

where v = ile is the speed of the particle and c is the speed of

light. Substituting Eq. (2) into Eq. (1) leads to

F—ﬁ my B m @
Cdr\ \/1— v2/c? B (1- 112/c'2)3/2 dt
_ m ﬁ (3)
[ — (1/e)(ds/diy P dF
Substituting Eq. (3) into Newton’s equation of motion in the
form

dv

D kg = 4
cﬁ+ Xx=0, 4)
results in

P5 k 1 ran\2”

X X _

dt7+m[1_c2(d?)} x=0. )

From Eq. (5), one can write the non-dimensional nonlinear
differential equation of motion for the relativistic oscillator
as follows

3/2
&x dx\*
g 1— (= —
7 + [ (dz) ] x =0, (6)
where x and ¢ are dimensionless variables defined as follows:

WX _
X =—,1= wyt,

¢

where w, = /k/m is the angular frequency for the non-rela-
tivistic oscillator (linear oscillator). Let us consider the follow-
ing initial conditions on Eq. (6).

x(0) = 0,x'(0) = B. (7)

Mickens [1] has shown that all the motions corresponding to
Eq. (6) are periodic and the period depends on the values
of5. In addition, he has shown that the period is

2
2p =— 8
p= (8)
where
2 —2p
o= 2= 9)
2-p

3. Mathematical formulation of the method

3.1. Homotopy perturbation method (HPM )

HPM is a known method for solving the following nonlinear
functional equations
A(u(r)) =0, reg,

B(u,%)zo, rel, (10)

where A is a general differential operator, B is a boundary
operator, and I is the boundary of the domain Q. This method
is well addressed in [9-14] and has been used by many
researchers. There are some papers regarding convergence of
the method [9,12]. The major advantage of Homotopy pertur-
bation method is that the homotopy can be freely constructed
in many forms by selecting different linear operators or initial
approximations, according to initial conditions. This is a use-
ful property to find a periodic solution.

3.2. Periodic solution

To find a periodic solution of Eq. (10), with period 2p, let us
consider the solution as the following series,

u(t) = iak sin(kwt), (11)
=1

where @ = 2. Homotopy can be constructed, with linear and
nonlinear operators, as follows

(1 =p)IL() = L(wo)] + pIN () + L] =0, pe0,1]  (12)
where
L(v) = %v + w?v,
N©G)=Al) = L().
Assume the solution of (12) have the form

v(t,p) = wo(t) + vi(t)p + va(0)p* + - (13)

Substituting Eq. (13) into Eq. (12) and equating the coeffi-
cients of the terms with identical powers of p, results in

P’ L(vo) = L{w),
pl . L‘,(V]) = 1%]7

PriL(vn) = L(v) = R, (14)

where Ry is the coefficient of p* in —p[A(v)]. To solve this lin-
ear equations, rewrite R; as

Hie

R, = Zﬂn sin(nwt), (15)
n=1
where

4
B, _1 / Ry sin(nwt)dt.
P Jp

By determining R, in the form (15), one can easily solve the
Eq. (14). This approach is used to find a periodic solution to
the nonlinear relativistic harmonic oscillator with a predeter-
mined period.

4. Periodic solution to nonlinear relativistic harmonic oscillator

As previously mentioned, Mickens [1] has shown that all the
motions corresponding to Eq. (6) are periodic with the period
2p, in the forms (8) and (9). According to the Eq. (6), initial
conditions (7), and the fact that the solutions are periodic;
the solution can be expressed by a linear combination of the
following base function

{sin(2n + 1)wtjn =0,1,2,...}.
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Table 1 periodic approximate solution by HPM.
p Approximate solution by HPM
0.01 1.0000 x 10~ %sin()—4.687 x 10~%sin(37) + 5.305 x 10~ "3sin(5¢)
0.1 1.0010 x 10~'sin(0.9991)—4.689 x 10~>sin(2.997) + 5.062 x 10~ sin(4.9957)
0.2 2.01 x 10~ 'sin(0.9957)—3.768 x 10~%sin(2.985¢) + 1.652 x 10 Ssin(4.974)
Table 2 Periodic approximate solution by Harmonic balance method [1].
p Approximate solution using Harmonic balance method [1]
0.01 1.00003 x 10 2sin(r)—4.167 x 10 %sin(37) + 4.687 x 10~ sin(57)
0.1 1.0025 x 10~ 'sin(0.9987)—4.173 x 10~sin(2.9967) + 4.369 x 10~*sin(4.9947)
0.2 2.02 x 10~ 'sin(0.995/)—3.354 x 10~ *sin(2.9857) + 1.508 x 10~ %sin(4.974¢)
Table 3 Periodic approximate solution by DTM [4].
p Approximate solution using DTM [4]
0.01 1.00003 x 10~ 2sin(r)—4.688 x 10~ 5sin(37) + 6.121 x 10~ "3sin(57)
0.1 1.0033 x 10~ 'sin(0.998/)—4.7097 x 10 3sin(2.9977) + 8.254 x 10~ *sin(4.841¢)
0.2 2.03 x 10~ 'sin(0.9927)—3.695 x 10~ *sin(3.0517) + 9.257 x 10~ %sin(4.297)
0010 ] 0.10
0.005 0.05 4
]
7 1
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Figure 1  Plots of periodic approximate solution by HAM, HBM, and DTM at = 0.01(left) and = 0.1(right).
So and x(?) is an initial approximation of the solution. Now sup-

x(1) = iak[sin(% + Dot].

k=1

Consider a homotopy as the following

(1 =pILO(s,p)) -

where

2

L0p)) = g3 (6) + 04(5)

A(v(t,

p)) =

_P(t,p)
or?

i

ov(t,p)

ot

/]

3/2

L(xo(1)] + plA(v(2,))] = 0,

v(t,p),

(17)

1s)  Re=gThi g

pose that the solution of Eq. (17) is as the series (13). Asp — 1,

(16) the solution of Eq. (6) will be obtained.

x=limv=vy+vi+vy+---.
p—1

Substituting (13) into (17) results in linear differential equa-
tions of the form (14), where

-1 97 Ap(np)]

p=0

The corresponding linear equations are as follows:
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Figure 2  Plots of periodic approximate solution using HAM, HBM, and DTM at § = 0.2 with respect to ¢ at the interval [0, 10] (left)

and [90, 100] (right).

Vo(0) + 0w() = (1) + wPuo(0), v0(0) = 0,%(0) = . (19)
W)+ @Pi(0) = Ry = (1) + [1 = 04(0) 7o),
p1(0) = 0,v,(0) =0 (20)
V(1) + ?na(1) = Ry

V(1) = 3/ 1= (0 (W)W (1)

+ [1= (4(0) (1), 2(0) = 0,34(0) = 0. 1)

Considering initial conditions (7) and expression (16), the
initial approximation to the solution can be selected as
up(t) = £ sin(wr). Thus (19), yields

vo(t) = up(t) = g sin(wt).

and from (20),

V() + vy (1) Z[)’ln sin[(2n + 1)w1], (22)

n=

where
1 P

Bin == / Ry sin[(2n + 1)nwi]dt.
PJ-p

Note that the term sin(w?) in the right hand side of the Eq.
(22) has been eliminated, to avoid the secular term zsin(w?) in
v1(#). Thus, the solution of (22) is

H
vi(t) = aysin[(2n + Doi] + ¢ sin(wr) + ¢y cos(wr).  (23)
n=1

From initial conditions in (20), ¢; = 0 and ¢, = 0. Substi-
tuting (22) into Eq. (20) leads to

ﬁln

= (—4n? —4n)w?”

Similarly from (21),

+ Z 4n2:8 2n

s1n[(2n + Do,

where

P
By = ! / Ry sin[(2n + 1)nwidt,
P Jp
and so on.

The nonlinear relativistic harmonic oscillator (6), with ini-
tial conditions (7), has been solved for different values of f.
Tables 1-3 show the corresponding periodic approximate solu-
tions obtained by HPM, DTM [4], and Harmonic balance
method [1].The results of three methods are shown in Figs. 1
and 2. It can be seen that the results of HPM and Harmonic
balance method are in more agreement.

5. Conclusions

In this study, Homotopy perturbation method has been ap-
plied to obtain the periodic solution of relativistic harmonic
oscillator. To find a periodic solution, a reliable periodic base
functions and linear operator is proposed. The equation for
different values of f has been solved. Comparing with DTM
and Harmonic balance method shows the solution obtained
by Homotopy perturbation method is in a good agreement
with those of two other methods. Thus, the Homotopy pertur-
bation method is an effective method to find the periodic solu-
tion of the equations such as relativistic harmonic oscillator.
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