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Abstract In this paper, the relativistic harmonic oscillator equation which is a nonlinear ordinary

differential equation is investigated by Homotopy perturbation method. Selection of a linear oper-

ator, which is a part of the main operator, is one of the main steps in HPM. If the aim is to obtain a

periodic solution, this choice does not work here. To overcome this lack, a linear operator is

imposed, and Fourier series of sines will be used in solving the linear equations arise in the

HPM. Comparison of the results, with those of resulted by Differential Transformation and Har-

monic Balance Method, shows an excellent agreement.
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1. Introduction

Mathematical model of Physical and mechanical oscillatory
systems are often leads to a nonlinear differential equations
of the second order. Many researchers are interested to study

these equations. To solve nonlinear differential equations,
there are several semianalytical methods known, such as
Harmonic Balance [1–3], Differential Transformation [4–6],

Adomian decomposition [7,8], and Homotopy perturbation
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[9–16]. But it is important to find the periodic solution to some

of these equations. The relativistic harmonic oscillator intro-
duced by Penfield and Zatzkis [17] in 1956. Mickens [1] has
shown that all solutions to the relativistic oscillator are peri-

odic and he has introduced a method for calculating an ana-
lytic approximation to the solution. This paper applies
Homotopy perturbation method to find a periodic solution
for relativistic oscillator, but in prior, a special linear operator

should be imposed in the homotopy. HPM uses the parameter
p to transfer a nonlinear problem into an infinite number of
linear sub-problems, and then approximate it by the sum of

solutions of the first several sub-problems. Fourier series of
sines is used to solve these equations.

2. Definition of the problem

Consider the relativistic motion of a particle of rest mass m in a
one dimensional harmonic oscillator force, F ¼ �k�x. Where k is
gyptian Mathematical Society. Open access under CC BY-NC-ND license.
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the elastic constant and �x is the displacement (dimensional vari-
able). Newton’s equation of motion can be written in the form

F ¼ dp

d�t
; ð1Þ

where �t is the time coordinate (dimensional variable) and p is
the relativistic momentum which can be written as follows,

p ¼ mvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p ; ð2Þ

where v ¼ d�x
d�t
is the speed of the particle and c is the speed of

light. Substituting Eq. (2) into Eq. (1) leads to

F ¼ d

d�t

mvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
 !

¼ m

ð1� v2=c2Þ3=2
dv

d�t

¼ m

½1� ð1=c2Þðd�x=d�tÞ2�3=2
d2�x

d�t2
: ð3Þ

Substituting Eq. (3) into Newton’s equation of motion in the
form

dv

d�t
þ k�x ¼ 0; ð4Þ

results in

d2�x

d�t2
þ k

m
1� 1

c2
d�x

d�t

� �2
" #3=2

�x ¼ 0: ð5Þ

From Eq. (5), one can write the non-dimensional nonlinear

differential equation of motion for the relativistic oscillator
as follows

d2x

dt2
þ 1� dx

dt

� �2
" #3=2

x ¼ 0; ð6Þ

where x and t are dimensionless variables defined as follows:

x ¼ x0�x

c
; t ¼ x0�t;

where x0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the angular frequency for the non-rela-

tivistic oscillator (linear oscillator). Let us consider the follow-

ing initial conditions on Eq. (6).

xð0Þ ¼ 0; x0ð0Þ ¼ b: ð7Þ

Mickens [1] has shown that all the motions corresponding to
Eq. (6) are periodic and the period depends on the values
ofb. In addition, he has shown that the period is

2p ¼ 2p
x
; ð8Þ

where

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2b2

2� b2

4

s
: ð9Þ
3. Mathematical formulation of the method

3.1. Homotopy perturbation method (HPM)

HPM is a known method for solving the following nonlinear
functional equations

AðuðrÞÞ ¼ 0; r 2 X;

B u; @u
@n

� �
¼ 0; r 2 C;

ð10Þ
where A is a general differential operator, B is a boundary

operator, and C is the boundary of the domain X. This method
is well addressed in [9–14] and has been used by many
researchers. There are some papers regarding convergence of

the method [9,12]. The major advantage of Homotopy pertur-
bation method is that the homotopy can be freely constructed
in many forms by selecting different linear operators or initial
approximations, according to initial conditions. This is a use-

ful property to find a periodic solution.

3.2. Periodic solution

To find a periodic solution of Eq. (10), with period 2p, let us
consider the solution as the following series,

uðtÞ ¼
X1
k¼1

ak sinðkxtÞ; ð11Þ

where x ¼ p
p
. Homotopy can be constructed, with linear and

nonlinear operators, as follows

ð1� pÞ½LðvÞ � Lðu0Þ� þ p½N ðvÞ þ LðvÞ� ¼ 0; p 2 ½0; 1� ð12Þ

where

LðvÞ ¼ @2

@t2
vþ x2v;

NðvÞ ¼ AðvÞ � LðvÞ:

Assume the solution of (12) have the form

vðt; pÞ ¼ v0ðtÞ þ v1ðtÞpþ v2ðtÞp2 þ � � � : ð13Þ

Substituting Eq. (13) into Eq. (12) and equating the coeffi-

cients of the terms with identical powers of p, results in

p0 : Lðv0Þ ¼ Lðu0Þ;
p1 : Lðv1Þ ¼ R1;

p2 : Lðv2Þ � Lðv1Þ ¼ R2;

..

.

ð14Þ

where Rk is the coefficient of p
k in �p½AðvÞ�. To solve this lin-

ear equations, rewrite Rk as

Rk ¼
Xlk
n¼1

bn sinðnxtÞ; ð15Þ

where

bn ¼
1

p

Z p

�p
Rk sinðnxtÞdt:

By determining Rk in the form (15), one can easily solve the
Eq. (14). This approach is used to find a periodic solution to

the nonlinear relativistic harmonic oscillator with a predeter-
mined period.

4. Periodic solution to nonlinear relativistic harmonic oscillator

As previously mentioned, Mickens [1] has shown that all the
motions corresponding to Eq. (6) are periodic with the period

2p, in the forms (8) and (9). According to the Eq. (6), initial
conditions (7), and the fact that the solutions are periodic;
the solution can be expressed by a linear combination of the

following base function

fsinð2nþ 1Þxtjn ¼ 0; 1; 2; . . .g:



Table 1 periodic approximate solution by HPM.

b Approximate solution by HPM

0.01 1.0000 · 10�2sin(t)�4.687 · 10�8sin(3t) + 5.305 · 10�13sin(5t)

0.1 1.0010 · 10�1sin(0.999t)�4.689 · 10�5sin(2.997t) + 5.062 · 10�8sin(4.995t)

0.2 2.01 · 10�1sin(0.995t)�3.768 · 10�4sin(2.985t) + 1.652 · 10�6sin(4.974t)

Table 2 Periodic approximate solution by Harmonic balance method [1].

b Approximate solution using Harmonic balance method [1]

0.01 1.00003 · 10�2sin(t)�4.167 · 10�8sin(3t) + 4.687 · 10�13sin(5t)

0.1 1.0025 · 10�1sin(0.998t)�4.173 · 10�5sin(2.996t) + 4.369 · 10�8sin(4.994t)

0.2 2.02 · 10�1sin(0.995t)�3.354 · 10�4sin(2.985t) + 1.508 · 10�6sin(4.974t)

Table 3 Periodic approximate solution by DTM [4].

b Approximate solution using DTM [4]

0.01 1.00003 · 10�2sin(t)�4.688 · 10�8sin(3t) + 6.121 · 10�13sin(5t)

0.1 1.0033 · 10�1sin(0.998t)�4.7097 · 10�5sin(2.997t) + 8.254 · 10�8sin(4.841t)

0.2 2.03 · 10�1sin(0.992t)�3.695 · 10�4sin(3.051t) + 9.257 · 10�6sin(4.29t)

Figure 1 Plots of periodic approximate solution by HAM, HBM, and DTM at b = 0.01(left) and b = 0.1(right).
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So

xðtÞ ¼
X1
k¼1

ak½sinð2kþ 1Þxt�: ð16Þ

Consider a homotopy as the following

ð1� pÞ½Lðvðt; pÞÞ � Lðx0ðtÞÞ� þ p½Aðvðt; pÞÞ� ¼ 0; ð17Þ

where

Lðvðt; pÞÞ ¼ @2

@t2
vðt; pÞ þ x2vðt; pÞ;

Aðvðt; pÞÞ ¼ @
2vðt; pÞ
@t2

þ 1� @vðt; pÞ
@t

� �2
" #3=2

vðt; pÞ;
ð18Þ
and x0(t) is an initial approximation of the solution. Now sup-
pose that the solution of Eq. (17) is as the series (13). As p fi 1,

the solution of Eq. (6) will be obtained.

x ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ � � � :

Substituting (13) into (17) results in linear differential equa-
tions of the form (14), where

Rk ¼
�1

ðk� 1Þ!
@k�1A½vðt; pÞ�

@pk�1

����
p¼0
:

The corresponding linear equations are as follows:



Figure 2 Plots of periodic approximate solution using HAM, HBM, and DTM at b = 0.2 with respect to t at the interval [0,10] (left)

and [90,100] (right).
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v000ðtÞ þ x2v0ðtÞ ¼ u000ðtÞ þ x2u0ðtÞ; v0ð0Þ ¼ 0; v00ð0Þ ¼ b: ð19Þ

v001ðtÞ þ x2v1ðtÞ ¼ R1 ¼ v000ðtÞ þ 1� ðv00ðtÞÞ
3=2

h i
v0ðtÞ;

v1ð0Þ ¼ 0; v01ð0Þ ¼ 0: ð20Þ
v002ðtÞ þ x2v2ðtÞ ¼ R2

¼ v001ðtÞ � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v00ðtÞð Þ2

q
v0ðtÞv00ðtÞv01ðtÞ

þ 1� v00ðtÞ
� �3=2h i

v1ðtÞ; v2ð0Þ ¼ 0; v02ð0Þ ¼ 0: ð21Þ

..

.

Considering initial conditions (7) and expression (16), the

initial approximation to the solution can be selected as
u0ðtÞ ¼ b

x sinðxtÞ. Thus (19), yields

v0ðtÞ ¼ u0ðtÞ ¼
b
x

sinðxtÞ:

and from (20),

v001ðtÞ þ x2v1ðtÞ ¼ R1 ¼
Xl1
n¼1

b1n sin½ð2nþ 1Þxt�; ð22Þ

where

b1n ¼
1

p

Z p

�p
R1 sin½ð2nþ 1Þnxt�dt:

Note that the term sin(xt) in the right hand side of the Eq.

(22) has been eliminated, to avoid the secular term tsin(xt) in
v1(t). Thus, the solution of (22) is

v1ðtÞ ¼
Xl1
n¼1

an sin½ð2nþ 1Þxt� þ c1 sinðxtÞ þ c2 cosðxtÞ: ð23Þ

From initial conditions in (20), c1 = 0 and c2 = 0. Substi-
tuting (22) into Eq. (20) leads to

an ¼
b1n

ð�4n2 � 4nÞx2
:

Similarly from (21),

v2ðtÞ ¼ v1ðtÞ þ
Xl2
n¼1

b2n

ð�4n2 � 4nÞx2
sin½ð2nþ 1Þxt�;

where

b2n ¼
1

p

Z p

�p
R2 sin½ð2nþ 1Þnxt�dt;

and so on.
The nonlinear relativistic harmonic oscillator (6), with ini-

tial conditions (7), has been solved for different values of b.
Tables 1–3 show the corresponding periodic approximate solu-

tions obtained by HPM, DTM [4], and Harmonic balance
method [1].The results of three methods are shown in Figs. 1
and 2. It can be seen that the results of HPM and Harmonic

balance method are in more agreement.

5. Conclusions

In this study, Homotopy perturbation method has been ap-
plied to obtain the periodic solution of relativistic harmonic
oscillator. To find a periodic solution, a reliable periodic base

functions and linear operator is proposed. The equation for
different values of b has been solved. Comparing with DTM
and Harmonic balance method shows the solution obtained

by Homotopy perturbation method is in a good agreement
with those of two other methods. Thus, the Homotopy pertur-
bation method is an effective method to find the periodic solu-
tion of the equations such as relativistic harmonic oscillator.
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