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Abstract In this paper, we will carry out a comparative study between the reduced differential

transform method and the Adomian decomposition method. This is been achieved by handling

the Newell–Whitehead–Segel equation. Two numerical examples have also been carried out to val-

idate and demonstrate efficiency of the two methods. Furthermost, it is shown that the reduced dif-

ferential transform method has an advantage over the Adomian decomposition method that it takes

less time to solve the nonlinear problems without using the Adomian polynomials.
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1. Introduction and preliminaries

Nonequilibrium systems are commonly exhibited as equilib-
rium extended states: uniform, oscillatory, chaotic, and pattern
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states. Stripe-(or roll-) patterns appear in a variety of spatially
extended systems in nature, like ripples in sand, stripes of
seashells or on the fur of mammals, such as our domestic cats

or markings of the skins of the animals and also in variety of
physics laboratory systems, like Rayleigh–Benard convection,
Taylor–Couette flow, Faraday instability, directional solidifica-

tion, nonlinear optics, chemical reactions, and biological sys-
tems. This type of systems can be well described by a set of
equations called amplitude equations. One of the most
well-known amplitude equations in two dimensional systems

is the Newell–Whitehead–Segel equation. This model describes
the appearance of the stripe pattern in two dimensional systems.

Now, we consider the well-known Newell–Whitehead–Segel

equation of the following type:

utðx; tÞ ¼ kuxx þ auðx; tÞ � buqðx; tÞ; ð1Þ
gyptian Mathematical Society. Open access under CC BY-NC-ND license.

mailto:mathsaran@gmail.com
mailto:nmagi2000@gmail.com
mailto:nmagi2000@gmail.com
http://dx.doi.org/10.1016/j.joems.2013.03.004
http://www.sciencedirect.com/science/journal/1110256X
http://dx.doi.org/10.1016/j.joems.2013.03.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


260 A. Saravanan, N. Magesh
subject to the initial condition,

uðx; 0Þ ¼ fðxÞ; ð2Þ

where a and b are real numbers and k and q are positive
integers.

The Newell–Whitehead–Segel equation has been given con-

siderable attention in recent years by introducing various meth-
ods and techniques, for example, Li et al. [1] used lattice
Boltzmann scheme, Malik et al. [2] used G0

G

� �
expansion method

to get generalized traveling wave solutions. Manaa [3] applied

theAdomian decompositionmethod to get approximate solution
and Aasaraai [4] discussed by the differential transform method.

The reduced differential transform method was first pro-

posed by Keskin [5] and successfully employed to solve many
types of nonlinear partial differential equations. Also, Keskin
and Oturanc used this method to obtain the analytical solution

of linear and nonlinear wave equations [6]. The Adomian
decomposition method was introduced and developed by
George Adomian in [7,8] and is well addressed in the literature

[9,10]. Recently, applying Adomian decomposition method,
many researchers [9–13] and [14,15] investigated a wide class
of linear and nonlinear ordinary differential equations, partial
differential equations, and integral equations.

In this paper, we solved Newell–Whitehead–Segel Eq. (1)
by the reduced differential transform method, the Adomian
decomposition method and discuss the comparison between

the reduced differential transform method and the Adomian
decomposition method.

2. The reduced differential transform method

As in Ref. [5], the basic definition of reduced differential trans-
form is introduced as follows:

The reduced differential transform of u(x, t) at t= 0 is de-
fined as,

UkðxÞ ¼
1

k!

@kuðx; tÞ
@tk

� �
t¼0
; ð3Þ

where u(x, t) is the original function and Uk(x) is the trans-
formed function.

The reduced differential inverse transform of Uk(x) is de-
fined as

uðx; tÞ ¼
X1
k¼0

UkðxÞtk; ð4Þ

and from (3) and (4), we have,

uðx; tÞ ¼
X1
k¼0

1

k!

@kuðx; tÞ
@tk

� �
t¼0

tk: ð5Þ

The following theorems that can be deduced from (3) and (4)
are given below [5,16]:

Theorem 2.1. If w(x, t) = u(x, t)± v(x, t) then Wk(x) =
Uk(x) ± Vk(x).

Theorem 2.2. If w(x, t) = au(x, t) then Wk(x) = aUk(x).

Theorem 2.3. If w(x, t) = [xmtn] then Wk(x) = xmd(k � n)

where ðthe Kronecker deltaÞdðk� nÞ ¼
1; when k ¼ n;

0; when k – n:

�

Theorem 2.4. If w(x, t) = [xmtnu(x, t)] then Wk(x) =

xmUk�n(x).

Theorem 2.5. If wðx; tÞ ¼ @ruðx;tÞ
@tr

h i
then

WkðxÞ ¼ ðkþ 1Þðkþ 2Þ . . . ðkþ rÞUkþrðxÞ ¼
ðkþ rÞ!

k!
UkþrðxÞ:

Theorem 2.6. If wðx; tÞ ¼ @uðx;tÞ
@x

h i
then WkðxÞ ¼ @

@x
ðUkðxÞÞ.

Theorem 2.7. If w(x, t) = u(x, t)v(x, t) then WkðxÞ ¼Pk
r¼0UrðxÞVk�rðxÞ.

Theorem 2.8. If w(x, t) = [u(x, t)]m then WkðxÞ ¼
U0ðxÞ; k ¼ 0;Pk

n¼1
ðmþ1Þn�k
kU0ðxÞ UnðxÞWk�nðxÞ; k P 1

�
.

3. Main result

Section 3.1

In this section, we use the reduced differential transform meth-
od to obtain the solution of (1) and (2).

Consider the Newell–Whitehead–Segel equation of the fol-

lowing type:

utðx; tÞ ¼ kuxx þ auðx; tÞ � buqðx; tÞ; ð6Þ

subject to the initial condition,

uðx; 0Þ ¼ fðxÞ; ð7Þ

where k, a, b are real numbers k and q are positive integers.

By taking the reduced differential transform on both sides
of (6) and (7), we have:

RDT½utðx; tÞ� ¼ kRDT½uxxðx; tÞ� þ aRDT½uðx; tÞ�
� bRDT½uqðx; tÞ�; ð8Þ

RDT½uðx; 0Þ ¼ fðxÞ�: ð9Þ

After applying the fundamental theorems in (8) and (9), we ob-
tain the following recurrence relation:

ðkþ 1ÞUkþ1ðxÞ ¼ k
@2

@x2
UkðxÞ þ aUkðxÞ � bFkðxÞ ð10Þ

where FkðxÞ ¼
U0ðxÞ; k ¼ 0;Pk

n¼1
ðqþ1Þn�k
kU0ðxÞ UnðxÞFk�nðxÞ; k P 1

�
.

U0ðxÞ ¼ fðxÞdðk� 0Þ; ð11Þ

where Uk(x) and Fk(x) are the transformed values of u(x,t) and
uq(x,t) respectively and f(x)d(k � 0) is the transformed value of
f(x).

By iterative calculations on (10) and (11), we obtain the fol-
lowing values of U(k,h) as

U1ðxÞ ¼ g1ðxÞ;U2ðxÞ ¼ g2ðxÞ;U3ðxÞ ¼ g3ðxÞ; . . .UnðxÞ
¼ gnðxÞ; . . . : ð12Þ

From (4), we have,

uðx; tÞ ¼ U0ðxÞt0 þU1ðxÞtþU2ðxÞt2 þU3ðxÞt3

þ � � �UnðxÞtn þ � � � : ð13Þ
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One can get the exact solution of (6) by substituting (11) and

(12) in (13).

Section 3.2

In this section, we use the Adomian decomposition method to
obtain the solution of (1) and (2).

In an operator form, (1) becomes,

Ltu ¼ kLxxuþ au� buq; ð14Þ

where the differential operator L is given by,

Lt ¼
@

@t

and

Lxx ¼
@2

@x2
;

where each operator is assumed easily invertible, and there-
fore, the inverse operator L�1t is defined by,

L�1t ð�Þ ¼
Z t

0

ð�Þdt

and

L�1xx ð�Þ ¼
Z x

0

Z x

0

ð�Þdxdx:

Applying L�1t on both sides of (14) and using the initial condi-

tions, we obtain,

L�1t Ltu ¼ L�1t ½kLxxuþ au� buq�;

or equivalently,

uðx; tÞ � uðx; 0Þ ¼ L�1t ½kLxxuþ au� buq�;
uðx; tÞ ¼ fðxÞ þ L�1t ½kLxxuþ au� buq�:

ð15Þ

Adomian method defines the solution u(x, t) by an infinite ser-

ies of components, and it is given by:

uðx; tÞ ¼
X1
n¼0

unðx; tÞ; ð16Þ

where the components u0, u1, u2, . . . are usually recurrently
determined and the nonlinear term F(u) = uq can be expressed
by the Adomian polynomials An as,

uq ¼
X1
n¼0

An: ð17Þ

The Adomian polynomials An for the nonlinear term F(u) = uq

can be evaluated by using the following expression,

An ¼
1

n!

dn

dkn Fð
Xn
i¼0

kiuiÞ
" #

k¼0

: ð18Þ

The general formula (17) can be simplified as follows:

A0 ¼ Fðu0Þ;
A1 ¼ u1F

0ðu0Þ;

A2 ¼ u2F
0ðu0Þ þ

1

2!
u21F

00ðu0Þ;

A3 ¼ u3F
0ðu0Þ þ u1u2F

00ðu0Þ þ
1

3!
u31F

000ðu0Þ;

ð19Þ

other polynomials can be generated in a similar manner. Based

on these assumptions, (14) becomes,
X1
n¼0

unðx; tÞ ¼ fðxÞ

þ L�1t kLxx

X1
n¼0

unðx; tÞ þ a
X1
n¼0

unðx; tÞ � b
X1
n¼0

An

" #
:

ð20Þ

The components un(x, t), n P 0 of the solution u(x, t) can be
recursively determined by using the relation:

u0ðx; tÞ ¼ fðxÞ; ð21Þ
ukþ1ðx; tÞ ¼ L�1t ½kLxx½uk� þ auk� � bL�1t ½Ak�: ð22Þ

One can get exact solution by substituting the values of un(x,t)

in (16).

4. Illustrative examples

Two different examples are considered in this section to illus-
trate the effectiveness of the reduced differential transform
method.

Example 4.1. Consider the linear Newell–Whitehead–Segel

equation,

ut ¼ uxx � 2u; ð23Þ

with the initial condition,

uðx; 0Þ ¼ ex; ð24Þ

whose exact solution was found to be [4]:

uðx; tÞ ¼ ex�t: ð25Þ
Case 1. (By RDTM)

By taking the reduced differential transform on both sides of
(23) and (24), we have:

RDT½ut� ¼ RDT½uxx� � 2RDT½u� ð26Þ

and

RDT½uðx; 0Þ ¼ ex�: ð27Þ

After applying fundamental theorems in (26) and (27), the fol-
lowing recurrence relation is obtained,

ðkþ 1ÞUkþ1ðxÞ ¼
@2

@x2
UkðxÞ � 2UkðxÞ; ð28Þ

U0ðxÞ ¼ ex: ð29Þ

By iterative calculations on (28) and (29), we have:

U1ðxÞ ¼ �ex;U2ðxÞ ¼
ex

2!
;U3ðxÞ ¼

�ex
3!

; . . . : ð30Þ

From (4),

uðx; tÞ ¼ U0ðxÞt0 þU1ðxÞtþU2ðxÞt2 þU3ðxÞt3 þ � � � : ð31Þ

Substituting (30) in (31), we have,

uðx; tÞ ¼ ex�t; ð32Þ

which is an exact solution of the problem.

Case 2. (By ADM)

In an operator form, (23) becomes,
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Ltu ¼ Lxxu� 2u; ð33Þ

where the differential operator L is given by,

Lt ¼
@

@t

and

Lxx ¼
@2

@x2
;

where each operator is assumed as easily invertible, and there-
fore, the inverse operator L�1t is defined by,

L�1t ð�Þ ¼
Z t

0

ð�Þdt

and

L�1xx ð�Þ ¼
Z x

0

Z x

0

ð�Þdxdx:

Applying L�1t on both sides of (33) and using the initial condi-
tion, we obtain,

L�1t ½Ltu� ¼ L�1t ½Lxxu� 2u�;

or equivalently,

uðx; tÞ � uðx; 0Þ ¼ L�1t ½Lxxu� 2u�;
uðx; tÞ ¼ ex þ L�1t ½Lxxu� 2u�: ð34Þ

Adomian method defines the solution u(x, t) by an infinite ser-
ies of components, and it is given by,

uðx; tÞ ¼
X1
n¼0

unðx; tÞ: ð35Þ

Substituting the above equation in (34), we have,
Figure 1 The comparison of RDTM and ADM with
X1
n¼0

unðx; tÞ ¼ ex þ L�1t Lxx

X1
n¼0

unðx; tÞ � 2
X1
n¼0

unðx; tÞ
" #

; ð36Þ

where the components un(x, t), n P 0 of the solution u(x, t) can
be recursively determined by using the relation,

u0ðx; tÞ ¼ ex; ð37Þ
ukþ1ðx; tÞ ¼ L�1t ½Lxx½uk� � 2uk�: ð38Þ

From the above equation, we have,

u1ðx; tÞ ¼ �ext; u2ðx; tÞ ¼ ex
t2

2!
; u3ðx; tÞ ¼ �ex

t3

3!
. . . : ð39Þ

Substituting the values of un(x, t) in (35), we have,

uðx; tÞ ¼ �extþ ex
t2

2!
þ�ex t

3

3!
� � � ;

uðx; tÞ ¼ ex�t: ð40Þ

which is an exact solution of the problem. In order to verify the
efficiency and accuracy of the proposed reduced differential
transform method for solving linear Newell–Whitehead–Segel

equations. (23) and (24), graphs are drawn for the numerical
solution as well as the exact solution.

From Fig. 1a–c, we can see that the solution obtained by

the reduced differential transform method and the Adomian
decomposition method coincide with the exact solution. The
results of this example show that the reduced differential trans-
form method is a very simple method than the Adomian

decomposition method because the reduced differential trans-
form method solves the problem without using the Adomian
polynomial which was used in the Adomian decomposition

method, due to this fact, it is concluded that the reduced
the exact solution uðx; tÞ for different values of ‘t’.
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differential transform method is less consumption of time
when compared with the Adomian decomposition method.

Example 4.2. Consider the nonlinear Newell–Whitehead–

Segel equation,

ut ¼ uxx þ 2u� 3u2; ð41Þ

with the initial condition,

uðx; 0Þ ¼ k; ð42Þ

whose exact solution was found to be [4]:

uðx; tÞ ¼
�2
3

ke2t

�2
3
þ k� ke2t

: ð43Þ

Case 1. (By RDTM)

By taking the reduced differential transform on both sides
of (41) and (42), we have:

RDT½ut� ¼ RDT½uxx� þ 2RDT½u� � 3RDT½u2� ð44Þ

and

RDT½uðx; 0Þ ¼ k�: ð45Þ

After applying fundamental theorems in (44) and (45), the fol-
lowing recurrence relation is obtained,

ðkþ 1ÞUkþ1ðxÞ ¼
@2

@x2
UkðxÞ � 2UkðxÞ � 3

Xk
r¼0

UrðxÞUk�rðxÞ;ð46Þ

U0ðxÞ ¼ k: ð47Þ

By iterative calculations on (46), we have,

U1ðxÞ ¼ 2k� 3k2;

U2ðxÞ ¼
2kð2� 3kÞð1� 3kÞ

2!
;

U3ðxÞ ¼
2kð2� 3kÞð27k2 � 18kþ 2Þ

3!
; . . .

ð48Þ

From (4),

uðx; tÞ ¼ U0ðxÞt0 þU1ðxÞtþU2ðxÞt2 þU3ðxÞt3 þ � � � : ð49Þ

Substituting (47) and (48) in (49), we have,

uðx; tÞ ¼ kþ ð2k� 3k2Þtþ 2kð2� 3kÞð1� 3kÞ
2!

t2

þ 2kð2� 3kÞð27k2 � 18kþ 2Þ
3!

t3 � � � ; ð50Þ

or equivalently,

uðx; tÞ ¼
�2
3

ke2t

�2
3
þ k� ke2t

; ð51Þ

which is an exact solution of the problem.

Case 2. (By ADM)

In an operator form, (41) becomes

Ltu ¼ Lxxuþ 2u� 3u2; ð52Þ

where the differential operator L is given by,
Lt ¼
@

@t

and

Lxx ¼
@2

@x2
;

where each operator is assumed as easily invertible, and there-

fore, the inverse operator L�1t is defined by,

L�1t ð�Þ ¼
Z t

0

ð�Þdt

and

L�1xx ð�Þ ¼
Z x

0

Z x

0

ð�Þdxdx:

Applying L�1t on both sides of (52) and using the initial condi-

tion, we obtain,

L�1t ½Ltu� ¼ L�1t ½Lxxuþ 2u� 3u2�;

or equivalently,

uðx; tÞ � uðx; 0Þ ¼ L�1t ½Lxxuþ 2u� � 3L�1t ½u2�;
uðx; tÞ ¼ kþ L�1t ½Lxxuþ 2u� � 3L�1t ½u2�: ð53Þ

Adomian method defines the solution u(x, t) by an infinite ser-
ies of componentsm, and it is given by,

uðx; tÞ ¼
X1
n¼0

unðx; tÞ; ð54Þ

where the components u0, u1, u2, . . . are usually recurrently
determined, and the nonlinear term F(u) = u2 can be expressed
by the Adomian polynomials An as,

u2 ¼
X1
n¼0

An: ð55Þ

Substituting (54) and (55) in (53), we have,

X1
n¼0

unðx; tÞ ¼ kþ L�1t Lxx

X1
n¼0

unðx; tÞ þ 2
X1
n¼0

unðx; tÞ
" #

� 3L�1t

X1
n¼0

An

" #
; ð56Þ

where the components un(x, t), n P 0 of the solution u(x, t) can
be recursively determined by using the relation,

u0ðx; tÞ ¼ k; ð57Þ
ukþ1ðx; tÞ ¼ L�1t ½Lxx½uk� þ 2uk� � 3L�1t ½Ak�: ð58Þ

The Adomian polynomials An for the nonlinear term F(u) = u2

is given by,

An ¼
1

n!

dn

dkn F
Xn
i¼0

kiui

 !" #
k¼0

: ð59Þ

The general formula (59) can be simplified as follows,

A0 ¼ Fðu0Þ ¼ u20 ¼ k2;

A1 ¼ u1F
0ðu0Þ ¼ 2u0u1 ¼ k2ð2� 3kÞt2;

A2 ¼ u2F
0ðu0Þ þ

1

2!
u21F

00ðu0Þ ¼
k2ð2� 3kÞð4� 9kÞt3

3
� � � :

ð60Þ

By using (57), (58) and (60), we have,



Figure 2 The comparison of RDTM and ADM with the exact

solution uðx; tÞ for different values of ‘k’.
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u1ðx; tÞ ¼ ð2k� 3k2Þt;

u2ðx; tÞ ¼
2kð2� 3kÞð1� 3kÞt2

2!
;

u3ðx; tÞ ¼
2kð2� 3kÞð27k2 � 18kþ 2Þt3

3!
; � � � :

ð61Þ

Substituting the values of un(x, t) in (54), we have,
uðx; tÞ ¼ kþ ð2k� 3k2Þtþ 2kð2� 3kÞð1� 3kÞ
2!

t2

þ 2kð2� 3kÞð27k2 � 18kþ 2Þ
3!

t3 � � � ; ð62Þ

or, equivalently,

uðx; tÞ ¼
�2
3

ke2t

�2
3
þ k� ke2t

; ð63Þ

which is an exact solution of the problem. In order to verify the
efficiency and accuracy of the proposed reduced differential
transform method for solving nonlinear Newell–Whitehead–
Segel Eqs. (41) and (42), graphs are drawn for the numerical

solution as well as the exact solution.
From Fig. 2a–c, we can see that the solution obtained by

the reduced differential transform method and the Adomian

decomposition method coincide with the exact solution. The
results of this example show that the reduced differential trans-
form method is a simple method than the Adomian decompo-

sition method because the reduced differential transform
method solves the problem without using the Adomian poly-
nomial which was used in the Adomian decomposition meth-
od, due to this fact, it is concluded that the reduced

differential transform method is less consumption of time
when compared with the Adomian decomposition method.

5. Conclusion

We have carried out the comparative study between the re-
duced differential transform method and the Adomian decom-

position method by handling the Newell–Whitehead–Segel
equation. Two numerical examples have shown that the re-
duced differential transform method is a very simple technique

to handle linear and nonlinear Newell–Whitehead–Segel equa-
tion than the Adomian decomposition method, and also, it is
demonstrated that the reduced differential transform method

solves linear and nonlinear Newell–Whitehead–Segel equation
without using any complicated polynomials like as the Adomi-
an polynomials. In addition, the obtained series solution by the
reduced differential transform method converges faster than

those obtained by the Adomian decomposition method. It is
concluded that this simple reduced differential transform
method is a powerful technique to handle linear and nonlinear

initial value problems.
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