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1. Introduction

The importance of convex functions is well known in optimi-
zation theory for many mathematical models used in decision
science, economic, management science, applied mathematics
and engineering. The notion of convexity does no longer suf-
fice. So it is possible to generalize the notion of convexity
and to extend the validity of result to larger classes of optimi-
zation problems. Consequently, various generalizations of
convex functions have been introduced in the literature. More
specifically, the concept of (F, a)-convexity was introduced by
Preda [1] which is an extension of F-Convexity defined by Han-
son and Mond [2] and p-convexity given by Vial [3], Gualti and
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Islam [4] and Ahmed [5] established optimality conditions and
duality results for multiobjective programming problems
involving F-Convexity and (F, a)-convexity assumptions. In
[6,7] Weir and Mond discussed the generalized convexity,dual-
ity in multiobjective programming and the proper efficiency of

the duality for vector valued Optimization Problem,and in
[8] Mond and Weir discussed the generalized concavity and
duality in Optimization and economics. Also, the concepts of
E-convex sets and E-convex function have been introduced
by Youness in [9-11], they have some important application
in various branches of mathematical sciences.

Youness in [11] introduced a class of E-convex sets and E-
convex functions by relaxing the definition of convex sets and
convex functions. This kind of generalized convexity is based
on the effect of an operator E: R” — R" on the sets and the do-
main of functions, and also in [10] Youness discussed the opti-
mality criteria of E-convex programming. Xiusu Chen [12]
introduced a new concept of semi E-convex functions and dis-
cusses its properties. Emam and Youness in [13,14] introduced
a new class of E-convex sets and E-convex functions which is
called semi strongly E-convex sets and strongly E-convex
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functions by taking the images of two points x and y under an
operator E: R" — R" besides the two points themselves and
strongly E-convex sets and strongly E-convex functions. In
[15] Megahed and et al. introduced a combined interactive ap-
proach for solving E-convex multiobjective nonlinear pro-
gramming and in [16] Youness discussed the characterization
of efficient solutions of multiobjective E-convex programming
problems.

In this paper we will discuss the connection between the con-
cept of E-convex function [15] and the second order (F, o, p, d)-
convex function [17] by introducing the concept second order (F,
o, p, d, E)-convex functions and their generalization. These con-
cepts are then used to develop weak, strong, and strict converse
duality theorem for the second order Mond-Weir type dual
problem. Where F: Mx M x R"— R, oz Mx M — R* — {0},
d:-MxM— R, E: R"— R", and a real number p.

Definition 1.1. A functional F: M x M x R" — R is said to be
sub linear in its third component, if for all x,x € M

(i) F(x,x,a+b) < F(x,X,a) + F(x,X,b),Ya,b € R"
(i) F(x,x,pfa) = pF(x,X,a),Vf € R, = 0,and,a € R"

Definition 1.2 [11] E-Convex set. A set M  R" is said to be an
E-convex set with respect to an operator E: R"— R" if
AE(x) + (1 — D)E(y) € M, foreach x, ye M and 0 < A < 1.

Definition 1.3 [11] E-convex Function. A real valued function
f: M < R" — Rissaid to be an E-convex function, with respect
to an operator E: R — R" on M. If M is an E-convex set and
for each x,y e M, 0 < 1< 1,

JUE(x) + (1 = A)E(y)) < H(Ex) + (1 = )AEy)

If fUE(x) + (1 — DE®Y)) = ME x) + (1 — HAE y), then f'is
called E-concave function on M.

The problem to be considered her is the following nonlinear
programming problem:

P {Minimize f(x)
Subject to M ={x € R" : g,(x) <0, i=1,2,...,m}

Where the function f'and a set M are E-convex with respect to
the map E: R"— R”", and f and g = (g1, g2, ..., &) are as-
sumed to be twice differentiable function over M.

There is another problem (Pg problem) from the above
problem is defined as

(Pr) {Minimize(/'o E)(x)
£ Subject to M' ={x € R": (g;0 E)(x) <0,i=1,2,...,m}

Where the function f'and a set M are E-convex with respect to
the map E: R"—> R”", and f and g = (g1, &2, ..., &») are as-
sumed to be twice differentiable function over M

Definition 1.4. A point X is an optimal solution of the problem
(P) if and only if f{EX) < f(Ex)Vx € M, M is an E-convex set.

Definition 1.5. Let £: R” — R" be an operator and fis E-convex
function on an E-convex set M and foF is twice differentiable
function on M, then fis said to be second order (F, o, p, d, E)-

convex function at X on M if for all x € M, then there exists a
vector P € R", a real valued function o: M x M — R* — {0}, a
real valued function d: M X M — R and a real number p such
that f(Ex) — f(Ex) + 1 P'V*f(EX)P > F(x,%;a(x,¥){VA(Ex)+
V2f(EX)P}) + pd’(x,X)

Definition 1.6. Let E: R" — R” be an operator and f'is E-con-
vex function on an E-convex set M and foE is twice differen-
tiable function on M, then f'is said to be second order (F, «,
p, d, E)-pseudoconvex function at X on M if for all x € M, then
there exists a vector P& R", a real valued function o:
MxM— R — {0}, a real valued function d: M x M — R
and a real number p such that f(Ex)<f(Ex)—iP'V’f
(EX)P = F(x,%; o(x, X){ VAEX) + V*f(EX)P}) < —pd’(x,X)

Definition 1.7. Let E: R" — R" be an operator and f'is E-con-
vex function on an E-convex set M and fo E is twice differen-
tiable function on M, then f'is said to be strictly second order
(F, o, p, d, E)-pseudoconvex function at x on M if for all
x € M, then there exists a vector P € R", a real valued function
o Mx M — R — {0}, a real valued function & M x M — R
and a real number p such that

F(x, X (x, ©){V/(EX) + V/(EX)P}) = —pd’(x,X)
= f(Ex) > f(Ex) — 1 P'V*f(Ex)P

Or equivalently
JEx) < f(EX) L PVf(ER)P
= Flx, % a(x, D{VAES) + VAEDPY) < —pd (x, %)

Definition 1.8. Let E: R” — R” be an operator and f'is E-con-
vex function on an E-convex set M and fo E is twice differen-
tiable function on M, then fis said to be second order (F, o, p,
d, E)-quasiconvex function at X on M if for all x € M, then
there exists a vector P€ R", a real valued function o:
MxM— R — {0}, a real valued function d: M x M — R
and a real number p such that

JUEX) < JER) — L P'Vf(EX)P
= Flx, % o(x, D {VAER) + VAED) P}) < —pd (x, %)

Definition 1.9. Let E: R" — R” be an operator and f'is E-con-
vex function on an E-convex set M and f'o E is twice differen-
tiable function on M, then f'is said to be strong second order
(F, a, p, d, E)-pseudoconvex function at x on M if for all
x € M, then there exists a vector P € R”", a real valued func-
tion o: MxM—R" —{0}, a real valued function d:
M x M — R and a real number p such that

JEX) < f(EX) — L PVf(EX)P
= F(x, 5 0(x, ){ V(%) + VAX)P}) < —pd’(x, %)
Example 1. Consider the function 2 M(=R.)— R such that
fix) = x*=2x. If
F(x,x,0) = a(x — X) — 4x
define the functions d(x,x) = x — X,

x+x+1

o(x,X) = 3
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And the operator. E(x) = x>

Then for p = 0, fis second order (F, o, p, d, E)-convex at x =0
with respect to p, —oo < p< 1

Example 2. Consider the function ff M — R, M = {x:
0 < x < 7} such that f{x) = x°.

F(x,X,0) = a(x — X) — 4x
If we define the functions d(x,X) = x — X,

x+x+1
2
and the operator E(x) = x?, then for p = 0, fis second order

(F, a, p, d, E)-quasiconvex function at X = 0 with respect to p,
0<p<oo

a(x, x) =

Theorem 1.10 (Fritz John Necessary Condition for Optimal-
ity). Let the objective and the comstraint functions of problem
Py are continuously differentiable at the point X € M and
I={i: (g, 0E)(X)=0} is the index set.A necessary conditions
for X to be a local solution of the problem Py is that there exist
vector o = 0 and 0 < € R™ for which (u., p) # (0, 0) such
that

I- 1,V (f o E)x + Zf:lluiv(gi °E)x=0.
2- u(g;oE)x=0,foralli=1,2,..., m.

Proof. Let X € M be a local solution for problem Pr. To prove
this theorem we must prove that there does not exist any other
vector d € R" such that

V(fo E)(x)"d <0 (1.1)
V(g0 E)(®)d<0  foralliec I(X) (1.2)
By contradiction, we assume that there exists some d" € R such

that V(fo E)(%)"d" < 0. Since the functions (f o E) are contin-
uously differentiable, then

(fo E)(x) = (fo E)(F) + V(fo E)(®) (x — %) + ||x — %||(¥, x — %).
Let & = x — X, then

(fo E)(x) = (fo E)(X) + V(fo E)(X)'d + || |ux,d).

Since V(fo E)(X)'d <0 and o(X,d) —0 at X — 0, then
(fo E)(x) < (fo E)(X).

This contradicts the optimality of X, and then there does
not exist any d € R" such that

V(fo E)(X)"d < 0 and V(g, 0 E)(%)"d < 0 for all i € I(%).

Now, from Motzkin’s theorem [18,19] there exists multipliers
Uo = 0 for and y; > 0 for i € I(X) such that

1V (fo E)t+ Y 1V(g 0 E)(X) =0
i¢l(X)

We obtain statement (1.1) of [
By setting g, =0 for all ie{l,...,m}\I(x). If

(g0 E)(X) <0 for some i = 1,2, ..., m, then according to
the above setting u; = 0, statement (2) of is valid.

JUES) < fUEW) — 5/ VU

2. Second order Mond-Weir type duality

In this section, we consider the following Mond-Weir type sec-

ond order dual associated with the problem (Pg) and establish

weak, strong, and strict converse duality theorems under gen-

eralized second order (F, a, p, d, E)-convexity:

Maximize f(Eu) —1p'N>f(Eu)p

subjectb to N f(Eu) + V2 f(Eu)p + Vy'g(Eu)
+V*'g(Eu)p =0

7'g(Eu) = 5p'V*y'g(Eu)p = 0

720,220

(MDE)

Theorem 2.1 (weak duality). Suppose that for all feasible x in
the problem P and all feasible (u, vy, 1, p) in MDE

(1) y'g(.) is second order (F,a,p,d,E)-quasiconvex at u,
and assume that any one of the following consider
holds

(2) A =0, and f(.) is strong second order (F,oy,p,,d,E)-
pseudoconvex at u with = 'p +a7'p; 4 > 0.

(3) A'f(.)is strictly second order (F, s, p,, d, E)-pseudoconvex
atuwitha'p+o;'p, =0

Then the following can’t hold

(2.1)

Proof. Let x be any feasible solution in Pg and (u, 7, A, p) be
any feasible solution in (MDE) problem. Then we have

|
78(Ex) < 0 and yg(Eu) — Epvzv’g(Eu)p >0

Using second order (F, a, p, d, E)-quasiconvexity of y’g(.) at u,
we get F(x, u, a(x, u){V y'g(Eu) + V*'g(Eu)p}) < —pd(x, 1)

Since a(x, ) > 0, the above inequality with the sublinearity
of F yields

F(x,u, {Vy'g(Eu) + V*y'g(Eu)p})

< —o N (x, u)pd (x, u) (2.2)
The first dual constraint and the sublinearity of F give
F(x,u, VIf(Eu) + V?Af(Eu)p)

> —F(x,u, Vy'g(Eu) + V*y'g(Eu)p) (2.3)
The inequalities (2.2) and (2.3) imply
Fx,u, Vif(Eu) + VI Eup) > o (xu)pd(xu)  (2.4)
Now suppose contrary to the result that (2.1) holds, i.e.
JUEX) < fUE) 3 fUE)p (23)
Which by virtue of (2.3), leads to
Fx,u, VAf(Eu) + V2 if(Eu)p) < —pyd(x,u) (2.6)

On multiplying (2.6) by 2 > 0 and using the sublinearity of F
with o(x, u) > 0,
We obtain
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Flx,u, VAf(Eu) + V23 (Eu)p) < —a; ' py i (x,u)
< a7 (v u)pe (v, )

Which contradicts with (2.4). Hence (2.1) can’t hold.
On the other hand, multiplying the inequality (2.5) by 4, we
have

A(Ex) < if(Eu)
When hypothesis (3) holds, the inequality (2.7) implies

F(x, u, o0 (x, u) (V2 Eu) + V2 If(Eu)p}) < —p,d*(x,u) (2.8)
Since F is sublinear and o»(x, u#) > 0,it follow from (2.8) that

F(x,u, Vif(Eu) + V2 If(Eu)p) < —o; ' pid (x,u)

— % PV Eu)p (2.7)

< o' (x, u)p,d” (x,u)
< o' (x u)pd’ (x, u)
Which contradicts with (2.4). Hence (2.1) can’t hold. O

Theorem 2.2 (Strong duality theorem). Let X be an optimal
solution of (P) at which the Kuhn-Tucker constraint qualifica-
tion is satisfied. Then there exist 2 = 0 and 7 € R" such that
(%,7, 4, p = 0) is feasible for (MDE) and the corresponding val-
ues of (P) and (MDE) are equal.

Proof. Since X is an optimal solution of (P) at which the
Kuhn-Tucker constraint qualification is satisfied, then by The-
orem 1.10, there exists 2 > 0 and 7 € R™, such that

AVAER) + Wg(EX') =0
78(EX) =

5,020

Therefore (X,7, 4, p = 0) is feasible for (MDE) and the corre-
sponding values of (P) and (MDE) are equal from weak dual-
ity theorem (%,7, 4, p = 0) is optimal solution of (MDE) O

Theorem 2.3 (Strict converse duality). Let X and (@, 7, A, p) is
an optimal solution of (Pg) and (MDE) respectively, such that

1 _
MES) = M(Eu) = 3"V I Eu)p (2.9)
Suppose that any one of the following conditions is satisfied

(1) y'g(.) is second order (F,a, p,d, E)-quasiconvex at # and
Af(\)is strictly second order (F, o4, p,, d, E)-pseudoconvex
atuwithoa™'p +o7lp, > 0.

(2) y'g(.) is strictly second order (F, o, p,d, E)-pseudoconvex
at u and A'f(.) is strictly second order (F,ay,p,,d,E)-
quasiconvex at u with a~'p +a;'p, = 0.

Then, X =  that is, # is an optimal solution of (Pg)

Proof. We assume that X#u and reach a contradiction. Since X
and (&, 7, A, p) are respectively, the feasible solution of (Pg) and
(MDE) we have

1
7¢(Ex) < 0 and 7'g(Eu) = 5p'V*)'g(Ew)p > 0 (2.10)

Using second order (F, o, p, d, E)-quasiconvexity of y'g(.) at i,
we get

F(x, @, o(%, 0){V7'g(Eq) + V*7'g(Eq)p}) < —pd (%, )

Since (X, i) > 0, the inequality (2.10) along with the sublin-
earity of F yields

F(x, 5, Vy'g(E) + Vy'g(En)p) < —o (x, )pd? (¥, )

The first dual constraint and the sublinearity of F imply
F(x,, VAf(Eu) + V2 f(Ea)p) + F(%, a4, Vy'g(Ea) + V*'g(Eu)p)
> F(x,u, VAf(Eu) + V2 2f(Ea)p + Vy'g(Eu) + V> 2'g(Eit)p) = 0

(2.11)

2.12)
The inequalities (2.11) and (2.12) and o~ 'p + o 'p; = 0 imply
F(x,u, Vif(Eq) + Vf(Ea)p) > —oy (%, a)pd(%,@)  (2.13)

Use the strict second order (F, oy, p,, d, E)-pseudoconvexity of
) with

o(%, 1) > 0, Af(EX) > Af(Eq) — % PV f(ER)p

Contradiction with (2.9)
When the hypothesis (2) holds, it follows from (2.10) that

F(x,u, 0%, 0){Vy'g(En) + V*7'g(En)p}) < —pd’ (%, 1)
Since a(X, i) > 0, the above inequality with the sublinearity of
F gives

F(x,a,Vy'g(Ea) + V*y'g(Ea)p) < —o (X, 0)pd* (%, )

Which on using first dual constraint with the sublinearity of F
implies

F(x,a, VA'f(Eq) + V*)'f(Eq)p) = —o (X, 0)p,d (%, )

As o 'p+a;'p, > 0, we obtain

F(%, @, V'f(Eq) + V22 f(Ea)p) = —o; (X, 0)p,d"(X,4) (2.14)

(F, oy, py,d, E)-quasiconexity of Af(.)
a (X,%) >0 yield AfIEX) > A'f(Ei)—

The second order

and (2.14) with

1P’V Af(Ea)p
Again contradiction (2.9) O
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