
Journal of the Egyptian Mathematical Society (2014) 22, 23–27
Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems
ORIGINAL ARTICLE
Second Order (F, a, q, d, E)-convex function and the

Duality Problem
Abd El-Monem A. Megahed *
Basic science Department, Faculty of Computers and Informatics, Suez Canal University, Ismalia, Egypt
Mathematics Department, College of Science at Zulfi City, Majmaah University, Saudi Arabia
Received 26 January 2013; revised 18 April 2013; accepted 1 June 2013
Available online 31 July 2013
*

m

E-

Pe

11

ht
KEYWORDS

Second order (F, a, q, d, E)-
convex function;

Quasiconvex;

Pesudoconvx;

Duality problem
Address: Basic science Depart

atics, Suez Canal University, Is

mail address: A_megahed15@

er review under responsibilit

10-256X ª 2013 Production

tp://dx.doi.org/10.1016/j.joem
ment, Fa

malia, Eg

yahoo.c

y of Egyp

and host

s.2013.0
Abstract A class of second order (F, a, q, d, E)-convex functions and their generalization on func-

tions involved, weak, strong, and converse duality theorems are established for a second order

Mond-Weir type dual problem.
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1. Introduction

The importance of convex functions is well known in optimi-
zation theory for many mathematical models used in decision
science, economic, management science, applied mathematics
and engineering. The notion of convexity does no longer suf-

fice. So it is possible to generalize the notion of convexity
and to extend the validity of result to larger classes of optimi-
zation problems. Consequently, various generalizations of

convex functions have been introduced in the literature. More
specifically, the concept of (F, a)-convexity was introduced by
Preda [1] which is an extension of F-Convexity defined by Han-

son and Mond [2] and q-convexity given by Vial [3], Gualti and
culty of Computers and Infor-
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Islam [4] and Ahmed [5] established optimality conditions and
duality results for multiobjective programming problems

involving F-Convexity and (F, a)-convexity assumptions. In
[6,7] Weir and Mond discussed the generalized convexity,dual-
ity in multiobjective programming and the proper efficiency of

the duality for vector valued Optimization Problem,and in
[8] Mond and Weir discussed the generalized concavity and
duality in Optimization and economics. Also, the concepts of

E-convex sets and E-convex function have been introduced
by Youness in [9–11], they have some important application
in various branches of mathematical sciences.

Youness in [11] introduced a class of E-convex sets and E-

convex functions by relaxing the definition of convex sets and
convex functions. This kind of generalized convexity is based
on the effect of an operator E: Rn fi Rn on the sets and the do-

main of functions, and also in [10] Youness discussed the opti-
mality criteria of E-convex programming. Xiusu Chen [12]
introduced a new concept of semi E-convex functions and dis-

cusses its properties. Emam and Youness in [13,14] introduced
a new class of E-convex sets and E-convex functions which is
called semi strongly E-convex sets and strongly E-convex
gyptian Mathematical Society. Open access under CC BY-NC-ND license.
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functions by taking the images of two points x and y under an
operator E: Rn fi Rn besides the two points themselves and
strongly E-convex sets and strongly E-convex functions. In

[15] Megahed and et al. introduced a combined interactive ap-
proach for solving E-convex multiobjective nonlinear pro-
gramming and in [16] Youness discussed the characterization

of efficient solutions of multiobjective E-convex programming
problems.

In this paper we will discuss the connection between the con-

cept of E-convex function [15] and the second order (F, a, q, d)-
convex function [17] by introducing the concept second order (F,
a, q, d,E)-convex functions and their generalization. These con-
cepts are then used to develop weak, strong, and strict converse

duality theorem for the second order Mond-Weir type dual
problem. Where F: M · M · Rn fi R, a: M · M fi R+ � {0},
d: M · M fi R, E: Rn fi Rn, and a real number q.

Definition 1.1. A functional F: M · M · Rn fi R is said to be
sub linear in its third component, if for all x; �x 2M

(i) F ðx;�x; aþ bÞ 6 F ðx;�x; aÞ þ F ðx;�x; bÞ; 8a; b 2 Rn

(ii) F ðx;�x; baÞ ¼ bF ðx;�x; aÞ; 8b 2 R; b P 0; and; a 2 Rn

Definition 1.2 [11] E-Convex set. A set M ˝ Rn is said to be an

E-convex set with respect to an operator E: Rn fi Rn if
kE(x) + (1 � k)E(y) 2M, for each x, y 2M and 0 6 k 6 1.

Definition 1.3 [11] E-convex Function. A real valued function
f: M ˝ Rn fi R is said to be an E-convex function, with respect

to an operator E: Rn fi Rn on M. If M is an E-convex set and
for each x,y 2M, 0 6 k 6 1,

fðkEðxÞ þ ð1� kÞEðyÞÞ 6 kfðExÞ þ ð1� kÞfðEyÞ

If f(kE(x) + (1 � k)E(y)) P kf(E x) + (1 � k)f(E y), then f is
called E-concave function on M.

The problem to be considered her is the following nonlinear
programming problem:

ðPÞ
Minimize fðxÞ
Subject to M ¼ fx 2 Rn : giðxÞ 6 0; i ¼ 1; 2; . . . ;mg

�

Where the function f and a set M are E-convex with respect to
the map E: Rn fi Rn, and f and g= (g1, g2, . . ., gm) are as-

sumed to be twice differentiable function over M.
There is another problem (PE problem) from the above

problem is defined as

ðPEÞ
Minimizeðf � EÞðxÞ
Subject to M0 ¼ fx 2 Rn : ðgi � EÞðxÞ 6 0; i ¼ 1; 2; . . . ;mg

�

Where the function f and a set M are E-convex with respect to

the map E: Rn fi Rn, and f and g= (g1, g2, . . ., gm) are as-
sumed to be twice differentiable function over M

Definition 1.4. A point �x is an optimal solution of the problem

(P) if and only if fðE�xÞ 6 fðExÞ8x 2M; M is an E-convex set.

Definition 1.5. Let E:Rn fi Rn be an operator and f is E-convex
function on an E-convex set M and f�E is twice differentiable
function on M, then f is said to be second order (F, a, q, d, E)-
convex function at �x on M if for all x 2M, then there exists a

vector P 2 Rn, a real valued function a: M · M fi R+ � {0}, a
real valued function d: M · M fi R and a real number q such
that fðExÞ � fðE�xÞ þ 1

2
Ptr2fðE�xÞP P Fðx; �x; aðx; �xÞfrfðE�xÞþ

r2f ðE�xÞPgÞ þ qd2ðx; �xÞ

Definition 1.6. Let E: Rn fi Rn be an operator and f is E-con-
vex function on an E-convex set M and f�E is twice differen-
tiable function on M, then f is said to be second order (F, a,
q, d, E)-pseudoconvex function at �x onM if for all x 2M, then
there exists a vector P 2 Rn, a real valued function a:
M · M fi R+ � {0}, a real valued function d: M · M fi R

and a real number q such that fðExÞ < fðE�xÞ � 1
2
Ptr2f

ðE�xÞP) Fðx; �x; aðx; �xÞfrfðE�xÞ þ r2fðE�xÞPgÞ < �qd2ðx; �xÞ

Definition 1.7. Let E: Rn fi Rn be an operator and f is E-con-
vex function on an E-convex set M and f � E is twice differen-

tiable function on M, then f is said to be strictly second order
(F, a, q, d, E)-pseudoconvex function at �x on M if for all
x 2M, then there exists a vector P 2 Rn, a real valued function

a: M · M fi R+ � {0}, a real valued function d: M · M fi R
and a real number q such that

Fðx; �x; aðx; �xÞfrfðE�xÞ þ r2fðE�xÞPgÞP �qd2ðx; �xÞ
) fðExÞ > fðE�xÞ � 1

2
Ptr2fðE�xÞP

Or equivalently

fðExÞ 6 fðE�xÞ � 1
2
Ptr2fðE�xÞP

) Fðx; �x; aðx; �xÞfrfðE�xÞ þ r2fðE�xÞPgÞ < �qd2ðx; �xÞ

Definition 1.8. Let E: Rn fi Rn be an operator and f is E-con-

vex function on an E-convex set M and f � E is twice differen-
tiable function on M, then f is said to be second order (F, a, q,
d, E)-quasiconvex function at �x on M if for all x 2M, then

there exists a vector P 2 Rn, a real valued function a:
M · M fi R+ � {0}, a real valued function d: M · M fi R
and a real number q such that

fðExÞ 6 fðE�xÞ � 1
2
Ptr2fðE�xÞP

) Fðx; �x; aðx; �xÞfrfðE�xÞ þ r2fðE�xÞPgÞ 6 �qd2ðx; �xÞ

Definition 1.9. Let E: Rn fi Rn be an operator and f is E-con-

vex function on an E-convex set M and f � E is twice differen-
tiable function on M, then f is said to be strong second order
(F, a, q, d, E)-pseudoconvex function at �x on M if for all

x 2M, then there exists a vector P 2 Rn, a real valued func-
tion a: M · M fi R+ � {0}, a real valued function d:
M · M fi R and a real number q such that

fðExÞ 6 fðE�xÞ � 1
2
Ptr2fðE�xÞP

) Fðx; �x; aðx; �xÞfrfð�xÞ þ r2fð�xÞPgÞ 6 �qd2ðx; �xÞ

Example 1. Consider the function f: M(=R+) fi R such that
f(x) = x2 � 2x. If

Fðx; �x; aÞ ¼ aðx� �xÞ � 4x

define the functions dðx; �xÞ ¼ x� �x,

aðx; �xÞ ¼ xþ �xþ 1

2
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And the operator. E(x) = x2

Then for q = 0, f is second order (F, a, q, d, E)-convex at �x ¼ 0
with respect to p, �1< p 6 1

Example 2. Consider the function f: M fi R, M = {x:
0 6 x 6 7} such that f(x) = x3.

Fðx; �x; aÞ ¼ aðx� �xÞ � 4x

If we define the functions dðx; �xÞ ¼ x� �x,

aðx; �xÞ ¼ xþ �xþ 1

2

and the operator E(x) = x2, then for q = 0, f is second order

(F, a, q, d, E)-quasiconvex function at �x ¼ 0 with respect to p,
0 < p 61

Theorem 1.10 (Fritz John Necessary Condition for Optimal-
ity). Let the objective and the constraint functions of problem

PE are continuously differentiable at the point �x 2M and
I ¼ fi : ðgi � EÞð�xÞ ¼ 0g is the index set.A necessary conditions
for �x to be a local solution of the problem PE is that there exist

vector l�P 0 and 0 6 l 2 Rm for which (l�, l) „ (0, 0) such
that

1- l0rðf � EÞ�xþ
Pk

i¼1lirðgi � EÞ�x ¼ 0.
2- liðgi � EÞ�x ¼ 0, for all i= 1, 2, . . ., m.

Proof. Let �x 2M be a local solution for problem PE. To prove

this theorem we must prove that there does not exist any other
vector d 2 Rn such that

rðf � EÞðxÞTd < 0 ð1:1Þ
rðgi � EÞð�xÞ

T
d 6 0 for all i 2 Ið�xÞ ð1:2Þ

By contradiction, we assume that there exists some d* 2 R such
that rðf � EÞð�xÞTd� < 0. Since the functions (f � E) are contin-
uously differentiable, then

ðf � EÞðxÞ ¼ ðf � EÞð�xÞ þ rðf � EÞð�xÞTðx� �xÞ þ kx� �xkað�x; x� �xÞ:

Let d� ¼ x� �x, then

ðf � EÞðxÞ ¼ ðf � EÞð�xÞ þ rðf � EÞð�xÞTd� þ kd�kað�x; d�Þ:

Since rðf � EÞð�xÞTd� < 0 and að�x; dÞ ! 0 at �x! 0, then
ðf � EÞðxÞ < ðf � EÞð�xÞ.

This contradicts the optimality of �x, and then there does
not exist any d 2 Rn such that

rðf � EÞð�xÞTd < 0 and rðgi � EÞð�xÞ
T
d 6 0 for all i 2 Ið�xÞ:

Now, from Motzkin’s theorem [18,19] there exists multipliers

l0 P 0 for and li P 0 for i 2 Ið�xÞ such that

l0rðf � EÞ�xþ
Xm
iRIð�xÞ

lirðgi � EÞð�xÞ ¼ 0

We obtain statement (1.1) of h

By setting li = 0 for all i 2 f1; . . . ;mg n Ið�xÞ. If
ðgi � EÞð�xÞ < 0 for some i= 1,2, . . ., m, then according to

the above setting li = 0, statement (2) of is valid.
2. Second order Mond-Weir type duality

In this section, we consider the following Mond-Weir type sec-
ond order dual associated with the problem (PE) and establish

weak, strong, and strict converse duality theorems under gen-
eralized second order (F, a, q, d, E)-convexity:

ðMDEÞ

Maximize fðEuÞ � 1
2
ptr2fðEuÞp

subjectb to rkfðEuÞ þ r2kfðEuÞpþrctgðEuÞ
þr2ctgðEuÞp ¼ 0

ctgðEuÞ � 1
2
ptr2ctgðEuÞp P 0

c P 0; k P 0

8>>>>>><
>>>>>>:

Theorem 2.1 (weak duality). Suppose that for all feasible x in

the problem P and all feasible (u, c, k, p) in MDE

(1) ctg(.) is second order ðF ; a; q; d;EÞ-quasiconvex at u,

and assume that any one of the following consider
holds

(2) k P 0, and f(.) is strong second order ðF ; a1; q1; d;EÞ-
pseudoconvex at u with a�1qþ a�11 q1k P 0.

(3) ktf(.) is strictly second order ðF ; a2; q2; d;EÞ-pseudoconvex
at u with a�1qþ a�12 q2 P 0

Then the following can’t hold

fðExÞ 6 fðEuÞ � 1

2
ptr2fðEuÞp ð2:1Þ
Proof. Let x be any feasible solution in PE and (u, c, k, p) be
any feasible solution in (MDE) problem. Then we have

cgðExÞ 6 0 and cgðEuÞ � 1

2
pr2ctgðEuÞp P 0

Using second order (F, a, p, d, E)-quasiconvexity of ctg(.) at u,
we get F(x, u, a(x, u){r ctg(Eu) + r2ctg(Eu)p}) 6 �pd2(x, u)

Since a(x, u) > 0, the above inequality with the sublinearity
of F yields

Fðx; u; frctgðEuÞ þ r2ctgðEuÞpgÞ
6 �a�1ðx; uÞpd2ðx; uÞ ð2:2Þ

The first dual constraint and the sublinearity of F give

Fðx; u;rkfðEuÞ þ r2kfðEuÞpÞ
P �Fðx; u;rctgðEuÞ þ r2ctgðEuÞpÞ ð2:3Þ

The inequalities (2.2) and (2.3) imply

Fðx; u;rkfðEuÞ þ r2kfðEuÞpÞP a�1ðx; uÞpd2ðx; uÞ ð2:4Þ

Now suppose contrary to the result that (2.1) holds, i.e.

fðExÞ 6 fðEuÞ � 1

2
ptr2fðEuÞp ð2:5Þ

Which by virtue of (2.3), leads to

Fðx; u;rkfðEuÞ þ r2kfðEuÞpÞ 6 �p1d2ðx; uÞ ð2:6Þ

On multiplying (2.6) by k P 0 and using the sublinearity of F
with a1(x, u) > 0,

We obtain
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Fðx; u;rkfðEuÞ þ r2kfðEuÞpÞ 6 �a�11 p1kd
2ðx; uÞ

6 a�1ðx; uÞpd2ðx; uÞ

Which contradicts with (2.4). Hence (2.1) can’t hold.
On the other hand, multiplying the inequality (2.5) by k, we

have

kfðExÞ 6 kfðEuÞ � 1

2
ptr2kfðEuÞp ð2:7Þ

When hypothesis (3) holds, the inequality (2.7) implies

Fðx; u; a2ðx; uÞfrkfðEuÞ þ r2kfðEuÞpgÞ < �p2d2ðx; uÞ ð2:8Þ

Since F is sublinear and a2(x, u) > 0,it follow from (2.8) that

Fðx; u;rkfðEuÞ þ r2kfðEuÞpÞ 6 �a�11 p1kd
2ðx; uÞ

6 a�12 ðx; uÞp2d
2ðx; uÞ

6 a�1ðx; uÞpd2ðx; uÞ

Which contradicts with (2.4). Hence (2.1) can’t hold. h

Theorem 2.2 (Strong duality theorem). Let �x be an optimal
solution of (P) at which the Kuhn-Tucker constraint qualifica-

tion is satisfied. Then there exist �k P 0 and �c 2 Rm such that
ð�x;�c; �k; �p ¼ 0Þ is feasible for (MDE) and the corresponding val-
ues of (P) and (MDE) are equal.

Proof. Since �x is an optimal solution of (P) at which the

Kuhn-Tucker constraint qualification is satisfied, then by The-
orem 1.10, there exists �k P 0 and �c 2 Rm, such that

�krfðE�xÞ þ �crgðE�xÞ ¼ 0

�cgðE�xÞ ¼ 0

�c; �k P 0

Therefore ð�x;�c; �k; �p ¼ 0Þ is feasible for (MDE) and the corre-

sponding values of (P) and (MDE) are equal from weak dual-
ity theorem ð�x;�c; �k; �p ¼ 0Þ is optimal solution of (MDE) h

Theorem 2.3 (Strict converse duality). Let �x and ð�u;�c; �k; �pÞ is
an optimal solution of (PE) and (MDE) respectively, such that

kfðE�xÞ ¼ kfðEuÞ � 1

2
�ptr2�kfðEuÞ�p ð2:9Þ

Suppose that any one of the following conditions is satisfied

(1) ctg(.) is second order ðF ; a; q; d;EÞ-quasiconvex at �u and

kf(.) is strictly second order ðF ; a1; q1; d;EÞ-pseudoconvex
at u with a�1qþ a�11 q1 P 0.

(2) ctg(.) is strictly second order ðF ; a; q; d;EÞ-pseudoconvex
at �u and ktf(.) is strictly second order ðF ; a1; q1; d;EÞ-
quasiconvex at u with a�1qþ a�11 q1 P 0.

Then, �x ¼ �u that is, �u is an optimal solution of (PE)

Proof. We assume that �x–�u and reach a contradiction. Since �x
and ð�u;�c; �k; pÞ are respectively, the feasible solution of (PE) and

(MDE) we have

cgðE�xÞ 6 0 and �ctgðE�uÞ � 1

2
�ptr2�ctgðE�uÞ�p P 0 ð2:10Þ
Using second order ðF; a; q; d;EÞ-quasiconvexity of ctg(.) at �u,
we get

Fð�x; �u; að�x; �uÞfr�ctgðE�uÞ þ r2�ctgðE�uÞ�pgÞ 6 �pd2ð�x; �uÞ

Since að�x; �uÞ > 0, the inequality (2.10) along with the sublin-
earity of F yields

Fð�x; �u;rctgðE�uÞ þ r2ctgðE�uÞ�pÞ 6 �a�1ð�x; �uÞpd2ð�x; �uÞ ð2:11Þ

The first dual constraint and the sublinearity of F imply

Fð�x; �u;rkfðE�uÞ þ r2kfðE�uÞ�pÞ þ Fð�x; �u;rctgðE�uÞ þ r2ktgðE�uÞ�pÞ
P Fð�x; �u;rkfðE�uÞ þ r2kfðE�uÞ�pþrctgðE�uÞ þ r2ktgðE�uÞ�pÞ ¼ 0

ð2:12Þ

The inequalities (2.11) and (2.12) and a�1qþ a�11 q1 P 0 imply

Fð�x; �u;rkfðE�uÞ þ r2kfðE�uÞ�pÞP �a�11 ð�x; �uÞp1d2ð�x; �uÞ ð2:13Þ

Use the strict second order ðF; a1; q1; d;EÞ-pseudoconvexity of
kf(.) with

að�x; �uÞ > 0; kfðE�xÞ > kfðE�uÞ � 1

2
ptr2ktfðE�uÞ�p

Contradiction with (2.9)
When the hypothesis (2) holds, it follows from (2.10) that

Fð�x; �u; að�x; �uÞfr�ctgðE�uÞ þ r2�ctgðE�uÞ�pgÞ 6 �pd2ð�x; �uÞ

Since að�x; �uÞ > 0, the above inequality with the sublinearity of
F gives

Fð�x; �u;rctgðE�uÞ þ r2ctgðE�uÞ�pÞ 6 �a�1ð�x; �uÞpd2ð�x; �uÞ

Which on using first dual constraint with the sublinearity of F
implies

Fð�x; �u;rktfðE�uÞ þ r2ktfðE�uÞ�pÞP �a�1ð�x; �uÞp1d2ð�x; �uÞ

As a�1qþ a�11 q1 P 0, we obtain

Fð�x; �u;rktfðE�uÞ þ r2ktfðE�uÞ�pÞP �a�11 ð�x; �uÞp1d2ð�x; �uÞ ð2:14Þ

The second order ðF; a1; q1; d;EÞ-quasiconexity of kf(.)
and (2.14) with a1ð�x; �uÞ > 0 yield ktfðE�xÞ > ktfðE�uÞ�
1
2
ptr2ktfðE�uÞ�p
Again contradiction (2.9) h
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