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Abstract This paper presents an accurate numerical method for solving fractional Riccati differ-

ential equation (FRDE). The proposed method so called fractional Chebyshev finite difference

method (FCheb-FDM). In this technique, we approximate FRDE with a finite dimensional prob-

lem. The method is based on the combination of the useful properties of Chebyshev polynomials

approximation and finite difference method. The Caputo fractional derivative is replaced by a dif-

ference quotient and the integral by a finite sum. By this method the given problem is reduced to a

problem for solving a system of algebraic equations, and by solving this system, we obtain the solu-

tion of FRDE. Special attention is given to study the convergence analysis and estimate an error

upper bound of the obtained approximate formula. Illustrative examples are included to demon-

strate the validity and applicability of the proposed technique.
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1. Introduction

Ordinary and partial fractional differential equations (FDEs)
have been the focus of many studies due to their frequent

appearance in various applications in fluid mechanics, visco-
elasticity, biology, physics and engineering [1]. Fractional cal-
culus is a generalization of ordinary differentiation and

integration to an arbitrary non-integer order. Many physical
com
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processes appear to exhibit fractional order behavior that
may vary with time or space. Most FDEs do not have exact
solutions, so approximate and numerical techniques [2–8],

must be used. Several numerical and approximate methods
to solve FDEs have been given such as variational iteration
method [6], homotopy perturbation method [9], Adomian
decomposition method [10], homotopy analysis method [11]

and collocation method [12–15].
The Riccati differential equation is named after the Italian

Nobleman Count Jacopo Francesco Riccati (1676–1754). The

book of Reid [16] contains the fundamental theories of Riccati
equation, with applications to random processes, optimal con-
trol, and diffusion problems. Besides important engineering

science applications that today are considered classical, such
as stochastic realization theory, optimal control, robust
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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stabilization, and network synthesis, the newer applications in-
clude such areas as financial mathematics [17]. The solution of
this equation can be reached using classical numerical methods

such as the forward Euler method and Runge–Kutta method.
An unconditionally stable scheme was presented by Dubois
and Saidi [18]. Bahnasawi et al. [19] presented the usage of Ado-

mian decomposition method to solve the non-linear Riccati dif-
ferential equation in an analytic form. Tan and Abbasbandy
[11] employed the analytic technique called homotopy analysis

method to solve the quadratic Riccati equation.
The fractional Riccati differential equation is studied by

many authors and using different numerical methods. This
problem is solved using by variational iteration method [20]

and in [10] it solved using the Adomian decomposition method
and others [21].

Clenshaw and Curtis [22] introduced a procedure for the

numerical integration of a non-singular function y(x) by
expanding the function in a series of Chebyshev polynomials
and integration term by term. Elbarbary introduced Cheby-

shev finite difference approximation for the boundary value
problems of integer derivatives [23,24]. The fractional deriva-
tives of the function y(x) at the point xk, 0 6 k 6 N are ex-

panded as a linear combination from the values of the
function y(x) at the shifted Gauss–Lobatto points
xk ¼ L

2
� L

2
cos pk

N

� �
; k ¼ 0; 1; . . . ;N associated with the interval

[0, L]. In addition to the procedure for the numerical integra-

tion introduced by Clenshaw and Curtis to approximate the
integral by a finite sum. Finally, we approximate the proposed
problem and end up with a finite dimensional problem. The

main characteristic of this new technique is that it gives a
straight-forward algorithm in converting FRDE to a system
of algebraic equations. The suggested method is more accurate

in comparison to the finite difference and finite element meth-
ods as the approximation of the fractional derivatives is de-
fined over the whole domain.

The main aim of the presented paper is concerned with an
extension of the previous work on fractional differential equa-
tions and derive some general approximate formulae of Cheby-
shev-FDM and then we applied this approach to obtain the

numerical solution of FRDE. Also, we present study of the
convergence analysis of the proposed method.

In this article, we consider the fractional Riccati differential

equation of the form

DðaÞuðtÞ þ u2ðtÞ � 1 ¼ 0; t > 0; 0 < a 6 1; ð1Þ

the parameter a refers to the fractional order of the time deriv-
ative. We also assume an initial condition

uð0Þ ¼ u0: ð2Þ

For a = 1, Eq. (1) is the standard Riccati differential equation

duðtÞ
dt
þ u2ðtÞ � 1 ¼ 0:

The exact solution to this equation is

uðtÞ ¼ e2t � 1

e2t þ 1
:

The structure of this paper is arranged in the following way: In
Section 2, we introduce some basic definitions about Caputo
fractional derivatives and properties the shifted Chebyshev

polynomials. Section 3, is assigned to study the existence and
the uniqueness of the fractional Riccati differential equation.In
section 4, we give the basic formulation of the new operational

matrix method using FCheb-FDM. In section 5, we introduce
an error bound of the fractional derivatives. In section 6, we
give the numerical implementation of the proposed method

for solving FRDE to show the accuracy of the presented meth-
od. Finally, in section 7, the paper ends with a brief conclusion
and some remarks.

2. Preliminaries and notations

In this section, we present some necessary definitions and
mathematical preliminaries of the fractional calculus theory re-

quired for our subsequent development.

2.1. The Caputo fractional derivatives
Definition 1. The Caputo fractional derivative operator D(a) of
order a is defined in the following form

DðaÞfðxÞ ¼ 1

Cðm� aÞ

Z x

0

fðmÞðnÞ
ðx� nÞa�mþ1

dn; a > 0; x > 0;

where m� 1 < a 6 m; m 2 N.

Similar to integer-order differentiation, Caputo fractional
derivative operator is a linear operation

DðaÞðkpðxÞ þ lqðxÞÞ ¼ k DðaÞpðxÞ þ l DðaÞqðxÞ; ð3Þ

where k and l are constants. For the Caputo’s derivative we

have

DðaÞ C ¼ 0; C is a constant; ð4Þ

DðaÞ xn ¼
0; for n 2 N0 and n < dae;
Cðnþ1Þ

Cðnþ1�aÞ x
n�a; for n 2 N0 and n P dae:

(
ð5Þ

We use the ceiling function Øaø to denote the smallest integer
greater than or equal to a and N0 ¼ f0; 1; 2; . . .g. Recall that

for a 2 N, the Caputo differential operator coincides with
the usual differential operator of integer order.

For more details on fractional derivatives definitions and its
properties see [25].

2.2. The definition and properties of the shifted Chebyshev

polynomials

The well known Chebyshev polynomials are defined on the
interval [�1, 1] and can be determined with the aid of the fol-
lowing recurrence formula [5]

Tnþ1ðzÞ ¼ 2z TnðzÞ � Tn�1ðzÞ; T0ðzÞ ¼ 1; T1ðzÞ ¼ z;

n ¼ 1; 2; . . . :

It is well known that Tn(�1) = (�1)n, Tn(1) = 1. The analytic
form of the Chebyshev polynomials Tn(z) of degree n is given by

TnðzÞ ¼
Xbn=2c
i¼0
ð�1Þi 2n�2 i�1 nðn� i� 1Þ!

ðiÞ!ðn� 2iÞ! zn�2i; ð6Þ

where ºn/2ß denotes the integer part of n/2. The orthogonality

condition is

Z 1

�1

TiðzÞTjðzÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p dz ¼

p; for i ¼ j ¼ 0;
p
2
; for i ¼ j–0;

0; for i–j:

8><
>: ð7Þ
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In order to use these polynomials on the interval [0, L] we de-

fine the so called shifted Chebyshev polynomials by introduc-
ing the change of variable z ¼ 2x

L
� 1. So, the shifted Chebyshev

polynomials are defined as

T�nðxÞ ¼ Tn

2x

L
� 1

� �
; where T�0ðxÞ ¼ 1; T�1ðxÞ ¼

2x

L
� 1:

The analytic form of the shifted Chebyshev polynomial T�nðxÞ
of degree n is given by

T�nðxÞ ¼ n
Xn
k¼0
ð�1Þn�k ðnþ k� 1Þ!22k

ðn� kÞ!ð2kÞ!Lk
xk; ð8Þ

where T�nð0Þ ¼ ð�1Þ
n;T�nðLÞ ¼ 1. The orthogonality condition

of these polynomials isZ L

0

T�j ðxÞT�kðxÞwðxÞdx ¼ djkhk; ð9Þ

where the weight function wðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
Lx�x2
p ; hk ¼ bk

2
p, with

b0 = 2, bk = 1, k P 1.
The function y(x) which belongs to the space of square inte-

grable in [0, L], may be expressed in terms of shifted Cheby-
shev polynomials as

yðxÞ ¼
X1
n¼0

cnT
�
nðxÞ;

where the coefficients cn are given by

cn ¼
1

hn

Z L

0

yðxÞT�nðxÞwðxÞdx; n ¼ 0; 1; . . . : ð10Þ
3. Existence and uniqueness

Let J = [0, T], T <1 and C(J) be the class of all continuous
functions defined on J, with the norm

kuk ¼ sup
t2J
je�NtuðtÞj; N > 0;

which is equivalent to the sup-norm iui = supt2JŒu(t)Œ.
To study the existence and the uniqueness of the initial va-

lue problem of the fractional Riccati differential Eq. (1), we
suppose that the solution u(t) belongs to the space
B ¼ fu 2 R : juj 6 bg, for any constant b.

Theorem 1. The initial value problem (1) has a unique solution

u 2 CðJÞ; u0 2 X ¼ fu 2 L1½0;T�; kuk ¼ ke�NtuðtÞkL1
g:

Proof. From the properties of fractional calculus, the frac-
tional-order differential Eq. (1) can be written as [26]

I1�a duðtÞ
dt
¼ 1� u2ðtÞ:

Operating with Ia we obtain

uðtÞ ¼ Iað1� u2ðtÞÞ: ð11Þ

Now, let us define the operator F:C(J) fi C(J) by

FuðtÞ ¼ Iað1� u2ðtÞÞ; ð12Þ
then

e�NtðFu� FvÞ ¼ e�NtIa½ð1� u2ðtÞÞ � ð1� v2ðtÞÞ�

6

Z t

0

ðt� sÞa�1

CðaÞ e�Nðt�sÞðvðsÞ � uðsÞÞðvðsÞ

þ uðsÞÞe�Nsds

6 kv� uk
Z t

0

sa�1e�Ns

CðaÞ ds;

therefore, we obtain

kFu� Fvk 6 ku� vk;

and the operator F given by Eq. (12) has a unique fixed point.

Consequently the integral Eq. (11) has a unique solution
u 2 C(J). Also we can deduce that [26]

Iað1� u2ðtÞÞjt¼0 ¼ 0:

Now from Eq. (11), we formally have

uðtÞ ¼ ta

Cðaþ 1Þ 1� u20
� �

þ Iaþ1ð0� 2uðtÞu0ðtÞÞ
� �

;

and

du

dt
¼ ta�1

CðaÞ 1� u20
� �

þ Iað�2uðtÞu0ðtÞÞ
� �

;

e�Ntu0ðtÞ ¼ e�Nt ta�1

CðaÞ 1� u20
� �

þ Iað�2uðtÞu0ðtÞÞ
� �

;

from which we can deduce that u0 2 C(J) and u0 2 X. Now
from Eq. (11), we get

du

dt
¼ d

dt
Ia½1� u2ðtÞ�;

I1�a du

dt
¼ I1�a d

dt
Ia½1� u2ðtÞ� ¼ d

dt
I1�aIa½1� u2ðtÞ�;

DauðtÞ ¼ d

dt
I½1� u2ðtÞ� ¼ 1� u2ðtÞ;

and u(0) = Ia[1 � u2(t)]t=0 = 0.
Then the integral Eq. (11) is equivalent to the initial value

problem (1) and the theorem is proved. h
4. Basic formulation of the operational matrix method using

FCheb-FDM

The well known shifted Chebyshev polynomials of the first
kind of degree n are defined on the interval [0, L] as in Eq.

(8). We choose the grid (interpolation) points to be the Cheby-
shev–Gauss Lobatto points associated with the interval
½0;L�; xr ¼ L

2
� L

2
cos pr

N

� �
; r ¼ 0; 1; . . . ;N. These grids can be

written as L = xN < xN�1 < � � �< x1 < x0 = 0.
Now, we reformulate the introduced approximate formula

of function u(x) [22] to use it on the shifted Chebyshev polyno-

mials as follows,

uNðxÞ ffi
XN
n¼0
00an T�nðxÞ; an ¼

2

N

XN
r¼0
00uðxrÞ T�nðxrÞ: ð13Þ

The summation symbol with double primes denotes a sum with
both first and last term halved. The fractional derivative of the

function u(x) at the point xs is given in the following theorem.
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Theorem 2. The Caputo fractional derivative of order a for the

function u(x) at the point xs is approximated by the following
formula

DðaÞuNðxsÞ ffi
XN
r¼0

dðaÞs;r uðxrÞ; a > 0; ð14Þ

such that

dðaÞs;r ¼
4hr

N

XN
n¼dae

XN
j¼0

Xn
k¼dae

nhn

bj

�
ð�1Þn�kðnþ k� 1Þ!Cðk� aþ 1

2
Þ

LaC kþ 1
2

� �
ðn� kÞ!Cðk� a� jþ 1ÞCðk� aþ jþ 1Þ

� T�nðxrÞT�j ðxsÞ;

where s, r = 0, 1, . . . , N with h0 ¼ hN ¼ 1
2
; hi ¼ 1 8

i ¼ 1; 2; . . . ;N� 1.

Proof. The fractional derivative of the approximate formula

for the function u(x) in Eq. (13) is given by

DðaÞ uNðxÞ ffi
XN
n¼0
00an DðaÞT�nðxÞ: ð15Þ

Employing Eqs. (4) and (5) in Eq. (8) we have

DðaÞT�nðxÞ ¼ 0; n ¼ 0; 1; . . . ; dae � 1;

then,

DðaÞ uNðxÞ ffi
XN
n¼dae
00an DðaÞT�nðxÞ: ð16Þ

Therefore, for n= Øaø, . . . , N and by using Eqs. (4), (5) and
(8) we get

DðaÞT�nðxÞ ¼ n
Xn
k¼0
ð�1Þn�k ðnþ k� 1Þ!22k

ðn� kÞ!ð2kÞ!Lk
DðaÞxk

¼ n
Xn
k¼dae
ð�1Þn�k

� ðnþ k� 1Þ!22kk!

ðn� kÞ!ð2kÞ!Cðk� aþ 1ÞLk
xk�a: ð17Þ

Now, xk�a can be expressed approximately in terms of shifted
Chebyshev series, so we have

xk�a ffi
XN
j¼0

ckj T
�
j ðxÞ; ð18Þ

where ckj is obtained from (10) with y(x) = xk�a. If only the
first (N+ 1)-terms from shifted Chebyshev polynomials in
Eq. (13) are considered, the approximate formula for the frac-

tional derivative of the shifted Chebyshev polynomials intro-
duced by Doha et al. [27] as follows

DðaÞ T�nðxÞ ¼
XN
j¼0

Xn
k¼dae

�
ð�1Þn�k2nðnþ k� 1Þ!C k� aþ 1

2

� �
bjL

aC kþ 1
2

� �
ðn� kÞ!Cðk� a� jþ 1ÞCðk� aþ jþ 1Þ

T�j ðxÞ: ð19Þ

From Eqs. (19) and (15), we have

DðaÞ uNðxÞ ¼
4

N

XN
n¼dae
00
XN
r¼0
00
XN
j¼0

Xn
k¼dae

�
ð�1Þn�knðnþ k� 1Þ!C k� aþ 1

2

� �
yðxrÞT�nðxrÞT�j ðxÞ

bjL
aC kþ 1

2

� �
ðn� kÞ!Cðk� a� jþ 1ÞCðk� aþ jþ 1Þ

: ð20Þ
From Eq. (20), the fractional derivative of order a for the func-

tion u(x) at the point xs leads to the desired result. h

The coefficients dðaÞs;r which are defined in Theorem 2 are the

elements of the s-th row of the matrix Da which is defined in
the following relation

½uðaÞ� ¼ Da½u�;

where Da is a square matrix of order (N + 1) and the column
matrices [u(a)] and [u] are given by uðaÞr ¼ uðaÞðxrÞ and ur =u(xr),

respectively.

5. Error bound for the approximate fractional derivatives

In this section, we will find an error upper bound of the intro-
duced approximate fractional derivative of the function u(x)
which is defined in Eq. (14). To achieve this aim, we state

and prove the following two theorems.

Theorem 3. [28] Suppose that H is a Hilbert space and U is a
closed subspace of H such that dimU <1 and u1, u2, . . . , un is
a basis for U. Let x be an arbitrary element in H and u0 be the

unique best approximation to x out of U. Then

kx� u0k22 ¼
Gðx; u1; u2; . . . ; unÞ
Gðu1; u2; . . . ; unÞ

;

where

Gðx; u1; u2; . . . ; unÞ ¼

hx; xi hx; u1i � � � hx; uni
hu1; xi hu1; u1i � � � hu1; uni

..

. ..
. . .

. ..
.

hun; xi hun; u1i � � � hun; uni

										

										
:

Theorem 4. The error upper bound for the approximated frac-

tional derivative D(a) of the function u(x) is defined in the fol-
lowing manner

kDðaÞuðxÞ �DðaÞuNðxÞk2 6
XN
n¼0

00

anXn

G xk�a;T�0; . . . ;T�N
� �
G T�0; . . . ;T�N
� �

 !1
2

;

ð21Þ

where

Xn ¼
Xn
k¼dae

ð�1Þn�k2nðnþ k� 1Þ!C k� aþ 1
2

� �
bjL

aC kþ 1
2

� �
ðn� kÞ!Cðk� a� jþ 1ÞCðk� aþ jþ 1Þ

ð22Þ

Proof. Consider the following statement in which we call ea
D

the error vector of the fractional derivative

ea
D :¼ DðaÞuðxÞ �DðaÞuNðxÞ; ea

D ¼ ea
D0

ea
D1
� � � ea

DN


 �T
:

From the approximate formula (14) and according to Theo-
rem 3, we have

xk�a �
XN
j¼0

ckj T
�
j ðxÞ

�����
�����
2

¼
G xk�a;T�0; . . . ;T�N
� �
G T�0; . . . ;T�N
� �

 !1
2

; ð23Þ

also, according to Eqs. (20) and (23) we have
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ea
Dj

��� ���
2
¼ DaT�nðxÞ �

XN
j¼0

Xn T�j ðxÞ
�����

�����
2

6 Xn

G xk�a;T�0; . . . ;T�N
� �
G T�0; . . . ;T�N
� �

 !1
2

: ð24Þ

Since

DðaÞuðxÞ �DðaÞuNðxÞ ¼
XN
n¼0
00an DðaÞT�nðxÞ �

XN
j¼0

XnT
�
j ðxÞ

" #
:

ð25Þ

A combination from Eqs. (24) and (25) leads to the desired
result. h
Figure 2 The behavior of approximate solution with different

values of a.
6. Implementation of FCheb-FDM for solving FRDE

In this section, we give a numerical algorithm using fractional
Chebyshev finite difference formulation for solving the frac-

tional Riccati differential equation of the form (1).
The procedure of the implementation is given by the follow-

ing steps:

1. Approximate the function u(t) using the formula (13) and
its Caputo fractional derivative D(a)u(t) using the presented
formula (14) with N= 8, then the general form of FRDE

(1) is transformed to the following approximated form

 !
Fig

FC
X8
r¼0

dðaÞr;s uðtrÞ þ
X8
n¼0
00an T�nðtÞ

2

� 1 ¼ 0; ð26Þ
where an and dðaÞr;s are defined in (13) and (14), respectively.
2. The FCheb-FD approximation for the initial condition (2)

is given by

X8
n¼0
00an T�nð0Þ ¼ u0: ð27Þ
ure 1 The behavior of the approximate solution using

heb-FDM and the exact solution at a = 1, u0 = 0.
The Eqs. (26) and (27) represent a system of non-linear alge-
braic equations which contains nine equations for the un-
knowns u(ti), i= 0, 1, . . . , 8, where the grid points to be the

Chebyshev–Gauss Lobatto points associated with the interval
[0, 3], ti ¼ 3

2
� 3

2
cos pi

8

� �
; i ¼ 0; 1; . . . ; 8.

3. Solve the previous system using the Newton iteration

method to obtain the unknowns u(ti), i= 0, 1, . . . , 8.
Therefore, the approximate solution will take the same
form (13).

The numerical results of the proposed problem (1) is given
in Figs. 1 and 2 with different values of a in the interval [0, 3].

Where in Fig. 1, we presented a comparison between the
behavior of the exact solution and the approximate solution
using the introduced technique at a = 1, u0 = 0. But, in
Fig. 2 we presented the behavior of the approximate solution

at different values of a (a = 0.5, 0.75).
From these figures we can conclude that the obtained

numerical solutions are in excellent agreement with the exact

solution.

7. Conclusion

In this article, we introduced a general fractional Chebyshev fi-
nite difference formulation and used it for solving FRDE. The
proposed problem is transformed to a system of algebraic

equations. The solution is expressed as a truncated Chebyshev
series and so it can be easily evaluated for arbitrary values of t
using any computer program without any computational ef-

fort. The error upper bound of the obtained solution is de-
duced. The numerical results show that the algorithm
converges as the number of N terms is increased. From illustra-
tive examples, it can be seen that this matrix approach can ob-

tain very accurate and satisfactory results. In the end, from our
numerical results using the proposed method, we can conclude
that, the solutions are in excellent agreement with the exact

solution. All computational results are made by Matlab pro-
gram 8.
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