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Abstract The present paper deals with the study on a class of entire functions represented by

Dirichlet series whose coefficients belong to a commutative Banach algebra with identity. We con-

sider a class of such series which satisfy certain conditions and establish some results.
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1. Introduction

Let

fðsÞ ¼
X1

n¼1
ane

kns; s ¼ rþ it; ðr; t 2 RÞ ð1:1Þ

and E be a commutative Banach algebra with identity element

en such that ieni = 1. If a0ns belong to E and k0ns 2 R which sat-
isfy the condition 0 < k1 < k2 < k3 � � �< kn � � � ;kn fi1 as
n fi1 and

lim
n!1

log kank
kn

¼ �1 ð1:2Þ

lim sup
n!1

log n

kn

¼ K <1 ð1:3Þ
hotmail.com (N. Kumar),

nocha).
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Then from [1] the Dirichlet series (1.1) represents an entire
function. Recently some properties of such type of series were
discussed by Srivastava and Sharma in [2–5]. In this paper let F

be the set of series (1.1) for which kc1kn
n efc2n�c1gknkank is

bounded where c1, c2 P 0 and c1, c2 are simultaneously not
zero. Then every element of F represents an entire function. If

fðsÞ ¼
X1

n¼1
ane

kns and gðsÞ ¼
X1

n¼1
bne

kns

Define binary operation i.e. addition and scalar multiplication
in F as

fðsÞ þ gðsÞ ¼
X1

n¼1
ðan þ bnÞekns;

a � fðsÞ ¼
X1

n¼1
ða � anÞekns;

fðsÞ � gðsÞ ¼
X1

n¼1
½kc1kn

n efc2n�c1gknanbn� ekns:

So far many authors considered set of entire functions with
weighted norms and studied results on it. In the present paper
we generalize the weighted norm by taking the conditions of

papers [6,7] and prove some results which would further be
useful in the study of the spaces like FK-space, Frechet space,
and Montel space. Using the results of this paper the spectrum

of the set can also be determined.
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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The norm in F is defined as follows:

kfk ¼
X1

n¼1
kc1kn
n efc2n�c1gknkank: ð1:4Þ

If a0ns belong to the set of complex numbers, c1 = 0, c2 = 1
gives the norm as defined in [6]. Again if c1 = 1, c2 = 0 we
get the condition as defined in [7].
2. Main results

In this section we prove our main results. For the definitions of

terms used we refer to [8,9].

Theorem 1. F is a commutative Banach algebra with identity.

Proof. In order to prove the above theorem we first show that
F is complete under the norm defined by (1.4). For this let ffk1g
be a cauchy sequence in F. For given e > 0 we can find k such
that

kfk1 � fk2k < � where k1; k2 P k

This implies that

X1

n¼1
kc1kn
n efc2n�c1gknkak1n � ak2nk < � where k1; k2 P k:

This shows that fak1ng forms a cauchy sequence in a Banach

space E for every value of n P 1 hence converges to an.
Therefore fk1 ! f. Also

X1

n¼1
kc1kn
n efc2n�c1gknkank 6

X1

n¼1
kc1kn
n efc2n�c1gknkak1n � ank

þ
X1

n¼1
kc1kn
n efc2n�c1gknkak1nk:

Hence f 2 F.

If f, g 2 F then

kf:gk ¼
X1

n¼1
kc1kn
n efc2n�c1gknkan bn kc1kn

n efc2n�c1gknk

6

X1

n¼1
kc1kn
n efc2n�c1gknkank � kc1kn

n efc2n�c1gknkbnk ¼ kfk � kgk

The identity element in F is

eðsÞ ¼
X1

n¼1
en k�c1knn efc1�c2ngkn ekns:

This completes the proof of the theorem. h

Theorem 2. The function fðsÞ ¼
P1

n¼1ane
kns is invertible in F if

and only if

fkdn k�c1knn efc1�c2ngknkg

is a bounded sequence where dn is the inverse of an.

Proof. Let f(s) be invertible and gðsÞ ¼
P1

n¼1bne
kns be its

inverse then f(s) Æ g(s) = e(s). This implies that
kc1kn
n efc2n�c1gknanbn ¼ en k�c1knn efc1�c2ngkn

or equivalently one can write

kc1kn
n efc2n�c1gknbn ¼ en fkc1kn

n efc2n�c1gknang�1

kc1kn
n efc2n�c1gknkbnk ¼ ken fkc1kn

n efc2n�c1gkn ang�1k
kc1kn
n efc2n�c1gknkbnk ¼ ken a�1n k�c1knn efc1�c2ngknk

kc1kn
n efc2n�c1gknkbnk ¼ kdn k�c1knn efc1�c2ngknk

Since g(s) 2 F hence fkdn k�c1knn efc1�c2ngknkg is a bounded

sequence.
Conversely suppose fkdn k�c1knn efc1�c2ngknkg be a bounded

sequence. Define g(s) such that

gðsÞ ¼
X1

n¼1
en k�2c1knn ef2c1�2c2ngkna�1n ekns

Obviously g(s) 2 F. Moreover

fðsÞ � gðsÞ ¼
X1

n¼1
fðan en k�2c1knn ef2c1�2c2ngkn a�1n Þ kc1kn

n

efc2n�c1gkng ekns ¼ eðsÞ

Hence the theorem. h

Theorem 3. A necessary and a sufficient condition that an ele-

ment f(s) of F be a topological zero divisor is that

lim
n!1

kc1kn
n efc2n�c1gknkank ¼ 0

Proof. Let the given condition holds. We need to prove that

f(s) is a topological zero divisor. Construct a sequence {gn}
such that

gnðsÞ ¼
X1

n¼1
k�c1knn efc1�c2ngkn ekns

Thus for all n P 1, gn 2 F and igni=1.

Now

gnðsÞ � fðsÞ ¼ fðsÞ � gnðsÞ

¼
X1

n¼1
½k�c1knn efc1�c2ngkn an kc1kn

n efc2n�c1gkn �ekns

¼
X1

n¼1
an ekns

Therefore

kgn � fk ¼ kf � gnk ¼
X1

n¼1
kc1kn
n efc2n�c1gknkank

As n fi1
kgn � fk ¼ kf � gnk ! 0

Thus f(s) is a topological zero divisor.
Conversely suppose if possible the given condition is not

true that is

lim
n!1

kc1kn
n efc2n�c1gknkank ¼ a > 0
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Then given g with 0 < g < a we can find an integer n0 P 1

such that for all n P n0

kc1kn
n efc2n�c1gknkank > a� g

hold true. Also since f(s) is a topological zero divisor therefore
there exists an arbitrary sequence {gt} of elements in F with
unit norm such that for all t P 1 one has

gtðsÞ ¼
X1

t¼1
bte

kts;)
X1

t¼1
kc1kt
t efc2t�c1gktkbtk ¼ 1

Next for given e satisfying 0 < e < 1 there exists an integer Nt

and a subsequence {ni} of the sequence of indices {n} such that

kc1kn
n efc2n�c1gknkbntk > 1� � for all n ¼ ni P Nt:

Hence we have

kc1kn
n efc2n�c1gkn kc1kn

n efc2n�c1gknkan � bntk
� �

> c > 0 for all ni

P Nt:

Therefore

kfðsÞ � gtðsÞk90

which is a contradiction to the fact that f(s) is a topological
zero divisor. Hence our initial supposition is not true. This

completes the proof of the theorem. h

Theorem 4. F is not a Division Algebra.

Proof. Let

pðsÞ ¼
X1

n¼1
fn�1k�c1knn efc1�c2ngkng ekns

p(s) 2 F and does not possess inverse in F.

Let if possible

qðsÞ ¼
X1

n¼1
dne

kns

be its inverse. Hence

pðsÞ � qðsÞ ¼ eðsÞ

)
X1

n¼1
fn�1k�c1knn efc1�c2ngkn dn kc1kn

n efc2n�c1gkngekns

¼
X1

n¼1
en k�c1knn efc1�c2ngkn ekns ) dn

¼ n en k�c1knn efc1�c2ngkn does not belong to F:

Hence the theorem. h

Theorem 5. Every continuous linear functional h:F fiE is of the

form

hðfÞ ¼
X1

n¼1
an dn kc1kn

n efc2n�c1gkn

where

fðsÞ ¼
X1

n¼1
ane

kns

and {dn} is a bounded sequence in E.
Proof. Let us first assume that h:F fi E be a continuous linear

functional.

Then since h is continuous

hðfÞ ¼ hð lim
N!1

fðNÞÞ

where

fðNÞðsÞ ¼
XN

n¼1
an ekns ) hðfÞ ¼ hð lim

N!1

XN

n¼1
ane

knsÞ

Now let us define a sequence {fn} ˝ F as

fnðsÞ ¼ k�c1knn efc1�c2ngkn ekns

hðfÞ ¼ hð lim
N!1

XN

n¼1
an kc1kn

n efc2n�c1gkn fnÞ

¼ lim
N!1

XN

n¼1
an kc1kn

n efc2n�c1gkn hðfnÞ

Since h is a linear functional therefore

hðfnÞ ¼ dn ) hðfÞ ¼
X1

n¼1
an dn kc1kn

n efc2n�c1gkn :

Now we show {dn} is a bounded sequence in E.

kdnk ¼ khðfnÞk 6Mkfnk

and ifni = 1

) kdnk 6M

Thus {dn} is a bounded sequence.
Conversely let {dn} is a bounded sequence in E satisfying

hðfÞ ¼
X1

n¼1
an dn kc1kn

n efc2n�c1gkn

Then h is well defined and linear. Now

khðfÞk ¼
X1

n¼1
kandnk kc1kn

n efc2n�c1gkn

6

X1

n¼1
kank kdnk kc1kn

n efc2n�c1gkn 6Mkfk

Thus h is a continuous linear functional. h
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