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Abstract In this paper, we introduce an iterative method to approximate a common solution of a

split equilibrium problem, a variational inequality problem and a fixed point problem for a nonex-

pansive mapping in real Hilbert spaces. We prove that the sequences generated by the iterative

scheme converge strongly to a common solution of the split equilibrium problem, the variational

inequality problem and the fixed point problem for a nonexpansive mapping. The results presented

in this paper extend and generalize many previously known results in this research area.
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1. Introduction

Throughout the paper unless otherwise stated, let H1 and H2

be real Hilbert spaces with inner product ÆÆ, Ææ and norm iÆi.
Let C and Q be nonempty closed convex subsets of H1 and
H2, respectively. Let {xn} be a sequence in H1, then xn fi x
(respectively, xn N x) denotes strong (respectively, weak) con-

vergence of the sequence {xn} to a point x 2 H1.
A mapping S: C fi C is called nonexpansive, if

kSx� Syk 6 kx� yk; 8x; y 2 C:
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The fixed point problem (in short, FPP) for the mapping S:

C fi C is to find x 2 C such that

Sx ¼ x: ð1:1Þ
The solution set of FPP (1.1) is denoted by Fix(S).

The variational inequality problem (in short, VIP) is to find

x 2 C such that

hDx; y� xiP 0; 8y 2 C; ð1:2Þ
where D: C fi H1 be a nonlinear mapping. The solution set of
VIP (1.2) is denoted by C.

For solving the VIP in a finite-dimensional Euclidean space
Rn; Korpelevich [1] introduced an iterative method so-called
extragradient method. Further motivated by the idea of

Korpelevich extragradient method, Nadezhkina and Takah-
ashi [2] introduced an iterative method for finding the common
element of the set Fix(S) \ C and proved the strong conver-
gence theorem. For related works, we refer to see [3,4].

The equilibrium problem (in short, EP) is to find x 2 C such
that
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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Fðx; yÞP 0; 8y 2 C; ð1:3Þ

which has been introduced studied by Blum and Oettli [5]. The
solution set of EP (1.3) is denoted by EP(F).

Recently, Combettes and Hirstoaga [6] introduced and
studied an iterative method for finding the best approximation
to the initial data when EP(F) „ ; and proved a strong conver-
gence theorem. Subsequently, Takahashi and Takahashi [12]

introduced another iterative scheme for finding the common
element of the set EP(F) \ Fix(S). Using the idea of Takahashi
and Takahashi [7], Plubtieng and Punpaeng [8] introduced the

general iterative method for finding the common element of
the set EP(F) \ Fix(S) \ C. Recently Liu et al. [4] introduced
and studied an iterative method, an extention of the viscosity

approximation method, for finding the common element of
the set

T1
i¼1 FixðSiÞ \ EPðFÞ \ C. For further related works,

we refer to see [3,9–11].

Recently, Censor and Segal [12] introduced and studied the
following split common fixed point problem which is a gener-
alization of split feasibility problem and convex feasibility
problem:

Let A be a real m · n matrix and let U : Rn ! Rn and
T : Rm ! Rm be operators with nonempty FixU = C and
FixT = Q. The problem is to:

find x� 2 C such that Ax� 2 Q:

Later Moudafi [13] studied the split common fixed point
problem in Hilbert spaces.

Recently, Censor et al. [14] introduced and studied some

iterative methods for the following split variational inequality
problem (in short, SVIP): Find x* 2 C such that

hfðx�Þ; x� x�iP 0; 8x 2 C; ð1:4Þ

and such that

y� ¼ Ax� 2 Q solves hgðy�Þ; y� y�iP 0; 8y 2 Q; ð1:5Þ

where f: H1 fi H1 and g: H2 fi H2 are nonlinear mappings and
A: H1 fi H2 is a bounded linear operator.

The special cases of SVIP (1.4) and (1.5) is split zero prob-

lem and split feasibility problem which has already been stud-
ied and used in practice as a model in intensity-modulated
radiation therapy treatment planning, see [15,16].

Very recently, Moudafi [17] introduced an iterative method,

an extension of a method given by Censor et al. [14] for the fol-
lowing split monotone variational inclusions:

Find x� 2 H1 such that fðx�Þ þ B1ðx�Þ 3 0

and such that y� ¼ Ax� 2 H2 solves gðy�Þ þ B2ðy�Þ 3 0;

where Bi : Hi ! 2Hi is a set-valued mapping for i= 1, 2. Later

on Byrne et al. [18] generalize and extend the work of Censor
et al. [14] and Moudafi [17].

In this paper we consider the following split equilibrium
problem (in short, SEP) [17]:

Let F1 : C� C! R and F2 : Q�Q! R be nonlinear
bifunctions and A: H1 fi H2 be a bounded linear operator,
then the split equilibrium problem (SEP) is to find x* 2 C such

that

F1ðx�; xÞP 0; 8x 2 C; ð1:6Þ

and such that

y� ¼ Ax� 2 Q solves F2ðy�; yÞP 0; 8y 2 Q: ð1:7Þ
When looked separately, (1.6) is the classical equilibrium

problem EP and we denoted its solution set by EP(F1). The
SEP(1.6) and (1.7) constitutes a pair of equilibrium problems
which have to be solved so that the image y* = Ax* under a
given bounded linear operator A, of the solution x* of the

EP (1.6) in H1 is the solution of another EP (1.7) in another
space H2, we denote the solution set of EP (1.7) by EP(F2).

The solution set of SEP (1.6) and (1.7) is denoted by

X = {p 2 EP(F1):Ap 2 EP(F2)}.
Motivated by the work of Censor et al. [12,14], Moudafi

[17], Byrne et al. [18], Plubtieng et al. [8], Liu et al. [4] and

by the ongoing research in this direction, we suggest and ana-
lyze an iterative method for approximating a common solution
of SEP(1.6) and (1.7), VIP (1.2)–FPP(1.1) for a nonexpansive

mapping in real Hilbert spaces. Furthermore, we prove that
the sequences generated by the iterative scheme converge
strongly to a common solution of SEP(1.6) and (1.7),
VIP(1.2) and FPP(1.1). The results presented in this paper

extend and generalize many previously known results in this
research area, for instance, see [4].

2. Preliminaries

We recall some concepts and results which are needed in

sequel.

Definition 2.1. Let D: C fi H1 be a nonlinear mapping. Then
D is called:

(i) monotone, if

hDx�Dy; x� yiP 0; 8x; y 2 C;

(ii) a-strongly monotone, if there exists a constant a > 0
such that

hDx�Dy; x� yiP akx� yk2; 8x; y 2 C;

(iii) b-inverse strongly monotone, if there exists a constant

b > 0 such that

hDx�Dy; x� yiP bkDx�Dyk2; 8x; y 2 C;

(iv) k-Lipschitz continuous, if there exists a constant k > 0
such that

kDx�Dyk 6 kkx� yk; 8x; y 2 C:

It is easy to observe that every a-inverse strongly monotone
mapping D is monotone and Lipschitz continuous.

A mapping PC is said to be metric projection of H1 onto C if
for every point x 2 H1, there exists a unique nearest point in C
denoted by PCx such that

kx� PCxk 6 kx� yk; 8y 2 C:

It is well known that PC is nonexpansive mapping and satisfies

hx� y;PCx� PCyiP kPCx� PCyk2; 8x; y 2 H1: ð2:1Þ

Moreover, PCx is characterized by the following properties:

hx� PCx; y� PCxi 6 0; ð2:2Þ

and

kx� yk2 P kx� PCxk2 þ ky� PCxk2; 8x 2 H1; y 2 C:

ð2:3Þ
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It is well known that every nonexpansive operator T:

H1 fi H1 satisfies, for all (x,y) 2 H1 · H1, the inequality

hðx� TðxÞÞ � ðy� TðyÞÞ;TðyÞ � TðxÞi

6 ð1=2ÞkðTðxÞ � xÞ � ðTðyÞ � yÞk2 ð2:4Þ

and therefore, we get, for all (x,y) 2 H1 · Fix(T),

hx� TðxÞ; y� TðxÞi 6 ð1=2ÞkTðxÞ � xk2; ð2:5Þ

see e.g., [19], Theorem 3 and [20], Theorem 1.

It is also known that H1 satisfies Opial’s condition [21], i.e.,
for any sequence {xn} with xn N x the inequality

lim inf
n!1
kxn � xk < lim inf

n!1
kxn � yk ð2:6Þ

holds for every y 2 H1 with y „ x.
Further, It is easy to see that the following is true:

x 2 C() x ¼ PCðx� kDxÞ; k > 0: ð2:7Þ

A set valued mapping B : H1 ! 2H1 is called monotone if for
all x,y 2 H1, u 2 Bx and v 2 By imply Æx � y,u � væ P 0. A

monotone mapping B : H1 ! 2H1 is maximal if the graph
G(B) of B is not properly contained in the graph of any other
monotone mapping.

It is known that a monotone mapping B is maximal if and
only if for (x,u) 2 H1 · H1, Æx � y,u � væ P 0, for every
(y,v) 2 G(B) implies u 2 Bx. Let D: C fi H1 be an inverse-

strongly monotone mapping and let NCx be the normal cone
to C at x 2 C, i.e., NCx :¼ {z 2 H1:Æy � x,zæ P 0,"y 2 C}.
Define

Bx ¼
DxþNCx; 8x 2 C;

;; 8x R C:

�

Then B is maximal monotone and 0 2 Bx if and only if x 2 C,
see [2].

Assumption 2.1 (5). Let F : C� C! R be a bifunction satis-

fying the following assumptions:

(i) F(x,x) = 0, "x 2 C;
(ii) F is monotone, i.e., F(x,y) + F(y,x) 6 0, "x 2 C;

(iii) For each x,y,z 2 C, lim suptfi0 F(tz+ (1 � t)x,y) 6
F(x,y);

(iv) For each x 2 C, y fi F(x,y) is convex and lower

semicontinuous.
(v) Fixed r> 0 and z 2 C, there exists a nonempty compact

convex subset K of H1 and x 2 C \ K such that

Fðy; xÞ þ 1

r
hy� x; x� zi < 0; 8y 2 C n K:

Lemma 2.1 (6). Assume that F1 : C� C! R satisfying
Assumption 2.1. For r> 0 and for all x 2 H1, define a mapping

JF1r : H1 ! C as follows:

JF1r x ¼ z 2 C : F1ðz; yÞ þ
1

r
hy� z; z� xiP 0; 8y 2 C

� �
:

Then the following hold:

(i) JF 1
r is nonempty and single-valued;

(ii) JF 1
r is firmly nonexpansive, i.e.,
JF1r x� JF1r y
�� ��2 6 JF1r x� JF1r y; x� y

� �
; 8x; y 2 H1;

(iii) Fix J F 1
r

� �
¼ EPðF 1Þ;

(iv) EP(F1) is closed and convex.

Further, assume that F2 : Q�Q! R satisfying Assump-
tion 2.1. For s > 0 and for all w 2 H2, define a mapping

JF2s : H2 ! Q as follows:

JF2s ðwÞ ¼ d 2 Q : F2ðd; eÞ þ
1

s
he� d; d� wiP 0; 8e 2 Q

� �
:

Then, we easily observe that JF2
s is nonempty, single-valued

and firmly nonexpansive, EP(F2,Q) is closed and convex and
Fix JF2s
� �

¼ EPðF2;QÞ; where EP(F2,Q) is the solution set of

the following equilibrium problem:
Find y* 2 Q such that F2(y

*,y) P 0, "y 2 Q.
We observe that EP(F2) � EP(F2,Q). Further, it is easy to

prove that C is closed and convex set.

Lemma 2.2 22. Let F : C� C! R be a bifunction satisfying
Assumption 2.1 hold and let JF1

r be defined as in Lemma 2.1 for
r> 0. Let x,y 2 H1 and r1, r2 > 0. Then:

JF1r2 y� JF1
r1
x

��� ��� 6 ky� xk þ r2 � r1
r2

				
				 JF1r2 y� y
��� ���:

Lemma 2.3 23. Let {xn} and {yn} be bounded sequences in a
Banach space X and {bn} be a sequence in [0,1] with 0 < lim
infnfi1bn 6 lim supnfi1bn < 1. Suppose xn+1 = (1 � bn)yn +

bnxn, for all integers n P 0 and lim supnfi1(iyn+1 � yni �
ixn+1 � xni) 6 0. Then limnfi1iyn � xni = 0.

Lemma 2.4 24. Let (X,ÆÆ, Ææ) be an inner product space, then for
all x,y 2 X and a,b,c 2 [0,1] with a + b + c = 1, we have

kaxþ byþ czk2 ¼ akxk2 þ bkyk2 þ ckzk2 � abkx� yk2

� ackx� zk2 � bcky� zk2:

Lemma 2.5 25. Let {an} be a sequence of nonnegative real num-
bers such that

anþ1 6 ð1� anÞan þ dn; n P 0;

where {an} is a sequence in (0,1) and {dn} is a sequence in R such
that

(i)
P1

n¼1an ¼ 1;
(ii) lim supn!1

dn
an
6 0 or

P1
n¼1jdnj <1.

Then limnfi1an = 0.
3. Main result

In this section, we prove a strong convergence theorem based
on the proposed iterative method for computing the common
approximate solution of SEP(1.6)–(1.7), VIP(1.2) and

FPP(1.1) for a nonexpansive mapping in real Hilbert spaces.
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We assume that X „ ;.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces and

C ˝ H1 and Q ˝ H2 be nonempty closed convex subsets of
Hilbert spaces H1 and H2, respectively. Let A: H1 fi H2 be a
bounded linear operator. Let D: C fi H1 be a s-inverse strongly
monotone mapping. Assume that F1 : C� C! R and
F2 : Q�Q! R are the bifunctions satisfying Assumption 2.1
and F2 is upper semicontinuous in first argument. Let S: C fi C

be a nonexpansive mapping such that H :¼ Fix(S) \ X \ C „ ;.
For a given x0 = v 2 C arbitrarily, let the iterative sequences
{un}, {xn} and {yn} be generated by

un ¼ JF1
rn

xn þ cA� JF2rn � I
� �

Axn

� �
;

yn ¼ PCðun � knDunÞ;
xnþ1 ¼ anvþ bnxn þ cnSyn;

ð3:1Þ

where rn � (0,1), kn 2 (0,2s) and c 2 (0,1/L), L is the spectral
radius of the operator A*A and A* is the adjoint of A and {an},
{bn} and {cn} are the sequences in (0,1) satisfying the following
conditions:

(i) an + bn + cn = 1;

(ii) limnfi1an = 0 and
P1

n¼0an ¼ 1;
(iii) 0 < lim infnfi1bn 6 lim supnfi1bn < 1;
(iv) lim infnfi1rn > 0,

P1
n¼1jrnþ1 � rnj < þ1;

(v) limn!1
cnþ1

1�bnþ1
� cn

1�bn


 �
¼ 0;

(vi) 0 < lim infnfi1kn 6 lim supnfi1kn < 2a and
lim nfi1Œkn+1 � knŒ = 0.

Then the sequence {xn} converges strongly to z 2 H, where
z = PHv.

Proof. For any x,y 2 C, we have

kðI�knDÞx�ðI�knDÞyk2¼kðx�yÞ�knðDx�DyÞk2

6 kx�yk2�2knhx�y;Dx�Dyi
þk2

nkDx�Dyk2

6 kx�yk2�knð2s�knÞkDx�Dyk2

6 kx�yk2:
ð3:2Þ

This shows that the mapping (I � knD) is nonexpansive.

Let p 2 H :¼ Fix(S) \ X \ C, i.e., p 2 X, we have p ¼ JF1
rn
p

and Ap ¼ JF2
rn
Ap.

We estimate

kun � pk2 ¼ JF1rn xn þ cA� JF2rn � I
� �

Axn

� �
� p

�� ��2
¼ JF1rn xn þ cA� JF2rn � I

� �
Axn

� �
� JF1rn p

�� ��2
6 xn þ cA� JF2rn � I

� �
Axn � p

�� ��2
6 kxn � pk2 þ c2kA� JF2rn � I

� �
Axnk2

þ 2c xn � p;A� JF2
rn
� I

� �
Axn

� �
:

ð3:3Þ

Thus, we have

kun � pk2 6 kxn � pk2

þ c2 JF2rn � I
� �

Axn;AA
� JF2rn � I
� �

Axn

� �
þ 2c xn � p;A� JF2rn � I

� �
Axn

� �
: ð3:4Þ
Now, we have

c2 JF2rn � I
� �

Axn;AA
� JF2rn � I
� �

Axn

� �
6 Lc2h JF2rn � I

� �
Axn; JF2rn � I

� �
Axni

¼ Lc2 JF2rn � I
� �

Axn

�� ��2: ð3:5Þ

Denoting K ¼ 2c xn � p;A� JF2rn � I
� �

Axn

� �
and using (2.5),

we have

K¼ 2c xn� p;A� JF2rn � I
� �

Axn

� �
¼ 2c Aðxn� pÞ; JF2rn � I

� �
Axn

� �
¼ 2c Aðxn� pÞþ JF2rn � I

� �
Axn� JF2rn � I

� �
Axn; JF2rn � I

� �
Axn

� �
¼ 2c JF2

rn
Axn�Ap; JF2rn � I

� �
Axn

� �
� JF2rn � I
� �

Axn

�� ��2n o

6 2c
1

2
JF2
rn
� I

� �
Axn

�� ��2� JF2rn � I
� �

Axn

�� ��2� �

6�c JF2rn � I
� �

Axn

�� ��2:
ð3:6Þ

Using (3.4), (3.5) and (3.6), we obtain

kun � pk2 6 kxn � pk2 þ cðLc� 1Þ JF2rn � I
� �

Axn

�� ��2: ð3:7Þ

From the definition of c, we obtain

kun � pk2 6 kxn � pk2: ð3:8Þ

Now, we estimate

kyn � pk2 ¼ kPCðun � knDunÞ � PCðp� knDpÞk2

6 kðun � knDunÞ � ðp� knDpÞk2

6 kun � pk2 � knð2s� knÞkDun �Dpk2

6 kun � pk2

6 kxn � pk2:

ð3:9Þ

Further, we estimate

kxnþ1 � pk ¼ kanvþ bnxn þ cnSyn � pk
6 ankv� pk þ bnkxn � pk þ cnkSyn � pk
6 ankv� pk þ bnkxn � pk þ cnkyn � pk
6 ankv� pk þ bnkxn � pk þ cnkxn � pk
6 ankv� pk þ ð1� anÞkxn � pk
6 maxfkv� pk; kx0 � pkg ¼ kv� pk:

ð3:10Þ

Hence {xn} is bounded and consequently, we deduce that
{un}, {yn} and {Syn} are bounded. On the other hand, from

the nonexpansivity of the mapping (I � knD), we have

kynþ1 � ynk ¼ kPCðunþ1 � knþ1Dunþ1Þ � PCðun � knDunÞk
6 kðunþ1 � knþ1Dunþ1Þ � ðun � knDunÞk
¼ kðunþ1 � unÞ � knþ1ðDunþ1 �DunÞ
þ ðknþ1 � knÞDunk
6 kðunþ1 � unÞ � knþ1ðDunþ1 �DunÞk
þ jknþ1 � knjkDunk
6 kunþ1 � unk þ jknþ1 � knjkDunk:

ð3:11Þ

Since un ¼ JF1rn xn þ cA� JF2rn � I
� �

Axn

� �
and unþ1 ¼

JF1rnþ1 xnþ1 þ cA� JF2rnþ1 � I

 �

Axnþ1


 �
. It follows from Lemma

2.2 that



dn
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kunþ1 � unk6 xnþ1 � xn þ c A� JF2
rnþ1
� I


 �
Axnþ1

h���
�A� JF2

rn
� I

� �
Axn

i���
þ 1� rn

rnþ1

				
				 JF1rnþ1 xnþ1 þ cA� JF2

rnþ1
� I


 �
Axnþ1


 ����
� xnþ1 þ cA� JF2

rnþ1
� I


 �
Axnþ1


 ����
6 kxnþ1 � xn þ cA�Aðxnþ1 � xnÞk

þ ckAk JF2rnþ1Axnþ1 � JF2rn Axn

��� ���þ dn;

6 kxnþ1 � xnk2 � 2ckAxnþ1

n

�Axnk2 þ c2kAk4kxnþ1 � xnk2
o1

2

þ ckAk kAxnþ1 �Axnkþ 1� rn
rnþ1

				
				kJF2rnþ1Axnþ1 �Axnþ1k

� �
þ dn

6 ð1� 2ckAk2 þ c2kAk4Þ
1
2kxnþ1 � xnkþ ckAk2kxnþ1 � xnk

þ ckAkrn þ dn

¼ ð1� ckAk2Þkxnþ1 � xnkþ ckAk2kxnþ1 � xnkþ ckAkrn þ dn

¼ kxnþ1 � xnkþ ckAkrn þ dn;

ð3:12Þ

where

rn ¼ 1� rn
rnþ1

				
				 JF2

rnþ1
Axnþ1 � Axnþ1

��� ���
and

dn ¼ 1� rn
rnþ1

				
				 JF1rnþ1 xnþ1 þ cA� JF2rnþ1 � I


 �
Axnþ1


 ����
� xnþ1 þ cA� JF2

rnþ1
� I


 �
Axnþ1


 ����:
Using (3.11) and (3.12), we obtain

kynþ1 � ynk 6 kxnþ1 � xnk þ ckAkrn þ dn þ jknþ1

� knjkDunk: ð3:13Þ

Setting xn+1 = bnxn + (1 � bn)en, which implies from (3.1)
that

en ¼
xnþ1 � bnxn

1� bn

¼ anvþ cnSyn
1� bn

:

Further, it follows that

enþ1 � en ¼
anþ1vþ cnþ1Synþ1

1� bnþ1
� anvþ cnSyn

1� bn

¼ anþ1

1� bnþ1
� an

1� bn

� 

vþ cnþ1ðSynþ1 � SynÞ

1� bnþ1

þ cnþ1
1� bnþ1

� cn
1� bn

� 

Syn:

Using (3.13), we have

kenþ1 � enk 6
anþ1

1� bnþ1
� an

1� bn

				
				kvk þ cnþ1

1� bnþ1
kynþ1 � ynk

þ cnþ1
1� bnþ1

� cn
1� bn

				
				kSynk

6
anþ1

1� bnþ1
� an

1� bn

				
				kvk

þ cnþ1
1� bnþ1

kxnþ1 � xnk þ ckAkrn þ dn½

þjknþ1 � knjkDunk� þ
cnþ1

1� bnþ1
� cn
1� bn

				
				kSynk
6
anþ1

1� bnþ1
� an

1� bn

				
				kvk þ ð1� anþ1Þ kxnþ1 � xnk½

þ ckAkrn þ dn

þjknþ1 � knjkDunk� þ
cnþ1

1� bnþ1
� cn
1� bn

				
				kSynk

6
anþ1

1� bnþ1
� an

1� bn

				
				kvk þ kxnþ1 � xnk þ ckAkrn þ dn

þ jknþ1 � knjkDunk þ
cnþ1

1� bnþ1
� cn
1� bn

				
				kSynk:

It follows that

kenþ1 � enk 6
anþ1

1� bnþ1
� an

1� bn

				
				kvk þ kxnþ1 � xnk

þ ckAkrn þ dn þ jknþ1 � knjkDunk

þ cnþ1
1� bnþ1

� cn
1� bn

				
				kSynk;

which implies that

kenþ1 � enk � kxnþ1 � xnk 6
anþ1

1� bnþ1
� an

1� bn

				
				kvk þ ckAkrn þ

þ jknþ1 � knjkDunk

þ cnþ1
1� bnþ1

� cn
1� bn

				
				kSynk:

Hence it follows by conditions (ii)–(vi) that

lim sup
n!1
½kenþ1 � enk � kxnþ1 � xnk� 6 0: ð3:14Þ

From Lemma 2.3, we get limnfi1ien � xni = 0 and

lim
n!1
kxnþ1 � xnk ¼ lim

n!1
ð1� bnÞken � xnk ¼ 0: ð3:15Þ

Now,

xnþ1 � xn ¼ anvþ bnxn þ cnSyn � xn

¼ anðv� xnÞ þ cnðSyn � xnÞ:

Since ixn+1 � xni fi 0 and an fi 0 as n fi1, we obtain

iSyn � xni fi 0 as n fi1.
It follows from (3.7) and Lemma 2.4 that

kxnþ1�pk26 ankv�pk2þbnkxn�pk2þ cnkSyn�pk2

6 ankv�pk2þbnkxn�pk2þ cnkyn�pk2

6 ankv�pk2þbnkxn�pk2þ cnkun�pk2

6 ankv�pk2þbnkxn�pk2þ cn kxn�pk2
h

þcðLc�1Þ JF2rn � I
� �

Axn

�� ��2i

6 ankv�pk2þð1�anÞkxn�pk2

þ cðLc�1Þ JF2rn � I
� �

Axn

�� ��2
6 ankv�pk2þkxn�pk2þ cðLc�1Þ JF2rn � I

� �
Axn

�� ��2:
ð3:16Þ

Therefore,

cð1� LcÞ JF2rn � I
� �

Axn

�� ��2 6 ankv� pk2

þ kxn � pk2 � kxnþ1 � pk2

 �

6 ankv� pk2 þ ðkxn � pk þ kxnþ1 � pkÞkxn � xnþ1k:
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Since c(1 � Lc) > 0, an fi 0, and ixn+1 � xni fi 0 as

n fi1, we obtain

lim
n!1

JF2rn � I
� �

Axn

�� �� ¼ 0: ð3:17Þ

Next, we show that ixn � uni fi 0 as n fi 1. Since p 2 H,
we obtain

kun � pk2 ¼ JF1rn ðxn þ cA� JF2rn � I
� �

AxnÞ � p
�� ��2
¼ JF1rn xn þ cA� JF2rn � I

� �
Axn

� �
� JF1rn p

�� ��2
6 un � p;xn þ cA� JF2rn � I

� �
Axn � p

� �
¼ 1

2
kun � pk2 þkxn þ cA� JF2rn � I

� �
Axn � pk2

n

� ðun � pÞ � xn þ cA� JF2rn � I
� �

Axn � p
� ��� ��2o

¼ 1

2
kun � pk2 þkxn � pk2
n

� un � xn � cA� JF2rn � I
� �

Axn

�� ��2o

¼ 1

2
kun � pk2 þkxn � pk2 � kun � xnk2

hn

þc2kA� JF2rn � I
� �

Axnk2 � 2c un � xn;A
� JF2rn � I
� �

Axn

� �io
:

Hence, we obtain

kun � pk2 6 kxn � pk2 � kun � xnk2 þ 2ckAðun
� xnÞk JF2rn � I

� �
Axn

�� ��: ð3:18Þ

It follows from (3.16) and (3.17) that

kxnþ1 � pk2 6 ankv� pk2 þ bnkxn � pk2 þ cnkun � pk2

6 ankv� pk2 þ bnkxn � pk2

þ cn kxn � pk2 � kun � xnk2
h

þ2ckAðun � xnÞk JF2rn � I
� �

Axn

�� ���
6 ankv� pk2 þ ð1� anÞkxn � pk2 � cnkun � xnk2

þ 2cnckAðun � xnÞk JF2rn � I
� �

Axn

�� ��
6 ankv� pk2 þ kxn � pk2 � cnkun � xnk2

þ 2ckAðun � xnÞk JF2rn � I
� �

Axn

�� ��:
Therefore,

cnkun � xnk2 6 ankv� pk2 þ kxn � pk2 �kxnþ1 � pk2

 �

þ 2ckAðun � xnÞk JF2
rn
� I

� �
Axn

�� ��
6 ankv� pk2 þ ðkxn � pkþ kxnþ1 � pkÞkxn � xnþ1k
þ 2ckAðun � xnÞk JF2

rn
� I

� �
Axn

�� ��:
Since an fi 0, JF2rn � I

� �
Axn

�� ��! 0 and ixn+1 � xni fi 0 as
n fi1, we obtain

lim
n!1
kun � xnk ¼ 0: ð3:19Þ

Next, we have

kxnþ1 � pk2 6 ankv� pk2 þ bnkxn � pk2 þ cnkSyn � pk2

6 ankv� pk2 þ bnkxn � pk2 þ cnkyn � pk2

6 ankv� pk2 þ bnkxn � pk2
þ cnfkPCðun � knDunÞ � PCðp� knDpÞk2g
6 ankv� pk2 þ bnkxn � pk2

þ cnfkun � pk2 þ knðkn � 2sÞkDun �Dpk2g
6 ankv� pk2 þ bnkxn � pk2

þ cnfkxn � pk2 þ knðkn � 2sÞkDun �Dpk2g
6 ankv� pk2 þ ð1� anÞkxn � pk2

þ cnfknðkn � 2sÞkDun �Dpk2g
6 ankv� pk2 þ kxn � pk2

þ cnknðkn � 2sÞkDun �Dpk2;

which yields

cnknðkn�2sÞkDun�Dpk26 ankv�pk2þkxn�pk2�kxnþ1�pk2

6 ankv�pk2þðkxn�pkþkxnþ1�pkÞ
kxn�xnþ1k:

Since ixn+1 � xni fi 0, an fi 0 as n fi1, we obtain
limnfi1iDun � Dpi = 0.

Furthermore, we observe that

kyn�pk2¼kPCðun�knDunÞ�PCðp�knDpÞk2

6 hyn�p;ðun�knDunÞ�ðp�knDpÞi

6
1

2
fkyn�pk2þkðun�knDunÞ�ðp�knDpÞk2

�kðyn�unÞþknðDun�DpÞk2g

6
1

2
fkyn�pk2þkun�pk2�kyn�unþknðDun�DpÞk2g:

Hence,

kyn � pk2 6 kun � pk2 � kyn � unk2 � k2
nkDun �Dpk2

þ 2knhyn � un;Dun �Dpi
6 kun � pk2 � kyn � unk2 þ 2knkyn � unkkDun �Dpk
6 kxn � pk2 � kyn � unk2 þ 2knkyn � unkkDun �Dpk:

It follows that

kxnþ1�pk26ankv�pk2þbnkxn�pk2þcnkSyn�pk2

6ankv�pk2þbnkxn�pk2þcnkyn�pk2

6ankv�pk2þbnkxn�pk2þcn½kxn�pk2�kyn�unk2

þ2knkyn�unkkDun�Dpk�
6ankv�pk2þð1�anÞkxn�pk2�cnkyn�unk2

þ2cnknkyn�unkkDun�Dpk�
6ankv�pk2þkxn�pk2�cnkyn�unk2

þ2cnknkyn�unkkDun�Dpk:

Therefore, we obtain

cnkyn � unk2 6 ankv� pk2 þkxn � pk2 �kxnþ1 � pk2

þ 2cnknkyn � unkkDun �Dpk
6 ankv� pk2 þ ðkxn � pkþ kxnþ1 � pkÞkxn � xnþ1k
þ 2cnknkyn � unkkDun �Dpk:
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Since ixn+1 � xni fi 0, an fi 0 as n fi1 and

limnfi1iDun � Dpi = 0, we obtain

lim
n!1
kyn � unk ¼ 0: ð3:20Þ

Since, we can write

kSyn � ynk 6 kSyn � xnk þ kxn � unk þ kun � ynk
! 0 as n!1:

Next, we show that lim supnfi1Æv � z,xn � zæ 6 0, where

z= PFix(S)\X\Cv. To show this inequality, we choose a subse-
quence fynig of {yn} such that

lim sup
n!1
hv� z;Syn � zi ¼ lim

i!1
hv� z;Syni � zi:

Since fynig is bounded, there exists a subsequence fynij g of
fynig which converges weakly to some w 2 C. Without loss of

generality, we can assume that yni * w. Further, from
iSyn � yni fi 0, we obtain Syni * w as i fi1.

Now, we prove that w 2 Fix(S) \ X \ C. Let us first show
that w 2 Fix(S). Assume that w R Fix(S). Since yni * w and
Sw „ w. Form Opial’s condition (2.6), we have

lim inf
i!1
kyni � wk < lim inf

i!1
kyni � Swk

6 lim inf
i!1
fkyni � Synik þ kSyni � Swkg

6 lim inf
i!1
kyni � wk;

which is a contradiction. Thus, we obtain w 2 Fix(S).
Next, we show that w 2 EP(F1). Since un ¼ JF1

rn
xn, we have

F1ðun; yÞ þ
1

rn
hy� un; un � xniP 0; 8y 2 C:

It follows from monotonicity of F1 that

1

rn
hy� un; un � xniP F1ðy; unÞ

and hence

y� uni ;
uni � xni

rn

� �
P F1ðy; uniÞ:

Since iun � xni fi 0, iSyn � xni fi 0 and iSyn � yni fi 0, we
get uni * w and

uni�xni
rn
! 0. It follows by Assumption 2.1(iv)

that 0 P F1(y,w), "w 2 C. For t with 0 < t 6 1 and y 2 C,

let yt = ty+ (1 � t)w. Since y 2 C, w 2 C, we get yt 2 C and
hence F1(yt,w) 6 0. So from Assumption 2.1(i) and (iv) we
have

0 ¼ F1ðyt; ytÞ 6 tF1ðyt; yÞ þ ð1� tÞF1ðyt;wÞ 6 tF1ðyt; yÞ:

Therefore 0 6 F1(yt,y). From Assumption 2.1(iii), we have
0 6 F1(w,y). This implies that w 2 EP(F1).

Next, we show that Aw 2 EP(F2). Since iun � xni fi 0,
un N w as n fi1 and {xn} is bounded, there exists a
subsequence fxnkg of {xn} such that xnk * w and since A is a

bounded linear operator so that Axnk * Aw.

Now setting vnk ¼ Axnk � JF2
rnk
Axnk . It follows that from

(3.17) that limk!1vnk ¼ 0 and Axnk � vnk ¼ JF2
rnk
Axnk .

Therefore from Lemma 2.1, we have
F2ðAxnk � vnk ; zÞ þ
1

rnk
hz� ðAxnk � vnkÞ; ðAxnk � vnkÞ � Axnki

P 0; 8z 2 Q:

Since F2 is upper semicontinuous in first argument, taking lim
sup to above inequality as k fi1 and using condition (iv), we
obtain

F2ðAw; zÞP 0; 8z 2 Q;

which means that Aw 2 EP(F2) and hence w 2 X.

Finally, by using the arguments as in the proof of
Theorem 3.1 [2], we can show that w 2 C.

Next, we claim that lim supnfi1Æv � z,xn � zæ 6 0, where
z= PHv. Now from (2.2), we have

lim sup
n!1
hv� z; xn � zi ¼ lim sup

n!1
hv� z;Syn � zi

¼ lim sup
i!1
hv� z;Syni � zi

¼ hv� z;w� zi
6 0:

ð3:21Þ

Finally, we show that xn fi z.

kxnþ1 � zk2 ¼ hanvþ bnxn þ cnSyn � z; xnþ1 � zi
¼ anhv� z; xnþ1 � zi þ bnhxn � z; xnþ1 � zi
þ cnhSyn � z; xnþ1 � zi

6
bn

2
fkxn � zk2 þ kxnþ1 � zk2g

þ cn
2
fkSyn � zk2 þ kxnþ1 � zk2g

þ anhv� z; xnþ1 � zi

6
bn

2
fkxn � zk2 þ kxnþ1 � zk2g

þ cn
2
fkyn � zk2 þ kxnþ1 � zk2g

þ anhv� z; xnþ1 � zi

6
bn

2
fkxn � zk2 þ kxnþ1 � zk2g

þ cn
2
fkxn � zk2 þ kxnþ1 � zk2g

þ anhv� z; xnþ1 � zi

6
ð1� anÞ

2
kxn � zk2 þ kxnþ1 � zk2
n o

þ anhv� z; xnþ1 � zi

6
1

2
ð1� anÞkxn � zk2 þ kxnþ1 � zk2
n o

þ anhv� z; xnþ1 � zi:

This implies that

kxnþ1 � zk2 6 ð1� anÞkxn � zk2 þ 2anhv� z; xnþ1 � zi:

Finally, by using (3.21) and Lemma 2.5, we deduce that

xn fi z. This completes the proof.
We have following consequence which is a strong conver-

gence theorem for computing the common approximate

solution of EP(1.3), VIP(1.2) and FPP(1.1) for a nonexpansive
mapping in real Hilbert space. h
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Corollary 3.1. Let H1 be a real Hilbert space and C ˝ H1 be

nonempty closed convex subset of Hilbert space H1. Let D:
C fi H1 be a s-inverse strongly monotone mapping. Assume that
F1 : C� C! R is a bifunction satisfying Assumption 2.1. Let S:

C fi C be a nonexpansive mapping such that H :¼ Fix(S) \
EP(F1) \ C „ ;. For a given x0 = v 2 C arbitrarily, let the iter-
ative sequences {un}, {xn} and {yn} be generated by

un ¼ JF1
rn
xn;

yn ¼ PCðun � knDunÞ;
xnþ1 ¼ anvþ bnxn þ cnSyn;

where rn � (0,1), kn 2 (0,2s) and {an}, {bn} and {cn} are the se-
quences in (0,1) satisfying the conditions (i)–(vi) of Theorem
3.1. Then the sequence {xn} converges strongly to

z 2 Fix(S) \ EP(F1) \ C, where z ¼ PFixðSÞ\EPðF1Þ\Cv.

Remark 3.1.

1. The algorithm considered in Theorem 3.1 is different from
those considered in [12–14,17,18] in the sense that variable
sequence {rn} has been taken in place of fixed r. Further the

approach presented in this paper is also different.
2. The use of iterative method presented in this paper for the

split monotone variational inclusions considered inMoudafi
[17] and Byrne et al. [18] needs further research effort.
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