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Abstract In this paper, we introduce an iterative method to approximate a common solution of a
split equilibrium problem, a variational inequality problem and a fixed point problem for a nonex-
pansive mapping in real Hilbert spaces. We prove that the sequences generated by the iterative

lem; scheme converge strongly to a common solution of the split equilibrium problem, the variational

Fixed-point problem;
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Inverse-strongly monotone
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inequality problem and the fixed point problem for a nonexpansive mapping. The results presented
in this paper extend and generalize many previously known results in this research area.
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1. Introduction

Throughout the paper unless otherwise stated, let H; and H,
be real Hilbert spaces with inner product ¢-,-) and norm |J{.
Let C and Q be nonempty closed convex subsets of H; and
H,, respectively. Let {x,} be a sequence in Hj, then x, = x
(respectively, x, — x) denotes strong (respectively, weak) con-
vergence of the sequence {x,} to a point x € Hj.

A mapping S: C — C is called nonexpansive, if

Sx = Sy|l < [|x =y,

Vx,y € C.
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The fixed point problem (in short, FPP) for the mapping S:
C — Cis to find x € C such that

Sx = x. (1.1)

The solution set of FPP (1.1) is denoted by Fix(S).

The variational inequality problem (in short, VIP) is to find
x € C such that
(Dx,y—x) =20, Vyec, (1.2)
where D: C — H, be a nonlinear mapping. The solution set of
VIP (1.2) is denoted by I

For solving the VIP in a finite-dimensional Euclidean space
R", Korpelevich [1] introduced an iterative method so-called
extragradient method. Further motivated by the idea of
Korpelevich extragradient method, Nadezhkina and Takah-
ashi [2] introduced an iterative method for finding the common
element of the set Fix(S) N I" and proved the strong conver-
gence theorem. For related works, we refer to see [3,4].

The equilibrium problem (in short, EP) is to find x € C such
that
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F(x,y) 20, VyeC, (1.3)

which has been introduced studied by Blum and Oettli [5]. The
solution set of EP (1.3) is denoted by EP(F).

Recently, Combettes and Hirstoaga [6] introduced and
studied an iterative method for finding the best approximation
to the initial data when EP(F) # §) and proved a strong conver-
gence theorem. Subsequently, Takahashi and Takahashi [12]
introduced another iterative scheme for finding the common
element of the set EP(F) N Fix(S). Using the idea of Takahashi
and Takahashi [7], Plubtieng and Punpaeng [8] introduced the
general iterative method for finding the common element of
the set EP(F) N Fix(S) N I'. Recently Liu et al. [4] introduced
and studied an iterative method, an extention of the viscosity
approximation method, for finding the common element of
the set (>, Fix(S;) NEP(F) NT. For further related works,
we refer to see [3,9-11].

Recently, Censor and Segal [12] introduced and studied the
following split common fixed point problem which is a gener-
alization of split feasibility problem and convex feasibility
problem:

Let 4 be a real mxn matrix and let U: R" — R" and
T:R" — R" be operators with nonempty FixU = C and
FixT = Q. The problem is to:

find x" € C such that Ax" € Q.

Later Moudafi [13] studied the split common fixed point
problem in Hilbert spaces.

Recently, Censor et al. [14] introduced and studied some
iterative methods for the following split variational inequality
problem (in short, SVIP): Find x" € C such that

(f(x),x—x") 20, VxeC, (1.4)
and such that

V'=Ax" € Q Vy e Q, (1.5)

where f: H] — H, and g: H, — H, are nonlinear mappings and
A: Hy — H, is a bounded linear operator.

The special cases of SVIP (1.4) and (1.5) is split zero prob-
lem and split feasibility problem which has already been stud-
ied and used in practice as a model in intensity-modulated
radiation therapy treatment planning, see [15,16].

Very recently, Moudafi [17] introduced an iterative method,
an extension of a method given by Censor et al. [14] for the fol-
lowing split monotone variational inclusions:

Find x* € H, such that f(x") + B;(x*) 50
and such that y* = Ax" € H, solves g(y*) + B,(y*) 30,

solves (g("),y —»") = 0,

where B; : H; — 2 is a set-valued mapping for i = 1, 2. Later
on Byrne et al. [18] generalize and extend the work of Censor
et al. [14] and Moudafi [17].

In this paper we consider the following split equilibrium
problem (in short, SEP) [17]:

Let F1:CxC—R and F,: Q0 x Q — R be nonlinear
bifunctions and 4: H; — H, be a bounded linear operator,
then the split equilibrium problem (SEP) is to find x* € C such
that

Fi(x",x) 20, VxeC(C, (1.6)
and such that

V' =Ax" € Q solves F>,(y",y) =0, VyeQ. (1.7)

When looked separately, (1.6) is the classical equilibrium
problem EP and we denoted its solution set by EP(F;). The
SEP(1.6) and (1.7) constitutes a pair of equilibrium problems
which have to be solved so that the image y* = Ax" under a
given bounded linear operator A, of the solution x" of the
EP (1.6) in H, is the solution of another EP (1.7) in another
space H,, we denote the solution set of EP (1.7) by EP(F»).

The solution set of SEP (1.6) and (1.7) is denoted by
Q = {p € EP(F,):Ap € EP(F>)}.

Motivated by the work of Censor et al. [12,14], Moudafi
[17], Byrne et al. [18], Plubtieng et al. [8], Liu et al. [4] and
by the ongoing research in this direction, we suggest and ana-
lyze an iterative method for approximating a common solution
of SEP(1.6) and (1.7), VIP (1.2)-FPP(1.1) for a nonexpansive
mapping in real Hilbert spaces. Furthermore, we prove that
the sequences generated by the iterative scheme converge
strongly to a common solution of SEP(1.6) and (1.7),
VIP(1.2) and FPP(1.1). The results presented in this paper
extend and generalize many previously known results in this
research area, for instance, see [4].

2. Preliminaries

We recall some concepts and results which are needed in
sequel.

Definition 2.1. Let D: C — H; be a nonlinear mapping. Then
D is called:

(i) monotone, if

<DX—Dy,X—y>>0, VX,J/GC

(i) a-strongly monotone, if there exists a constant o > 0
such that

(Dx — Dy, x —y) = allx —y|*, Vx,yeC;

(iit) P-inverse strongly monotone, if there exists a constant
B > 0 such that

(Dx — Dy,x —y) = B||Dx — Dsz7 Vx,y € C;

(iv) k-Lipschitz continuous, if there exists a constant k > 0
such that

|Dx — Dy| < kllx—yll, Vx,yeC.
It is easy to observe that every a-inverse strongly monotone
mapping D is monotone and Lipschitz continuous.
A mapping P is said to be metric projection of H, onto C if
for every point x € Hj, there exists a unique nearest point in C
denoted by Pcx such that

|x — Pcx vy e C.

<

x =y,
It is well known that P is nonexpansive mapping and satisfies
(x =y, Pcx — Pey) = ||Pex — Peyl®,  Vx,y € H,. (2.1)
Moreover, Pcx is characterized by the following properties:
(X = Pcx,y — Pex) <0, (2.2)
and

Iy = yII* > [lx = Pex]|* + |ly — Pex|, Vxe Hi,yeC.

(2.3)
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It is well known that every nonexpansive operator T
H| — H, satisfies, for all (x,y) € H,; X H,, the inequality

(x=T(x)) = (b = T()), T(») - T(x))

< (1/2IT(x) = x) = (T) = »)I’ (2.4)
and therefore, we get, for all (x,y) € H, x Fix(7),
{x = T(x),» = T(x)) < (1/2)] T(x) = x|, (2.5)

see e.g., [19], Theorem 3 and [20], Theorem 1.
It is also known that H, satisfies Opial’s condition [21], i.e.,
for any sequence {x,} with x, — x the inequality

lim inf ||x, — x|| < lim inf ||x, — || (2.6)

holds for every y € H, with y # x.
Further, It is easy to see that the following is true:

x€Tl < x=Pc(x—ADx), 1>0. (2.7)

A set valued mapping B : H; — 2™ is called monotone if for
all x,y € H;, u€ Bx and v € By imply (x — y,u —v) = 0. A
monotone mapping B: H, — 2" is maximal if the graph
G(B) of B is not properly contained in the graph of any other
monotone mapping.

It is known that a monotone mapping B is maximal if and
only if for (x,u)e Hix Hy, {(x—y,u—v) >0, for every
(»,v) € G(B) implies u € Bx. Let D: C — H; be an inverse-
strongly monotone mapping and let Ncx be the normal cone
to C at xeC, ie., Nex:={ze€ Hi:(y —x,z) = 0,Vy e C}.
Define

{ Dx+ Ncx, VxeC,
Bx =
0, Vx ¢ C.

Then B is maximal monotone and 0 € Bx if and only if x € T,
see [2].

Assumption 2.1 (5). Let F: C x C — R be a bifunction satis-
fying the following assumptions:

(i) Flx,x) =0, Vx e C;

(ii) F is monotone, i.e., F(x,y) + F(y,x) <0, Vx € C;

(iii)) For each x,y,z€ C, lim sup,,o F(tzz + (1 — )x,y) <
F(x,p);

(iv) For each xe€ C, y— F(x,y) is convex and lower
semicontinuous.

(v) Fixed r > 0 and z € C, there exists a nonempty compact
convex subset K of H; and x € C N K such that

1
F(y,x)—|—;(y—x,x—z> <0, VYyeC\K

Lemma 2.1 (6). Assume that F,:Cx C — R satisfying
Assumption 2.1. For r > 0 and for all x € H,, define a mapping
JI L Hy — C as follows:

1
Jhx = {z € C: Fzy) +;(y—z,z—x> >0, Ve C}‘
Then the following hold:

() JE is nonempty and single-valued;
(i) JEv is firmly nonexpansive, i.c.,

[0 = JE | < (S = Iy, x =), Vx,y € Hi;

(iii) Fix(JI') = EP(Fy);
(iv) EP(F)) is closed and convex.

Further, assume that F, : Q x Q — R satisfying Assump-
tion 2.1. For s > 0 and for all we H,, define a mapping
J: Hy — Q as follows:

TR (w) = {de Q:Fz(d,e)+£(efd,dfw> >0, Vee Q}

Then, we easily observe that J™ is nonempty, single-valued
and firmly nonexpansive, EP(F,, Q) is closed and convex and
Fix(/?) = EP(F,,Q), where EP(F,,Q) is the solution set of
the following equilibrium problem:

Find y" € O such that F>()",y) = 0, Yy € 0.

We observe that EP(F,) ¢ EP(F,, Q). Further, it is easy to
prove that I' is closed and convex set.

Lemma 2.2 22. Let F: C x C — R be a bifunction satisfying
Assumption 2.1 hold and let J*' be defined as in Lemma 2.1 for
r> 0. Let x,y € Hy and ry,r» > 0. Then:

| |

Lemma 2.3 23. Let {x,} and {y,} be bounded sequences in a
Banach space X and {f,} be a sequence in [0,1] with 0 < lim
infu—ocoBn < lim sup, oo, < 1. Suppose x,+1 = (1 = B,)y, +
Buxn, for all integers n =0 and lim sup,_oo(|yn+1 — vall —
s 1 — xall) < 0. Then lim, ooy, — x| = 0.

r,—rn

r

Iy =0 <y =+

Jr";lyfyH.

Lemma 2.4 24. Let (X.(-,")) be an inner product space, then for
all x,y € X and o, f,y €[0,1] with o + f + y = 1, we have

lloox + By + 72 = alxl|* + BIyII* + 7ll=1° = 2Bllx — I
y—z|”.

—ayllx —z|* = By

Lemma 2.5 25. Let {a,} be a sequence of nonnegative real num-
bers such that

Ay < (1 - Ofn)an + 5?1’ n = Oa

where {o,} is a sequence in (0,1) and {0,} is a sequence in R such
that

(1) Zrorilan = 0Q0;

(i) limsup, .2 < 0 or 3¢ |5, < oo.

Then lim,,_,..a, = 0.

3. Main result

In this section, we prove a strong convergence theorem based
on the proposed iterative method for computing the common
approximate solution of SEP(1.6)—(1.7), VIP(1.2) and
FPP(1.1) for a nonexpansive mapping in real Hilbert spaces.
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We assume that Q # ().

Theorem 3.1. Let Hy and H, be two real Hilbert spaces and

Cc H, and Q c H, be nonempty closed convex subsets of

Hilbert spaces H, and H,, respectively. Let A: Hy — H; be a
bounded linear operator. Let D: C — Hy be a t-inverse strongly
monotone mapping. Assume that F;:CxC— R and
F, : Q x Q — R are the bifunctions satisfying Assumption 2.1
and F5 is upper semicontinuous in first argument. Let S: C — C
be a nonexpansive mapping such that @ := Fix(S)N QN T # ().
For a given xo = v € C arbitrarily, let the iterative sequences
{u,}, {x,} and {y,} be generated by

wy = J0 (x4 A" ()
v, = Pc(u, — 4,Duy,);

- I)AX");

(3.1)
Xnt1 = %V + ﬁnxn + yl1Syn7

where r, < (0,00), 4, € (0,27) and y € (0,1/L), L is the spectral
radius of the operator 4”4 and A" is the adjoint of 4 and {x,},
{P.} and {y,} are the sequences in (0, 1) satisfying the following
conditions:

) oy + Byt =1

(i) lim, .0, = 0 and > 7 o, = oo;
(iii) 0 < lim inf,_, . f, < lim sup, o, < L;
(iv) lim inf, soor, > 0, D07 |rupt — 7] < 4005

(V) limnﬂoo <11’.’[;;1\l - 11"/;’1) = 07

(i) 0 < lim inf, . 4, < lim
lim nﬁoo| ;er+l - /Ln| = 0.

SUP,—s00dn < 200 and

Then the sequence {x,} converges strongly to z € @, where
z = Pov.

Proof. For any x,y € C, we have

(1= 2,D)x — (I—7,D)y||* =||(x =) — A(Dx —Dy)|*
<lx=yIF =22 (x —y,Dx — Dy)
+ 75| Dx = Dy|?
|x—y|* = A(2t = 4,)||Dx — Dy|*

<
2
<=l

|
|
(3.2)
This shows that the mapping (/ — 4,D) is nonexpansive.
Let pe @ :=Fix(S)NQNT, ie., peQ, we have p=J'p
and Ap = J,.F:Ap.
We estimate
[ty = pIP* = |[J5 (x50 + 94" (I = 1) Ax,) = p|)°
= (17 (a0 (72 = D Ax) = |
s + 94" (I = 1) ey =
bew = pI* + 7147 (] = D A |
+ 2y<xn -p, A*(Ji2 — I)Axn>.

T

< (3.3)
<

Thus, we have
e = pII* < 13, = plI*
+ 97 (I = 1) Ax,, AA" (I — 1) Ax,)
+29(xy —p, A (J? — ) Ax,,). (3.4

r

~—

Now, we have

P((JP2 = 1) Ax,, A4 (2 — ) Ax,)
S LP((12 = D) Ax,, (J? — 1) Ax,)
= L[| (2 = D" (3.5

Denoting A = 2y(x, — p, A" (J> — I)Ax,) and using (2.5),
we have
A= 2y<x,, —p, A" (Jrr’2 — I)Axn>

=2p(A(x, —p), (JI> = 1) Ax,)

=29(A(x, —p) + (JI> = 1) Ax, — (J[? = 1) Ax,, (J — 1) Ax,,)

= 2{(I A, = Ap, (I — 1) )~ | (/2 — D) x|}

1
<230 - Dav P - 0 - Dax}

<=1 =D A

(3.6)
Using (3.4), (3.5) and (3.6), we obtain
= pIF < Il = I +9(Ly = V|72 = Dax[f. (3.7)
From the definition of y, we obtain
l|e4n _sz < % _p”z‘ (3.8)
Now, we estimate
1y, = pIP* = |[Pc(tty — 2Duy) = Pe(p — 2 Dp)|I*
< |l(tn = 20Duy) = (p = 7,Dp)|*
< lun *P”z 7/1,,(21'71,7)|\Dun7Dp||2 (3.9)
< un — plI?
< =l
Further, we estimate
i1 = pll = llowy + B,xu + 2,8v, = pll
S v = pll + B,llxn = pll + 2,115y, = pll
< llv = pll + Bullxn = pll + ally, — pll (3.10)
< v = pll + Bullxu = pll + vallx — pll
S oy = pll 4+ (1 = o) [lxn = pll
< max{||v = pl|, [xo = pll} = [|v = |-

Hence {x,} is bounded and consequently, we deduce that
{u,}, {y,} and {Sy,} are bounded. On the other hand, from
the nonexpansivity of the mapping (I — 4,D), we have
Vi1 = Vall = 1Pc(unsr — Awi1 Dttyi1) — Pe(uy — A, D) ||

< H(un+1 - ;bn+lD“rz+l) - (“n - inDun)”
= [(tys1 — tty) = A1 (Dttyr — Duy,)
+ (;“n+l - /ln)DunH
< H(unﬂ - un) - ANH (D”NH - Dun)”
+ Mnﬂ - /ln‘HD“nH
< s = wall + s = Zal[| Dt
(3.11)

Since  u, =JI' (x, +9A4°(J22 = )Ax,)  and  u =

Jf‘ﬂ (x,m +pA” (in1 — I)Ax,,ﬂ). It follows from Lemma

n.

2.2 that
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lletnsr — ] <

‘X;Hrl — X, +“/[A‘ (f?

gl

- 1>Axn+1

— A (U = D) A,

HJF (Xn+1+”z4 (JF

1) A )

-2

Tpyl
(e 947 (972, = 1) A )|
< X1 = 0 + 94" A(X0s1 — X)) |

|22, Ay = IF A, | + 00,

< {1 =3l = 271|001
1
— A+ A o =%l

+~/HA\|{HAxM T

1 ——‘HJfHA\,,H Ax,,+|||} +9,
2. .2 43 N -
< (=2 + P 1T 1 = 5ll + 1A o1 —
+7)| 4|6, + 6,

=(1- V”AHZ)HXHI =Xl +3"”‘4”2““’6%1 = x|+l 4lle, + 6,
= [[Xu1 = Xl + 7| 4|00 + 6,

(3.12)
where
o, = ’1 il ‘ sz AX,,+| Ax,H.
Tnt1 o
and
5n = ‘1 - rr" ‘ J}I"l‘ll‘f’l (xn+l + 'VA* (J::ZH - I)Axn+1)
n+1
- (xn-H + ’VA* (J:;ZH - 1) Axl1+l> H
Using (3.11) and (3.12), we obtain
1Vue1 = Yull S X1 = Xall + 714l o0 + 0 + |2
— 2l D (3.13)

Setting x,+1 = B.x, + (1 — B,)e,, which implies from (3.1)
that

e = Xng1 — ﬁnxn _ 0V + VnSyn
" 1- ﬁn - ﬁn

Further, it follows that

€l — €, = L1V + V1SVt OV + 7SV
n+ n 1 — [)’n+1 1 — ﬂn
= ( Gt 1 _ On )V + Vn+1(Sy,7+1 _ Syn)
1 - ﬁn+1 1- ﬁn 1- ﬁn+1

Vnt1 T )
+ (e )y,
<1 - ﬁn+l 1- ﬁn

Using (3.13), we have

Oyl

o —_ell < _
H(’n+1 (,,,” X '1 — ﬁn+1 1

IIVI|+ ’”E 1ne1 = all
n+l1

Vnt1 Tn

+ 'W‘ elisnd
' vl
h 1- ﬁn+l 1 - ﬂn
e [ = x4+ 9l Al 4,
n+1
s — 2D + ‘,7_ sy, |
1 ﬂ)H»I 1- ﬁn

vl + (1

o
‘ 2 — st [wst = 0l

a’l
h 1 - ﬁn+l 1- ﬁn
+7lA4lle, + 6,

Vntl

1— ﬂrH»] 1- ﬁn
- X,,“ + V”A”Jn + 511

st — a1 D] + \

h 17ﬁn+] lfﬁn

Vel
Il — || D —
* | o 1||| u”” * ‘1 ﬂn+1 1-

o o4
\ IR ' TN

Vn

\Synll

It follows that

o
e — el < \ w0 L — )
n

o
L=F 18

+ 9l Allon + 8n + [2ne1 — || Duta|

’Y" /"
n \—*‘f 1Syl

I=f 15,
which implies that

Opt1
< -
= 1 - ﬁﬂ+l Bn
+ I/ln+l - An”lDun”
’VIH»] Vn
J’_ —_
’1 - ﬁﬂ+1 1 - ﬁ

Hence it follows by conditions (ii)—(vi) that

||€,,+1 - en” - HX’H’I — Xp

lim sup(||e,s1 = eul| = [lXni1 = %] <O

n—oo

(3.14)

From Lemma 2.3, we get lim,,_,.o|le, — x,|| = 0 and

lim [|x,41 — x,|| = Iim (1 — B,)]le, — x,|| = 0. (3.15)

Now,
Xpp1 = Xp = 0,V + B, X, + 7,8V, — X,
= 0, (v =) +7,(Sy, — Xn)-
Since |x,+; —x,J|—=0 and «,—0 as n—>oco, we obtain

ISy, — x| = 0 as n — oo.
It follows from (3.7) and Lemma 2.4 that

1501 =21 anllv=pIP + B30 —pII> + 2,17, — oI
<aullv=pl* + B, 1% =21’ + 7.0y, — I’
<llv=pI*+ B, = pI + 3.l — pIP
<allv=pI +Bllx = I+ 7, Iva = pI
(L= D[/ = D) x|
<l =pI*+ (1 =a)lx = pl
Ly =) ()2 = D) dx, |
<l plP + s~ +9(Ly = )| (/7 = D) ||

(3.16)
Therefore,

(1= Ly)|| (72 = D Ax||* < oy = pII?

+ (1% = I = s = 2I)

< ally = pI* + (Ix = pll + %1 = pIDIxG = X .

VIl + 7l Allon + b,
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Since (1 — Ly) > 0,
n — oo, we obtain

o, =0, and |x,+; —x,||—>0 as

lim ||( (J72 = 1) Ax,

n—o00

|=o0. (3.17)

Next, we show that ||x, — u,] = 0 as n = oc. Since p € O,
we obtain

oty — p|| *HJF‘ X, + A (JF —I)Ax,, sz

n

—HJF‘ X, +7yA4* JFl’f )Ax,, JF'pH

<ty — pyx, +9A (J — 1) Ax, _;>

= 3 =P 9”222 — 1) A, — I
oy = p) = [ 4 (82 = D) A, ]|}
=5 {ll = pIP + 1= pIP

— [l = =" (72 = D) x|}

= 3 {lla = 1P+l = I = s =P

FP A (I = ) A = 29— 0 A° (I = D) Ax,)] .

Hence, we obtain
2 2 2
lluw = plI™ < llxn = PII" = llttn — xall™ + 29[ A (2
— x)I[(7F = 1) 4x, . (3.18)

It follows from (3.16) and (3.17) that

allv =PI + B = pIP + 7ulles — I
[y = pII* + B, = I
70 I = pIF =l =,
+2y]|A(

%1 = pII* <
<
2
u, — x,)|||| (72 = 1) Ax,

n

]

< aullv = pI* + (1= o) llxn = plI* = pllatn —
+ 29,91 A4y — x|l (J52 = 1) A, |

< o[y = pl* + Il
+ 29/ A (un —

=pl* = pallen =
)| (777 = 7) A,

Therefore,

Tl = 5all* < ally = oI + (160 =PI = lac1 = 1)
2514ty — )| (72 = ) |
<l = pIP + (I = I+ s = 2D = e
+ 2714, = )| (72 = 1) A |

Since o, = 0, || (/2> = I)Ax,|| — 0 and |x, | — x,| > 0 as
n — oo, we obtain
lim ||u, — x,|| = 0. (3.19)
n—o0

Next, we have

< OC””V 7])”2 + ﬁn”xﬂ 717H2 + vnHSyﬂ 7]7H2
< ollv = plI* + Bullxw = pII* + 7allv, — pIP
< oullv = plI* + Bllxa = pII°

%1 = pII®

+ 7t Pe(u — Pc(p = 2.Dp) |’}
< oullv = pl* + B llx. = pII

— JuDuy,)

+ 3 {llttn = pII* + 2 (2 — 27)|| Dut, — Dp|*}
< oylv *pHZ + Bl xn *P”z
+ 9, {11%0 = pII* + (2 — 27)|| Du, — Dp||*}

< aullv = plP + (1 = o)1, — pI?
+ 9, {Au(Zn — 20)||Dut, — Dp|I*}
< ollv = pl* +
+ V(A

2
X, = pll
—21)|| Du, — Dp|*,

which yields

Vn (2w — 27) || Dty

2 2 2 2
= Dp|I” <oullv=pl"+ lxn =plI” = |01 =

<y =pI* + (%0 = pll + [ %01 = lI)
”xn_xn+1H~
Since ||x,+1 —x,J|—=0, «,—0 as n—oco, we obtain
1imn—>oo||Dun - Dp” = 0.

Furthermore, we observe that

13, = pII* =1Pc(tty — 2 Duy) = Pe(p— i Dp)|*
< <yn _p7(un_;“nDun)_(p_)“nDp)>
1 2 2
<=7 +1l(ts = 20 D) = (p = 2 Dp) |
_”(yn_”n)'i'j'n(Dun_Dp)Hz}
1 2 2 ) 2
Sn =17+l =PI =1, = 4 + 20 (D — Dp) 7}
Hence,
1y, = 2 < lluw = pII* = 11y, — wall® = %[ Duy — Dp|®
+22,(y, — un, Du, — Dp)
2 2
< Nw = pII” = 1y = wall” + 221y, — wall[| Dute — Dpl|
2 2
< v = pII" = Mlvy — wall” + 2211y, — wall|| Duy, — Dp||.
It follows that
%1 =PI < oullv=pII* + B, llxs = pII* 47,118y, —pII°
<oullv=pl*+B,l1xu—plI* + 7,1y, =l
2 2 2 2
<oul[v=plI"+ Bullxn —2I" + v lllxn = PII" = 17 — nl

+2/L”Hyn -
<oul[v=pl* + (1= )% = pI = 7,1y, — ol

tun|||| D, — Dp]

+29, 2l ¥ — tin ||| Duty — D]
2 2 2
Satal|v=pl" 4 llx0 =PI = 7ullyy — uall
+29, 2l vy =t ||| Duty — Dp]|.

Therefore, we obtain

2 2
Pallvn = tall® < 0llv = pII* + 1% = pI* = X1 — P
+2ynin|b’n_”nHHD”n_DpH
2
< o[y = plI” + (1% =PIl + [1x01 = PIDIIX0 = X |
+ 29,2l ¥, — tn|| | Dty — Dp|.
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Since  |Ix,+1 —x,J]—0, ®,—-0 a n—oo and 1
. " " ’ ~” FAn_ Ny - _A“n._ n,7An,_ n, _An
hmn%x”Dun _ Dp” = (), we obtain 2( X = Ve Z) + For <Z ( X =V A) ( X =V A) X A>
. >0, VzeQ.
lim ||y, — u,]| = 0. (3.20) Q
Since. we can write Since F, is upper semicontinuous in first argument, taking lim
’ sup to above inequality as k — oo and using condition (iv), we
obtain
||Syn _ynH < HSyn - x"” + Hx” - un“ + HuVl _ynH
0 as 1 — oo, Fy(Aw,z) =2 0, Vze O,
Next, we show that lim sup,_,e.(v — z,%, — 2) < 0, where which means that Aw € EP(F) and hence w € Q.

z = Prixs)nenry- To show this inequality, we choose a subse-
quence {y, } of {y,} such that

lim sup(v—z Sy, —z) = hm(v—z Sy, — 2)-

Since {y,,} is bounded, there exists a subsequence {yn } of
{y,,} which converges weakly to some w € C. Without loss of
generality, we can assume that y, — w. Further, from
Sy, — yal = 0, we obtain Sy, — w as i — oc.

Now, we prove that w € Fix(S) N QN TI. Let us first show
that w € Fix(S). Assume that w ¢ Fix(S). Since y, — w and
Sw # w. Form Opial’s condition (2.6), we have
lim inf|y, — w|| < lim inf||y, — Sw]|

1—00 1—00
< lim [inf{Hym - Sym“ + ||Syn, - SWH}

< lim inf [, — wll,
1— 00

which is a contradiction. Thus, we obtain w € Fix(S).
Next, we show that w € EP(F). Since u,, = Jf,‘ X,, we have

1
F](un7y)+_

n

<y — Up, Uy — xn> =0, VYyeCdC.

It follows from monotonicity of F; that

_<y — Uy, Uy — xn> = Fl(yaun)

I'n

and hence

M,,[ - xn,-
<y_un,a P > >F1(y,un,)'
n

Since [lu, — x| — 0, [|Sy, — x,] — 0 and [|Sy, — y|| > 0, we
get u,, — w and = — 0. It follows by Assumption 2.1(iv)
that 0 > Fi(y,w), VWEC For ¢t with 0 < <1 and ye C,
let y, =1ty + (1 — Hw. Since y € C, w e C, we get y, € C and
hence Fi(y,w) < 0. So from Assumption 2.1(i) and (iv) we
have

OZFl(ytvyt) < tFl(ytvy)+(1 7I)F1(ytvw) < lFl(yny)'

Therefore 0 < Fi(y,;,y). From Assumption 2.1(iii)), we have
0 < Fi(w,y). This implies that w € EP(F)).

Next, we show that Aw € EP(F,). Since |ju, — x,|| = 0,
u,—w as n—>oo and {x,} is bounded, there exists a
subsequence {x,, } of {x,} such that x,, — w and since 4 is a
bounded linear operator so that 4x,, — Aw.

JF Axnk It follows that from
. = J A Xy -

Now setting v,, = Ax,, —
(3.17) that limy—,ov,, = 0 and Ax,,A -

Therefore from Lemma 2.1, we have

Finally, by using the arguments as in the proof of
Theorem 3.1 [2], we can show that w € I'.

Next, we claim that lim sup,_,..(v — z,x, — z) < 0, where
z = Pgv. Now from (2.2), we have
lim sup (v — z,x, — z) = lim sup(v — z, Sy, — z)
= limsup(v—z,Sy, —z
sup( I =) (3.21)
={(v—z,w—12z)
< 0.

Finally, we show that x, — z.

st = 21 = (v + B+ 7,55 = 2, X = 2)
= 0, (V — 2, X1 — 2) + B (Xn — 2, X1 — 2)
+ V11<Syl1 — Z, Xpg1 — Z>
B 2 2
< 7"{||xn —z|I” + lxu — 2|7}

Xny1 — ZHZ}

+ 2 {lsy, — 2l +

+ o, (v — 2z, X — 2)

<oy P 4 s —21P)
+ 240y = 2P + s — 2P}
+ o, (v

— Z, Xp+1 — Z>

<Pl = 2P 4 e — 21}

Xntl — Z||2}

:
+ 2 {2l +

+ O‘n<v — Z, Xp41 — Z>
1- Oy

R
+ O‘n<V — Z, Xpt1 — Z>
1

< {0 =albo = 2P + x =21}
+ OC,,<V — 2y Xnt1 — Z>'

This implies that
(X1 — 2)* < (1= o) |0 — 2|* + 200 (v — 2, X1 — 2).

Finally, by using (3.21) and Lemma 2.5, we deduce that
x,, = z. This completes the proof.

We have following consequence which is a strong conver-
gence theorem for computing the common approximate
solution of EP(1.3), VIP(1.2) and FPP(1.1) for a nonexpansive
mapping in real Hilbert space. [J
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Corollary 3.1. Let H, be a real Hilbert space and C  H, be
nonempty closed convex subset of Hilbert space H,. Let D:
C — H be a t-inverse strongly monotone mapping. Assume that
F, : C x C — Ris a bifunction satisfying Assumption 2.1. Let S:
C — C be a nonexpansive mapping such that O := Fix(S) N
EP(F\)NT #0. For a given xo = v € C arbitrarily, let the iter-
ative sequences {u,}, {x,} and {y,} be generated by

— 7hi .
U, = J.' x5

Y = PC(un - /lnDun);
X1 = 0V + ﬁnxn + ’\/nSym

where r, < (0,00), 4, € (0,27) and {o,,}, {f,} and {y,} are the se-
quences in (0, 1) satisfying the conditions (i)—(vi) of Theorem
3.1. Then the sequence {x,} converges strongly to
z € Fix(S) N EP(F\) N I', where z = Prix(snep(F)nrV-

Remark 3.1.

1. The algorithm considered in Theorem 3.1 is different from
those considered in [12-14,17,18] in the sense that variable
sequence {r,} has been taken in place of fixed r. Further the
approach presented in this paper is also different.

2. The use of iterative method presented in this paper for the
split monotone variational inclusions considered in Moudafi
[17] and Byrne et al. [18] needs further research effort.
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