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Abstract In this paper, we investigate the topologically weak concepts of topological groupoids by

giving the concepts of a-topological groupoid and a-topological subgroupoid. Furthermore, we

show the role of the density condition to allow a-topological subgroupoid inherited properties from

a-topological groupoid and the irresoluteness property for the structure maps in a-topological grou-
poid is studied. We also give some results about the fibers of a-topological groupoids.
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1. Introduction

Groupoids have been first introduced by Brandt in 1926 as
algebraic structures generalizing groups, by allowing the group
product to be partially defined. Groupoid can be usefully seen

as the ‘categorification’ of equivalence relations: indeed, since
every morphism is an iso, any two objects joined by at least
one arrow are equivalent in ‘‘as many ways’’ as there are ar-

rows between them. Moreover, equivalence relations can often
be meaningfully represented as the orbit equivalence relations
of some nontrivial groupoids over their domains. Topological

groupoid was invented by Ehresmann, [1], around 1958–1970
in the field of differential geometry. The structure formulated
was groupoid equipped with topology compatible with the
du.my (A. Kılıçman).
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map, domain, codomain, composite and inversion. These

properties later translated in categorical language as a
groupoid with all the structure maps, i.e. source, target, object,
partial multiplication and inversion, are all continuous maps.

For more details about topological groupoid see [2–4].
In topological spaces, Njastad, [5], 1965 introduced the

notion of a-sets in topological space. In 1983, Mashhour et al.

[6] introduced, with the help of a-sets, a weak form of continuity
which they termed as a-continuity. Since then it has been widely
investigated in the literature (see [7–10]). In 1980, Maheshwari
and Thakur, [11] introduced the irresoluteness of a-functions
in topological spaces. Recently, continuity and irresoluteness
of functions in topological spaces have been researched bymany
mathematicians and quantum physicists (see [12–16]).

This paper is organized as follows: It consists of four sec-
tions. Section 2 is devoted to some preliminaries. In Section
3, we investigate some properties of a-continuous maps given

to structure maps of a groupoid. In Section 4, we start by giv-
ing the notions of a-topological groupoid and a-topological
subgroupoid. Next, we show the role of the density condition
to allow a-topological subgroupoid inherited properties from

a-topological groupoid and study the irresoluteness property
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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for the structure maps in a-topological groupoid. Finally, we
show the relation between a set of objects and a set of identities
in a-topological groupoid. In Section 5, we give some results

about the fibers of a-topological groupoids.

2. Preliminaries

Throughout this paper, by X we mean a topological space (X,
s), and cl(A) will denote the closure of set a set A and int(A) the
interior of set A. Recall [5] that a subset A of topological space

X is called a-open set if there exists open subset U of X such
that U � A � int(cl(U)). The complement of a-open set is called
a-closed set. Every open set is a-open but the converse need not

be true; the intersection of two a-open sets is a-open and the
arbitrary union of a-open sets is a-open set, that is, the collec-
tion of all a-open sets in X forms a topology on X. The setM is

a-open in X if and only if there exists a-open set A in X such
that A � M � int(cl(A)); if A is a-open set in X and
A � Y � X, then A is a-open in Y; if A � Y and Y is a-open
subset of X, then A is a-open in Y if and only if A is a-open
in X; for more details see [8–10,17].

Recall [6] that a map f:X fi Y is called a-continuous if
f�1(U) is a-open set in X for any open sets U in Y. Every con-

tinuous map is a-continuous but the converse not necessarily
true; A map f:X fi Y is a-continuous if and only if f�1(F) is
a-closed set in X for any closed sets F in Y; the cartesian prod-

uct of two a-continuous maps is a-continuous. A map f:X fi Y
is called a-open (resp. a-closed) map if the direct image of open
set (resp. closed) in X is a-open (resp. a-closed) set in Y.

Definition 2.1. [18] A groupoidG is a small category consisting

of two sets G and OG, called respectively the set of elements (or
arrows) and the set of objects (or vertices) of the groupoid,
together with two maps l, b:G fi OG, called respectively the

source andtarget maps of groupoid, the map e:OG fi G which
is defined by e(x) = 1x, where 1x is called the identity element
at x in OG and e is called the object map, and the partial
multiplication map c:(G · G)l=b fi Gwhich is defined by

c(g,h) = gh, where (G · G)l=b = {(g,h) 2 G · G:l(g) = b(h)}.
Theses terms must satisfy the following axioms:

G1.l(gh) = l(h) and b(gh) = b(g),
G2. (gh)k= g(hk),
G3. l(1x) = b(1x) = x for all x 2 OG,
G4. g1l(g) = g and 1b(g)g = g,

G5. g�1g = 1l(g) and gg�1 = 1b(g)

for all g, h, k 2 G.
Remark 2.2. For a groupoid G:

1. r: G fi G is the inversion map of G defined by r(g) = g�1

which is a bijective,

2. d: (G · G)l fi G is the difference map of G defined by
d(h,g) = gh�1, where

ðG� GÞl ¼ fðg; hÞ 2 G� G : lðhÞ ¼ lðgÞg;

3. p: G fi OG · OG is a map, defined by p(g) = (l(g),b(g)).
For a groupoid G and x, y 2 OG, we denote the star of G at
x by stGx of the fiber l�1(x) = {g 2 G:l(g) = x}, the co-star of

G at y by costGy of the fiber b�1(y) = {g 2 G: b(g) = y} and
G(x,y) = stGx \ costGy.
Definition 2.3. [3] Let G be a groupoid. A subgroupoid of G is a

pair of subset N � G and ON � OG such that l(N) � ON,
b(N) � ON, 1x 2 N for all x 2 ON, and N is closed under partial
multiplication and inversion maps in G.

A subgroupoid N of G is wide if OG = ON.

Definition 2.4. [4] A topological groupoid G is a groupoid G
together with topologies on G and OG such that the structure

maps of G are continuous, that is; the source map l, the target
map b, the object map e, the inversion map r, and the partial
multiplication map c are continuous.
3. Structure maps of a groupoid

In this section, we investigate some properties of a-continuous
maps given to structure maps of a groupoid.

Theorem 3.1. Let G be a groupoid in which G and OG have

topologies. If the inversionmap r is continuous, then the sourcemap
l is a-continuous if and only if the target map b is a-continuous.

Proof. Suppose l is a-continuous and U be open subset of OG.
Then l�1(U) is a-open in G which implies that there exists open

subset B of G such that B � l�1(U) � int(cl(B)). Since r is a
continuous, we get from its definition that it is a homeomor-
phism. Hence

r�1ðBÞ � r�1ðl�1ðUÞÞ � r�1½intðclðBÞÞ� ¼ int½clðr�1ðBÞÞ�:

Then r�1(l�1(U)) is a-open subset of G. Since G is

groupoid, then b = l � r. Hence b�1(U) = r�1(l�1(U)). So,
b�1(U) is a-open subset of G. That is, b is a-continuous.

Conversely, suppose b is a-continuous and V open subset of
OG. Since r is homeomorphism and l = b � r, then
l�1(V) = r�1(b�1(V)) is a-open subset of G. Therefore l is

a-continuous. h

Theorem 3.2. Let G be a groupoid in which G and OG have
topologies. If the inversion map r is continuous, then the partial
multiplication map c is a-continuous if and only if the difference

map d is a-continuous.

Proof. Since the identity map I: Similar forG fi G and the
inversion map r are homeomorphisms, then the map

I · r:G · G fi G · G, defined by (I · r)(g,h) = (g,h�1), is also
homeomorphism. If (g,h) 2 (G · G)l and since G is groupoid,
then l(g) = l(h) = b(h�1), that is (g,h�1) 2 (G · G)l=b. Hence
the restriction map r:(G · G)l fi (G · G)l=b of I · r on

(G · G)l is homeomorphism. Now suppose the partial multi-
plication map c is a-continuous and let U be open subset of
G. Then c�1(U) is a-open subset of (G · G)l=b. This implies

that there exists open subset B of (G · G)l=b such that
B � c�1(U) � int(cl(B)). Hence

r�1ðBÞ � r�1ðc�1ðUÞÞ � r�1½intðclðBÞÞ� ¼ int½clðr�1ðBÞÞ�:

That is, r�1(c�1(U)) is a-open subset of (G · G)l. Since G is
a groupoid, then d = c � r. Hence d�1(U) = r�1(c�1(U)) is

a-open subset of (G · G)l, that is, the difference map d is a-
continuous.
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Conversely, suppose the difference map d is a-continuous
and let V be open subset of G. If (g,h) 2 (G · G)l=b and since
G is groupoid, then l(g) = b(h) = l(h�1), that is
(g,h�1) 2 (G · G)l. Hence the restriction map k:(G · G)l=b fi
(G · G)l of I · r on (G · G)l=b is homeomorphism. Since V is
open subset of G, then d�1(V) is a-open subset of (G · G)l.
Hence k�1(d�1(V)) is a-open subset of (G · G)l=b. Since G is
groupoid, then c = d � k. Hence c�1(V) = k�1(d�1(V)) is

a-open subset of (G · G)l=b, that is, the partial multiplication
map c is a-continuous. h

In the following theorem, we show the relation between the
partial multiplication map and the map D:(G · G)b fi G which
is defined by D(g,h) = g�1h.

Theorem 3.3. Let G be a groupoid in which G and OG have
topologies. If the inversion map r is continuous, then the partial
multiplication map c is a-continuous if and only if the map D is
a-continuous.

Proof. Similar in the proof of theorem above that
I · r:G · G fi G · G is homeomorphism. If (g,h) 2 (G · G)b
and since G is groupoid, then b(g) = b(h) = l(h�1), that is

(g,h�1) 2 (G · G)l=b. Hence the restriction map r:(G · G)b fi
(G · G)l=b of I · r on (G · G)b is homeomorphism. Now sup-
pose the partial multiplication map c is a-continuous and let

U be open subset of G. Then it is clear that
r�1(c�1(U)) = D�1(U) is a-open subset of (G · G)b, that is, the
map D is a-continuous.

Conversely, suppose the map D is a-continuous and let V be
open subset of G. If (g,h) 2 (G · G)l=b and since G is
groupoid, then b(g�1) = l(g) = b(h), that is (g�1,h) 2
(G · G)b. Hence the restriction map m:(G · G)l=b fi (G · G)b
of I · r on (G · G)l=b is homeomorphism. Since V is open
subset of G and G is a groupoid, then it easy to see that

c�1(V) = m�1(D�1(V)) is a-open subset of (G · G)l=b, that is,
the partial multiplication map c is a-continuous. h

Corollary 3.4. Let G be a groupoid in which G and OG have
topologies. If the inversion map r is continuous, then the

difference map d is a-continuous if and only if the map D is
a-continuous.

Proof. From Theorems 3.2 and 3.3. h
4. a-Topological groupoids

In this section, we start by giving the notions of a-topological
groupoid and a-topological subgroupoid. Next, we show the
role of the density condition to allow a-topological subgrou-
poid inherited properties from a-topological groupoid and
study the irresoluteness property for the structure maps in a-
topological groupoid.

Definition 4.1. A a-topological groupoid G is a groupoid G

together with topologies on G and OG such that the inversion
map r is continuous and the remainder structure maps of G are
a-continuous. That is; the source map l, the target map b, the
object map e, and the partial multiplication map c are a-
continuous.
Note that every topological groupoid is a-topological grou-
poid but the converse need not be true since any a-continuous
need not be continuous, [7].

Definition 4.2. Let G be a-topological groupoid. The a-
topological subgroupoid of G is a subgroupoid B together
with subspace topologies on B and OB such that the restriction

map r0:B fi B of the inversion map r is continuous and the
remainder structure maps of B are a-continuous, that is; the
restriction maps l0, b0:B fi OB, e0:OB fi B, and
c0 : ðB� BÞl0¼b0 ! B of the source (target) map l, b, the

object map e, and the partial multiplication map c, respec-
tively, are a-continuous.

Recall [19] that U is open subset of X if and only if
cl[U \ cl(A)] = cl[U \ A], for every A � X. Moreover, D � X
is dense in X if cl(D) = X. This will be used in the following

lemmas to describe hot to restrict a-continuous map.

Lemma 4.3. If D is a dense in X, then cl(A) = cl(A \ D) for
any a-open set A in X.

Proof. Since A is a-open set in X, then there exits open subset

U of X such that U � A � int(cl(U)) � cl(U). Hence since D is
dense in X, we get

clðAÞ ¼ clðUÞ ¼ clðU \ XÞ ¼ cl½U \ clðDÞ� ¼ clðU \DÞ
� clðA \DÞ:

That is, cl(A) = cl(A \ D). h

Lemma 4.4. Let f:X fi Y be a-continuous map. If D is dense

subset of a space X, then the restriction fŒD:D fi Y is a-
continuous.

Proof. Let U be open subset of Y. Then f�1(U) is a-open sub-

set of X, that is, there exists open subset O of X such that
O � f�1(U) � int(cl(O)). This implies

O \D � f�1ðUÞ \D � intðclðOÞÞ \D:

Since D is dense in X, we get

intDðclDðO \DÞÞ ¼ intðclðO \DÞÞ \D ¼ int½clðO \ clðDÞÞ� \D

¼ intðclðO \ XÞÞ \D ¼ intðclðOÞÞ \D:

That is, f�1(U) \ D is a-open in D. Hence fŒD is a-
continuous. h

Theorems 4.5 and 4.6 deal with the density condition which

allows a-topological subgroupoid inherited properties from a-
topological groupoid.

Theorem 4.5. Let G be a-topological groupoid and B is a wide
subgroupoid of G. If (B · B)l=b is dense in G · G, then B is a-
topological subgroupoid.

Proof. Since (B · B)l=b is dense in G · G, then we have

clðG�GÞl¼b
½ðB� BÞl¼b� ¼ cl½ðB� BÞl¼b� \ ðG� GÞl¼b

¼ ðG� GÞl¼b:
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This implies that (B · B)l=b is dense in (G · G)l=b. Since

(B · B)l=b � B · B, then B · B is dense in G · G and B is
dense in G. Then by Lemma 4.4, the restriction maps
c0 : ðB� BÞl0¼b0 ! B and l0,b0:B fi OB are a-continuous. Fur-
ther, the restriction r0:B fi B is continuous. Finally, since
OG = OB, then the restriction e0:OB fi B is a-continuous.
Hence B is a-topological subgroupoid. h

Theorem 4.6. Let G be a-topological groupoid and B is a wide

and dense subgroupoid of G. If (G · G)l=b is a-open in
G · G, then B is a-topological subgroupoid.

Proof. Since B is dense in G, then B · B is dense in G · G.
Moreover, since (G · G)l=b is a-open subset of G · G, then

by Lemma 4.3,

clðG�GÞl¼b
½ðB� BÞl¼b� ¼ cl½ðB� BÞl¼b� \ ðG� GÞl¼b

¼ cl½ðG� GÞl¼b \ ðB� BÞ� \ ðG� GÞl¼b

¼ cl½ðG� GÞl¼b� \ ðG� GÞl¼b ¼ ðG� GÞl¼b:

That is, (B · B)l=b is dense in (G · G)l=b. Hence B is a-
topological subgroupoid. h

Theorem 4.7. Let G be a-topological groupoid. If B is open

subgroupoid of G, then B is a-topological subgroupoid.

Proof. Since B is open in G, then the restriction maps l0,
b0:B fi OB of l, b are a-continuous and (B · B)l=b =

(B · B) \ (G · G)l=b is open subset of (G · G)l=b. Hence the
restriction c0 : ðB� BÞl0¼b0 ! B of c is a-continuous. Finally,
we will show that the restriction e0:OB fi B is a-continuous.
Let U be open subset of B which implies that U is also open

set in G. Since B is subgroupoid of G, then for x 2 e�1(U),

1x 2 U) lð1xÞ 2 lðUÞ � lðBÞ � OB ) x 2 OB:

Hence (e0)�1(U) = e�1(U) \ OB = e�1(U), that is (e0)�1(U)
is a-open set in OG. Hence B is a-topological subgroupoid. h

Here we show the relation between a set of objects and a set
of identities in a-topological groupoid. This relation was stud-
ied in a topological subgroupoid as the set of objects is homeo-

morphic to the set of identities under the object map. However
many authors such as Aof and Brown [18,4] identified the set
of objects with the set of identities in groupoid. If we take this
definition, then the set of objects becomes a subspace in the set

of arrows G, and the object map will become an inclusion,
which implies that the object map is continuous. Moreover,
the set of identities is a wide subgroupoid of G. Actually, there

is a relation between the set of objects and the set of identities
as follows: 1x = 1y if and only if l(1x) = l(1y) if and only if
b(1x) = b(1y) if and only if x = y, under object, source and

target maps. Therefore, the set of identities is a wide subgrou-
poid. The following result shows that this situation in a-topo-
logical groupoid case.

Theorem 4.8. Let G be a-topological groupoid. Then the object

map e is a bijective and a-continuous onto A = {1x:x 2 OG}.

Proof. Since G is a-topological groupoid, then the object map
e:OG fi G is a-continuous. Define the restriction map
r:OG fi A by r(x) = 1x, for all x 2 OG. Then for x, y 2 OG,
rðxÞ ¼ rðyÞ ) 1x ¼ 1y ) lð1xÞ ¼ lð1yÞ ) x ¼ y;

that is, r is injective. For 1x 2 A, there exists x 2 OG such that
r(x) = 1x, that is, r is surjective. Hence r is bijective. Now sup-
pose U is open set of A. Then U= V \ A, where V is open set
of G, but r�1(U) = e�1(V) \ OG = e�1(V). Therefore r is a-
continuous. h

From Theorem above, if the object e:OG fi G is a-open map,

then the restriction r is a-open map. This follows from the fact
that for any open subsetU ofOG, then e(U) is a-open subset ofG
but since e(U) � A and r(U) = e(U) \ A= e(U), this implies

that r(U) is a-open set in G. Then, there exists an open subset
O of G such that O � r(U) � int(cl(O)). This implies that
O \ A � r(U) \ A � int(cl(O)) \ A. Since O � r(U) � A, then

O � r(U) � intA[clA(O)], that is, r(U) is a-open subset of A.
Therefore, r is a-open map.

Analogous to the pervious explanation, the following theo-

rem deals with a new case of a set of identities in a-topological
groupoids.

Theorem 4.9. Let G be a-topological groupoid. If the set of
identities A is open subgroupoid of G, then

1. A is a a-topological subgroupoid;
2. the object e:OG fi G is a-open map;

3. the bijective map r:OG fi A, r(x) = e(x) = 1x for all
x 2 OG, is a-open map.
Proof.

1. Since A is open subgroupoid, then by Theorem 4.7, A is a-
topological subgroupoid.

2. Let U be open subset of OG. Since the source map l is a-
continuous, the l�1(U) is a-open subset of G. Since A is
open subset of G, then l�1(U) \ A is a-open subset of G

and a-open subset of A. Now we prove that
e(U) = l�1(U) \ A. Suppose that y 2 l�1(U) \ A. Since
y 2 A, then there exists x 2 OG, such that y = 1x. Hence

l(1x) = x 2 l[l�1(U)]. That is,

x 2 U) eðxÞ ¼ 1x 2 eðUÞ ) y 2 eðUÞ:
Conversely, suppose that h 2 e(U). Since e(U) � A, then
there exists z 2 U such that e(z) = 1z = h, which implies

that z = l(1z) = l(h). Then h 2 l�1(z) � l�1(U). Hence
e is a-open map.
3. Since e(U) � A, then r(U) = e(U). But e is a-open map,

this implies that r is also a-open map. h

Theorem 4.10. Let G be a-topological groupoid. Then the source
map l is a-closed (resp. a-open) map if and only if the target

map b is a-closed (resp. a-open) map.

Proof. Let the source l be a-closed map and M be a closed
subset of G. Then the set r(M) is also closed in G. Since the
source map l is a-closed, then l(r(M)) is a-closed subset of

OG. Since G is a groupoid, then we get that b(M) = l(r(M)).
Hence b is a-closed. Conversely, For any closed subset F of
G, the set b(r(F)) is a-closed subset of OG. Since

l(F) = b(r(F)), then l is a-closed. A similar argument holds
for a-open map. h
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We illustrate further the relation between the difference
map and the multiplication map in a-topological groupoid.

Theorem 4.11. Let G be a-topological groupoid. Then the

multiplication map is a-closed (resp. a-open) map if and only if
the difference map is a-closed (resp. a-open) map.

Proof. Suppose the multiplication map c:(G · G)l=b fi Gis a-
open map. Since G is a-topological groupoid, then the restric-

tion map r:(G · G)l fi (G · G)l=b of I · r, which is defined by
r(g,h) = (g,h�1), is a homeomorphism. Then for a-open subset
U of (G · G)l, the set c(r(U)) is a-open subset of G. Further,

since G is a-topological groupoid, then d(U) = c(r(U)). There-
fore the difference map d is a-open. Conversely, since G is a-
topological groupoid, then c = d � r�1. Then the proof of this

part will be similar for the proof the first part. h

Moreover, recall from Caldas and Navalagi, [17], that a

topological space X ishyperconnected if every nonempty open
subset of X is dense in X.

Theorem 4.12. Let G be a-topological groupoid such that the set
of arrows G is a hyperconnected space and B is a wide

subgroupoid of G. If (B · B)l=b is a-open in G · G, then B is a-
topological groupoid.

Proof. Since G is a hyperconnected, it is easy to see that G · G
is also hyperconnected. Further, since every nonempty a-open
set contains open set and (B · B)l=b is a-open subset of G · G,
then (B · B)l=b is dense in G · G. Hence B is also dense in G.
And since B is wide subgroupoid then by Theorem 4.6, B is a-
topological subgroupoid. h

Recall from Maheshwari and Thakur, [11] that a map

f:X fi Y is called ana-irresolute if the inverse image of any a-
open set in Y is a-open set in X. We say that a map f:X fi Y
is a-pre-open map if f�1[int(cl(U))] � int[cl(f�1(U))] for any a-
open subset U of Y.

Theorem 4.13. Let G be a-topological groupoid. If the source
map l is a-pre-open, then:

1. The source map l is a-irresolute.
2. The target map b is a-irresolute.
3. The composite maps e � l and e � b are a-continuous.
Proof.

1. Suppose l is a-pre-open map and U be a-open in OG. Then
there exists open subset O of OG such that O � U � int(-
cl(O)), which implies

l�1ðOÞ � l�1ðUÞ � l�1½intðclðOÞÞ�:

Since l is a-pre-open, then l�1[int(cl(O))] � int[cl(l�1(O))].
Also, since l is a-continuous, then l�1(U) is a-open which im-
plies l�1(U) a-open subset of G. This implies l is a-irresolute.
2. Since the inversion map r is a homeomorphism, then

from the part (1), r�1[l�1(U)] is a-open in G. Since G
is a-topological groupoid, then b�1(U) = r�1[l�1(U)]
which implies b�1(U) is a-open set in G. That is, b is

a-irresolute.
3. Since b and l are a-irresolute maps, e is a-continuous and
from the parts (1) and (2), we get that the composite maps
e � l and e � b are a-continuous. h

The above theorem also holds for a-irresolute target map.

Theorem 4.14. Let G be a-topological groupoid. If the object
map e is a-pre-open, then:

1. The target map e is a-irresolute.
2. The composite maps e � l and e � b are a-continuous.

Proof.

1. The proof is similar for the proof of part (1) in Theorem

4.13.
2. Let U be open subset of OG. Since l is a-continuous, then

l�1(U) is a-open subset of G. That is, there exists open sub-

set B of G such that B � l�1(U) � int(cl(B)). This implies

e�1ðBÞ � e�1½l�1ðUÞ� � e�1½intðclðBÞÞ�:

Since e is a-pre-open, then e�1[cl(B)] � cl[e�1(B)]. Hence

e�1ðBÞ � e�1½l�1ðUÞ� � int½clðe�1ðBÞÞ�:

And since e is a-continuous, then e�1(B) is a-open, which im-
plies e�1[l�1(U)] is a-open set in OG. That is, e � l is a-contin-
uous. Similarly, e � b will be a-continuous. h

Theorem 4.15. Let G be a-topological groupoid. If the multipli-
cation map c is a-pre-open, then:

1. The multiplication map c is a-irresolute.
2. The difference map d is a-irresolute.
3. The map k:(G · G)b fi G, which is defined by

k(g,h) = g�1h, is a-irresolute.
Proof.

1. Suppose that the multiplication map c is a-pre-open map.

Let U be a-open in G. Then there exists open subset B of G
such that B � U � int(cl(B)), which implies c�1(B) � c�1(U)
� c�1[int(cl(B))]. Since c is a-continuous, then c�1(B) is a-
open in (G · G)l=b. And since c is a-pre-open, then

c�1[int(cl(B))] � int[cl(c�1(B))]. Hence c�1(U) is a-open sub-
set of (G · G)l=b. This implies c is a-irresolute.

2. Since G is a-topological groupoid, then the restriction map

r:(G · G)l fi (G · G)l=b of I · r, which is defined by
r(g,h) = (g,h�1), is a homeomorphism. Now let U be a-
open subset of G. Then by the part (1), c�1(U) is a-open
in (G · G)l=b. Then there exists open subset O of
(G · G)l=b such that O � c�(U) � int(cl(O)), which implies
r�1(O) � r�1[c�(U)] � r�1[int(cl(O))]. Since r is homeomor-
phism, then r�1(O) is open set in (G · G)l and

r�1[int(cl(O))] = int[cl(r�1(O))]. Hence r�1[c�(U)] is a-open
in (G · G)l. Further, since G is a groupoid, then
d = c � r. Hence d is a-irresolute.

3. Since G is a-topological groupoid, then the restriction map
m:(G · G)b fi (G · G)l=b of r · I, which is defined by
m(g,h) = (g�1,h), is a homeomorphism. Now let U be a-
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open subset of G. Since c is a-pre-open and G is groupoid,

then m�1[c�1(U)] = k�1(U) is a-open subset of (G · G)b.
That is, k is a-irresolute. h
5. Fibers of a-topological groupoid

In this section, we give some results about the fibers of a-topo-
logical groupoids.

Theorem 5.1. Let G be a-topological groupoid. If the singleton
{g} is open subset of G such that g 2 G(x,y), then

1. The left translation Lg:costGx fi costGy, which is defined by
Lg(h) = gh, is bijective, a-continuous and a-open.

2. The right translation Rg:stGy fi stGx, which is defined by
Rg(t) = tg, is bijective, a-continuous and a-open.
Proof.

1. Since G is a-topological groupoid, then the multiplication

map c:(G · G)l=b fi G is a-continuous. So, the restriction
R:{g} · costGx fi costGy of c, which is defined by
R(g, t) = gt, is bijective and a-continuous. This follows
from: Let (g, t) 2 {g} · costGx. Then l(g) = b(t) = x. And

since b(gt) = b(g) = y, then gt 2 costGy. So R({g} · costGx)
� costGy. If t1, t2 2 costGx and R(g, t1) = R(g, t2), then
gt1 = gt2, implies, g�1gt1 = g�1gt2, implies, 1l(g)t1 = 1l(g)

t2. But l(g)b(t), that is, t1 = t2. Hence R is injective. Also
for b 2 costGy and g 2 G(x,y), g�1b 2 costGx. So, R(g,
g�1b) = (gg�1)b = b. That is, R is bijective. Now let V be

open subset of costGy. That is, there exists open subset U
of G such that V= U \ costGy. Then R�1(V) = c�1(U)
\ ({g} · costGx). Since {g} is open in G and

{g} · costGx = ({g} · G) \ (G · G)l=b, then {g} · costGx is
open subset of (G · G)l=b. Since c is a-continuous, then
c�1(U) is a-open in (G · G)l=b, that is, R

�1(V) is a-open in
{g} · costGx. Hence R is a-continuous. Therefore, its easy

to see that the map M:costGx fi {g} · costGx, which is
defined by M(t) = (g, t), is a homeomorphism and

Lg ¼ R �M : costGx!
M fgg � costGx!

R
costGy;

is a bijective and a-continuous.
To prove that Lg is a-open, it is enough to prove its inverse
L�1g : costGy! costGx, which is defined by L�1g ðhÞ ¼ g�1h, is

a-continuous. Similarly, we can write L�1g as a composite:

L�1g ¼ m � q : costGy �����!
qðtÞ¼ðg�1 ;tÞfg�1g � costGy �����!mðg�1 ;tÞ¼g�1t

costGx:

2. Similar for the Part (1). h

Remark 5.2. The results of Theorem 5.1 are hold if we replace

the word ‘dense’ for the singleton instead of ‘open’. It is also
useful to remark that {g} dense in G for g 2 G(x,y) implies that
G(x,y) is dense in G.

Theorem 5.3. Let G be a-topological groupoid. If the singleton

{g} is dense of G such that g 2 G(x,y), then

1. The restriction R1:G(y,x) fi G(y,y) of the left translation

Lg, which is defined by R1(h) = gh, is a-continuous.
2. The restriction R2:G(x,y) fi G(y,y) of the right translation

Rg�1 , which is defined by R2(h) = hg�1, is a-continuous.
3. The restriction R3:G(x,y) · G(y,x) fi G(y,y) of c, which is

defined by R3(h,g) = hg, is a-continuous.

Proof. We observe that the map R1, R2 and R3 are the restric-
tion maps of the left translation Lg, the right translation Rg�1

and the partial multiplication map c to the sets G(y,x),

G(y,x) and G(x,y) · G(y,x), respectively. Since G(x,y) is dense
in G and by Lemma 4.4 and Remark 5.2, then R1, R2 and R3

are a-continuous. h
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