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Abstract The dynamic of pairwise correlations, including quantum entanglement (QE) and discord

(QD) with geometric measure of quantum discord (GMQD), are shown in the four-qubit Heisenberg

XX spin chain. The results show that the effect of the entanglement degree of the initial state on the

pairwise correlations is stronger for alternate qubits than it is for nearest-neighbor qubits. This param-

eter results in sudden death for QE, but it cannot do so for QD andGMQD.With different values for

this entanglement parameter of the initial state, QD and GMQD differ and are sensitive for any

change in this parameter. It is found that GMQD is more robust than both QD and QE to describe

correlations with nonzero values, which offers a valuable resource for quantum computation.
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1. Introduction

An interacting quantum system is characterized by the pres-

ence of correlations amongst its different constituents. The
correlations have, in general, both classical and quantum com-
ponents. The most prominent example of quantum correla-

tions is that of entanglement which serves as the
fundamental resource in several quantum information process-
ing tasks such as quantum computation, teleportation and
niversity, Assiut 71516, Egypt.
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dense coding [1]. It is well known that the total correlation
in a bipartite quantum system can be measured by quantum
mutual information [2], which may be divided into classical

and quantum parts [3–6]. The quantum part is called quantum
discord (QD) which is originally introduced in Ref. [5]. Re-
cently, there has been awareness of the fact that quantum dis-
cord is a more general concept to measure quantum

correlation than quantum entanglement (QE) since there is a
nonzero quantum discord in some separable mixed states [5].
Interestingly, it has been proven both theoretically and exper-

imentally that such states provide computational speedup
compared to classical states in some quantum computation
models [17,18]. In these contexts, quantum discord could be

a new resource for quantum computation. The dynamics of
quantum discord and entanglement has been recently com-
pared under the same conditions when entanglement dynamic
undergoes a sudden death [7–12]. The entanglement sudden
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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death, in which the entanglement can decrease to zero abruptly

and remains zero for a finite time [13,14], has been experimen-
tally observed in an implementation using twin photons [15],
and atomic ensembles [16].

The calculation of quantum discord is based on numerical

maximization procedure, it does not guarantee exact results
and there are few analytical expressions including special cases
[19,20]. Therefore, to avoid this difficulty, geometric quantum

discord (GMQD), introduced in Ref. [21], measures the quan-
tum correlations through the minimum Hilbert–Schmidt dis-
tance between the given state and zero discord state.

On the other hand, there are an effort to characterize the
entanglement properties in solid state systems such as spin
chains [22–24]. Where the spin chains, as the natural candi-

dates, not only have been used to simulate a quantum com-
puter, as well as quantum dots [25], nuclear spins [26],
electronic spins [27], and optical lattice [28], but also display
useful applications such as quantum state transfer [29].

In previous studies only the correlations of the nearest
neighbor spin–spin interactions in the spin chain are consid-
ered [30–34]. But from the practical point of views, more atten-

tion should be paid to study the correlations of spin models
with not only nearest neighbor spin–spin interactions, but also
with next-to-nearest neighbor, since those models are closer to

real quasi-one-dimensionalmagnets comparing to standard
ones with only nearest neighbor couplings. Therefore, a lot
of interesting work about pairwise entanglement has been done
[35–37]. But pairwise correlations, via quantum discord and its

geometric measure, in spin chains seems to have been seldom
exploited before [38]. It is very interesting and necessary to
study the relation between quantum entanglement and various

quantum correlations in such systems.
Motivated by the previous topics, in this paper, one will be

concerned with the dynamic properties of pairwise correlations

in a four-qubit Heisenberg XX spin chain. Different from the
previous work, the dynamics of pairwise correlations via
quantum discord and its geometric measure as other types

for quantum correlations, further to entanglement, are pre-
sented. In addition, one also discusses the effects of the degree
of entanglement of the initial state on the behavior of pairwise
correlations.

2. Measures of correlations

Here, one uses the quantum discord and its geometric measure
and entanglement as the measures of quantum correlations.

To quantify the quantum correlations of a bipartite system,

no matter whether it is separable or entangled, one can use the
quantum discord measure [3,5]. Quantum discord measures all
nonclassical correlations and defined as the difference between

total correlation and the classical correlation with the follow-
ing expression

DðqABÞ ¼ IðqABÞ � QðqABÞ; ð1Þ

which quantifies the quantum correlations in qAB and can be

further distributed into entanglement and quantum dissonance
(quantum correlations excluding entanglement) [39]. Here the
total correlation between two subsystems A and B of a bipar-

tite quantum system qAB is measured by quantum mutual
information,

IðqABÞ ¼ SðqAÞ þ SðqBÞ � SðqABÞ; ð2Þ
where SðqABÞ ¼ TrðqAB logqABÞ is the von Neumann entropy,

qA = TrB(q
AB) and qB = TrA(q

AB) are the reduced density

operators of the subsystems A and B, respectively. The mea-

sure of classical correlation is introduced implicitly in the

Ref. [5] and interpreted explicitly in the Ref. [3]. The classical

correlation between the two subsystems A and B is given by

QðqABÞ ¼ max
fPkg

SðqAÞ �
X
k

pkSðqkÞ
" #

; ð3Þ

where {Pk} is a complete set of projectors to measure the sub-
system B, and qk = TrB[(I

A � Pk)q
AB(IA � Pk)]/pk is the state

of the subsystem A after the measurement resulting in outcome

k with the probability pk = TrAB[(I
A � Pk)q

AB(IA � Pk)], and
IA denotes the identity operator for the subsystem A. Here,
maximizing the quantity represents the most gained informa-

tion about the system A as a result of the perfect measurement
{Pk}. It can be shown that quantum discord is zero for states
with only classical correlations and nonzero for states with

quantum correlations. Note that discord is not a symmetric
quantity, i.e., its amount depends on the measurement per-
formed on the subsytem A or B [21]. However the density ma-

trix that one will consider provides equal values of
measurement of classical correlations, irrespective of whether
the measurement is performed on the subsytem A or B [8,19].

The geometric measure of quantum discord quantifies the

quantum correlation through the nearest Hilbert–Schmidt dis-
tance between the given state and the zero discord state [21],
which is given by

Dg
A ¼ min

v2S
kqAB � vk2; ð4Þ

where S denotes the set of zero discord states and iAi2 = -
Tr(A�A) is the square of Hilbert-Schmidt norm of Hermitian

operators. The subscript A of Dg
A implies that the measurement

is taken on the system A. A state v on HA � HB is of zero dis-
cord if and only if it is a classical-quantum state [40], which can
be represented as

v ¼
X2
k¼1

pkjkihkj � qk;

where {pk} is a probability distribution, Œkæ is an arbitrary
orthonormal basis for HA and qk is a set of arbitrary states

(density operators) on HB. An easily computable exact expres-
sion for the geometric measure of quantum discord is obtained
[21] for a two qubit system, which can be described as follows.

Consider a two-qubit state qAB expressed in its Bloch repre-
sentation as

qAB ¼ 1

4
IA � IB þ

X
i¼1
ðxiri � IB þ IA � yiriÞ þ

X
ij¼1

Rijri � rj

" #
;

ð5Þ

where {ri} are the usual Pauli spin matrices. xi =

Tr(qAB(ri � I)) and yi = Tr(qAB(I � ri)) are the components
of the local Bloch vector. Rij = Tr(qAB(ri � rj)) are the
components of the correlation matrix [21]. Then its geometric

measure of quantum discord is given by

Dg
A ¼

1

4
ðk~xk2 þ kRk2 � kmaxÞ; ð6Þ
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~x ¼ ðx1; x2; x3ÞT and kmax is the largest eigenvalue of the ma-

trix K ¼ ~x~xT þ RRT, where R is the matrix with elements Rij.
To measure the quantum entanglement (QE) one uses the

negativity [41], in which, the negative eigenvalues of the partial

transposition of qAB are used to measure QE of the qubits sys-
tem. Therefore, the negativity of a state qAB is defined as

NðqÞ ¼ max 0;�2
X
j

lj

 !
; ð7Þ

where lj is the negative eigenvalue of ðqABðtÞÞTB , and TB de-

notes the partial transpose with respect to the system B.

3. The model and quantum correlations

One considers a one-dimensional spin-chain interaction, the
Hamiltonian H for the four-qubit Heisenberg XX spin chain

with uniform magnetic field can be described by

H ¼ J
X4
j¼1

1

2
rx
j r

x
jþ1 þ ry

j r
y
jþ1 þ Brz

j

� �
; ð8Þ

where J is the coupling constant for the spin interaction, and

ri
j; i ¼ x; y; z are the Pauli matrices of the jth qubit. The eigen-

values and eigenstates of the Hamiltonian in Eq. (8) are calcu-
lated analytically in Ref. [36]. The time evolution of the system

is given by

qðtÞ ¼ e�iHtqð0ÞeiHt; ð9Þ

this density matrix is used to study the dynamical character of
the quantum correlations, including entanglement and discord

with its geometric measure, of two qubits (A, B, C and D) for
several different initial states, where the coupling system is ini-
tially in pure state q(0) = Œw(0)æÆw(0)Œ. To study the pairwise

correlations via quantum discord and its geometric measure
in a four-qubit spin chain, one compares pairwise correlations
between the nearest and alternate spin pairs. Where the quan-
tum correlations of the nearest neighbor qubits A and B are

calculated by tracing out the qubits C and D. But the correla-
tions of the alternate qubits A and C are calculated by tracing
out the qubits B and D. Therefore, the states of the resulted

two-qubit systems are mixed states and their correlations dif-
fer. In the following one offers QE, QD and GMQD of these
two-qubit systems AB and AC.

Case1: Therefore, one considers the initial state Œw(0)æ = -
coshŒ0000æ + sinhŒ1100æ. In this state, the nearest
neighbor qubits A and B are initially prepared in

the Bell-like state ŒwAB(0)æ = coshŒ00æ + sinhŒ11æ,
and qubit C and D are initially in Œ00æCD. The time
evolution of q(t) can be obtained by this initial state

q(0) and Eq. (9). To calculate the quantum correla-
tions between nearest neighbor qubits A and B, one
traces out the qubits C and D. Therefore, the reduced

density matrix qAB(t) is given by

qABðtÞ ¼ xj00ih00j þ wj00ih11j þ w�j11ih00j þ yðj01i
� h01j þ j10ih10jÞ þ dðj01ih10j þ j10ih01jÞ
þ zj11ih11j; ð10Þ

with the abbreviation
x ¼ sin2 hþ 1

32
cos2 h 3� 4 cos 2

ffiffiffi
2
p

Jtþ cos 4
ffiffiffi
2
p

Jt
� �

;

y ¼ 1

32
cos2 h 5� 4 cos 2

ffiffiffi
2
p

Jt� cos 4
ffiffiffi
2
p

Jt
� �

;

w ¼ 1

8
cos 2

ffiffiffi
2
p

Jtþ 3
� �

sin 2he4itB;

z ¼ 1

32
cos2 h 19þ 12 cos 2

ffiffiffi
2
p

Jtþ cos 4
ffiffiffi
2
p

Jt
� �

; d ¼ 0: ð11Þ

Case2: When the initial state Œw(0)æ = coshŒ0000æ + sin-
hŒ1010æ is considered, the alternate qubits A and C
are initially prepared in the Bell-like state ŒwA-

C(0)æ = coshŒ00æ + sinhŒ11æ, and qubits B and D
are initially in Œ00æBD. Substituting q(0) into Eq. (9),
one can obtain the time evolution of q(t) in this case.
To study the pairwise correlations of the alternate

qubits, including entanglement and discord with its
geometric, in the qubits A and C, one traces out the
qubits B and D, and then the reduced density matrix

qAC(t) is given by

qACðtÞ ¼ xj00ih00j þ wj00ih11j þ w�j11ih00j þ yðj01i
� h01j þ j10ih10jÞ þ dðj01ih10j þ j10ih01jÞ
þ zj11ih11j; ð12Þ

with the abbreviation

x ¼ sin2 hþ 1

8
cos2 h 3þ cos 4

ffiffiffi
2
p

Jt� 4 cos 2
ffiffiffi
2
p

Jt
� �

;

y ¼ d ¼ 1

8
cos2 h 1� cos 4

ffiffiffi
2
p

Jt
� �

;

w ¼ 1

4
cos 2

ffiffiffi
2
p

Jtþ 1
� �

sin 2h e4itB;

z ¼ 1

8
cos2 h 3þ cos 4

ffiffiffi
2
p

Jtþ 4 cos 2
ffiffiffi
2
p

Jt
� �

:

From Eqs. (10) and (12), one finds that the reduced density

matrices qAB(t) and qAC(t) have X-form. Such X-states occur
in many contexts and include pure Bell states as well as Werner
mixed states. It is straightforward to calculate the analytic

expression of GMQD for the density matrix (10) or (12):

Dg
AðqABÞ ¼ 1

4
½8ðjwj2 þ jdj2Þ þ k3 �maxfk1; k2; k3g�; ð13Þ

where k1 = 2(ŒdŒ � ŒwŒ)2, k2 = 2(ŒdŒ + ŒwŒ)2 and

k3 = 2(x � y)2 + 2(y � z)2 are the eigenvalues of the matrix
K. The analytic form of the QD for the density matrix Eq.
(10), was recently calculated in Ref. [20]. Where, this solution

provides us a simple analytic expression of quantum discord
for a subclass of the X-structured density matrix. Therefore,
the analytic expression for the quantum discord can be calcu-
lated as [19]:

DðqABÞ¼SðqAÞþSðqABÞ

�max xlog2
x

xþy

� �
þylog2

y

yþx

� �
þzlog2

z

zþy

� ��

þylog2
y

yþz

� �
;
X
i¼þ;�

vilog2vi

#
; ð14Þ

where v� ¼ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� zÞ2 þ 4ðjwj þ jdjÞ2

q�
. It is easy to see

that for this special case, the condition S(qA) = S(qB) is satis-
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fied and therefore the measurement performed on the subsy-

tem A or B is irrespective [20]. It is easy to examine that the

time evolution of quantum correlations are independent of

the uniform magnetic field B.

Figs. 1–3, display the dynamics of GMQD, QD and QE as
a function of scaled time s = Jt for qAB(t) and qAC(t). When
the initial states of the nearest neighbor qubits are maximally

entangled state, h ¼ p
4
, the results are given in Fig. 1a and b

for the two cases. As seen from Fig. 1a, GMQD, QD and
QE of qAB(t) oscillate with scaled time s and have the same

behavior. But the values of QD are always greater than those
of GMQD and QE, which approximately have the same val-
ues. Therefore, QD, GMQD and QE for the nearest neighbor

qubits give almost the same information. But, for the alternate
qubits (see Fig. 1b), QD and QE approximately have the same
behavior and vanish at some time intervals. But, GMQD

shows local maxima at the same time intervals. From Fig. 1a
and b, one can easily find that the gradual vanishing of both
QD and QE is exhibited for the alternate qubits AC, but it is
not present for the nearest neighbor qubits AB, though the ini-
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Figure 1 Time evolutions of the quantum discord (dash plots), geome

qAB(t) in (a) and qAC(t) in (b).
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Figure 2 The same as
tial state of qubits AB in case(1) takes the same form as that of

qubits AC in case(2).
If the degree of entanglement of the initial states of the qu-

bits is weakened by putting h ¼ p
6
, the results are given in

Fig. 2a and b for the two cases. From these figures, one finds

that the correlations of the nearest neighbor qubits AB, which
is resulted from GMQD, QD and QE, approximately are the
same, but however with decreased values than the previous

case. But the behavior of these correlations is different for
the alternate qubits AC. Where QE can fall abruptly to zero
and will remain to be zero for a period of time, which is called

entanglement sudden death [13] and several investigations have
focused on this subject [14]. But QD decays continuously with
respect to time even it tend to zero and then gradually evolves

to its maximum values. This means that QD does not shows a
phenomenon of sudden death. Under this condition, GMQD
appears at the same death intervals of QD and QE and reaches
a maximum values when the QD and QE vanish. Therefore,

quantum correlations differ when the qubits state is initially
in weak entangled state.
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in Fig. 1 but h ¼ p
6
.
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Figure 3 The same as in Fig. 1 but h ¼ p
12
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Figure 4 Quantum discord for qAB(t) in (a) and qAC(t) in (b).
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If the degree of entanglement of the initial states of the qu-
bits is very weak by putting h ¼ p

12
, the results are given in

Fig. 3a and b for qAB(t) and qAC(t). For h ¼ p
12
, one finds that

phenomenon of sudden death appearers clearly for qAB(t), but

GMQD, QD decreases as the angle h decreases Therefore,
appearance of sudden death of entanglement and decreasing
of both GMQD and QD depend on the degree of entangle-

ment of the initial state, the smaller the degree of the entangle-
ment in the initial state, the longer the state will stay in the
disentangled state. From Fig. 3a and b, one has found that

for the initial state case(1), the appearance for sudden death
entanglement is only for the smaller h for which QE is weaker
when s = 0. However, the sudden death always happens no
matter how strong the entanglement of the initial state of

case(2) is, which can be seen from Fig. 3b. By comparing
Fig. 3a with Fig. 3b, one can observe that the state case(2)
has longer period of time for the disentanglement than that

of state case(1). Also GMQD and QD of nearest qubits
approximately have the same behavior, but for alternate qubits
AC they are different. Where QD decays continuously with

respective to time until it tends to zero and will remain zero
for a period of time. At same time of quantum discord death,
GMQD grows with time and even reaches its local maximum

value (see Fig. 3b). Therefore, the pairwise correlations in
alternate qubits affect the degree of entanglement of the initial
state stronger than that for strongly interacting nearest qubits.
Thus, it seems that GMQD is more robust than QD and QE to
describe pairwise quantum correlations with nonzero values
which offers a valuable resource for quantum computation.

To evidently see the effect of the degree of entanglement of
the initial state on resulted pairwise correlations from GMQD
and QD, the dynamics of GMQD and QD as a function of h
are introduced with h 2 0; p

2

� 	
in Fig. 4a and b and Fig. 5a

and b. At h = 0 (disentangled initial states), for nearest qubits,
one notes that the dynamics of quantum discord is constant

and equal to zero, but the geometric measure of quantum dis-
cord oscillates with time. This is noted for alternate qubits AC,
but the period of GMQD is smaller than that for nearest qu-
bits. But, at h ¼ p

2
there is a preservation for a long time in both

quantum discord(at zero value) and geometric measure of
quantum discord (at constant value). Therefore, in the interval
of h 2 0; p

2

� 	
, one notes that the dynamics of geometric measure

of quantum discord and quantum discord differ and they are
sensitive for any change in h.

4. Conclusions

The dynamic evolution of pairwise quantum correlations,

including GMQD, QD and QE, is shown in the four-qubit
Heisenberg XX spin chain. For some initial states, the phe-
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Figure 5 Geometric measure of quantum discord for qAB(t) in (a) and qAC(t) in (b).
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nomenon of entanglement sudden death occurs in the time
evolution of entanglement. The pairwise correlations in alter-
nate qubits affect the degree of entanglement of the initial state
stronger than that for strongly interacting nearest qubits. It is

found that GMQD is more robust than QD and QE to de-
scribe pairwise quantum correlations with nonzero values
which offers a valuable resource for quantum computation.

A comparison of the dynamics of geometric measure of quan-
tum discord with quantum discord for h 2 0; p

2

� 	
is made. It is

found that the dynamics of GMQD and QD differ and they

are sensitive to any change in the degree of entanglement of
the initial state.
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