In this paper we continue our investigation of recent notions of k-statistical convergence in probability and k-statistical convergence in mean of order r in Ghosal (2014) [1] and introduce the notion of k-statistical convergence in distribution. We mainly investigate their interrelationship and study some of their important basic properties.
Ghosal, S. (2015). Sλ-convergence of a sequence of random variables. Journal of the Egyptian Mathematical Society, 23(1), 85-89. doi: 10.1016/j.joems.2014.03.007
MLA
Sanjoy Ghosal. "Sλ-convergence of a sequence of random variables", Journal of the Egyptian Mathematical Society, 23, 1, 2015, 85-89. doi: 10.1016/j.joems.2014.03.007
HARVARD
Ghosal, S. (2015). 'Sλ-convergence of a sequence of random variables', Journal of the Egyptian Mathematical Society, 23(1), pp. 85-89. doi: 10.1016/j.joems.2014.03.007
VANCOUVER
Ghosal, S. Sλ-convergence of a sequence of random variables. Journal of the Egyptian Mathematical Society, 2015; 23(1): 85-89. doi: 10.1016/j.joems.2014.03.007