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Abstract In this paper, position vector of a slant helix with respect to standard frame in Euclidean

space E3 is studied in terms of Frenet equations. First, a vector differential equation of third order is

constructed to determine a position vector of an arbitrary slant helix. In terms of solution, we deter-

mine the parametric representation of the slant helices from the intrinsic equations. Thereafter, we

apply this method to find the parametric representation of a Salkowski curve, anti-Salkowski curve

and a curve of constant precession, as examples of a slant helices, by means of intrinsic equations.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

In the local differential geometry, we think of curves as a geo-
metric set of points, or locus. Intuitively, we are thinking of a
curve as the path traced out by a particle moving in E3. So, the

investigating position vectors of the curves in a classical aim to
determine behavior of the particle (curve).

Helix is one of the most fascinating curves in science and
nature. Scientist have long held a fascinating, sometimes bor-

dering on mystical obsession, for helical structures in nature.
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Helices arise in nano-springs, carbon nano-tubes, a-helices,
DNA double and collagen triple helix, lipid bilayers, bacterial

flagella in salmonella and escherichia coli, aerial hyphae in
actinomycetes, bacterial shape in spirochetes, horns, tendrils,
vines, screws, springs, helical staircases and sea shells
[5,16,24]. Also we can see the helix curve or helical structures

in fractal geometry, for instance hyperhelices [22]. In the field
of computer aided geometric design and computer graphics,
helices can be used for the tool path description, the simulation

of kinematic motion or the design of highways, etc. [25]. From
the view of differential geometry, a helix is a geometric curve
with non-vanishing constant curvature j and non-vanishing

constant torsion s [3]. The helix may be called a circular helix
or W-curve [10,18].

Its known that straight line (j(s) = 0) and circle (s(s) = 0) is
degenerate-helix [12]. In fact, circular helix is the simplest three-

dimensional spirals. One of the most interesting spiral example
is k-Fibonacci spirals. These curves appear naturally from
studying the k-Fibonacci numbers fFk;ng1n¼0 and the related

hyperbolic k-Fibonacci function [7]. Three-dimensional k-Fibo-
nacci spirals was studied from a geometric point of view in [8].

Indeed a helix is a special case of the general helix. A curve

of constant slope or general helix in Euclidean 3-space E
3 is

mailto:atali71@yahoo.com
http://dx.doi.org/10.1016/j.joems.2011.12.005
http://dx.doi.org/10.1016/j.joems.2011.12.005
http://www.sciencedirect.com/science/journal/1110256X
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 A.T. Ali
defined by the property that the tangent makes a constant an-

gle with a fixed straight line called the axis of the general helix.
A classical result stated by Lancret in 1802 and first proved by
de Saint Venant in 1845 (see [21] for details) says that: A nec-
essary and sufficient condition that a curve be a general helix is

that the ratio

j
s

is constant along the curve, where j and s denote the curvature
and the torsion, respectively. A general helices or inclined curves
are well known curves in classical differential geometry of

space curves [1,3,17,20,23].
Izumiya and Takeuchi [11] have introduced the concept of

slant helix by saying that the normal lines make a constant an-

gle with a fixed straight line. They characterize a slant helix if
and only if the geodesic curvature

jg ¼
j2

ðj2 þ s2Þ3=2
s
j

� �0
of the principal image of the principal normal indicatrix is a

constant function. They also called a curve is canonical geode-
sic if

s
j

� �0
is a constant function. Kula and Yayli [13] have studied spher-
ical images of tangent indicatrix and binormal indicatrix of a
slant helix and they showed that the spherical images are
spherical helices. Recently, Kula et al. [14] investigated the

relations between a general helix and a slant helix. Moreover,
they obtained some differential equations which they are char-
acterizations for a space curve to be a slant helix.

Many important results in the theory of the curves in E
3

were initiated by Monge and Darboux pioneered the moving
frame idea. Thereafter, Frenet defined his moving frame and

his special equations which play important role in mechanics
and kinematics as well as in differential geometry [4].

In this work, we use vector differential equations estab-
lished by means of Frenet equations in Euclidean space E3

to determine position vectors of the arbitrary curves according
to standard frame in E3. We obtain position vector of a slant
helix from intrinsic equations in E3. Besides, we present some

new characterizations of a slant helix and some of examples
are illustrated.

2. Preliminaries

In Euclidean space E3, it is well known that to each unit speed

curve with at least four continuous derivatives, one can associ-
ate three mutually orthogonal unit vector fields T, N and B

which are called respectively, the tangent, the principal normal

and the binormal vector fields [9].
Let w : I � R! E3;w ¼ wðsÞ, be an arbitrary curve in E3.

The curve w is said to be of unit speed (or parameterized by
the arc-length) if Æw0(s), w0(s)æ = 1 for any s 2 I. In particular,

if w(s) „ 0 for any s, then it is possible to re-parameterize w,
that is, a = w(/(s)) so that a is parameterized by the arc-
length. Thus, we will assume throughout this work that w is

a unit speed curve, where Æ,æ is Euclidean inner product.
Let {T(s), N(s), B(s)} be the Frenet moving frame along w.

The Frenet equations for w are given by [21]:
T0ðsÞ
N0ðsÞ
B0ðsÞ

2
64

3
75 ¼

0 jðsÞ 0

�jðsÞ 0 sðsÞ
0 �sðsÞ 0

2
64

3
75

TðsÞ
NðsÞ
BðsÞ

2
64

3
75: ð1Þ

If s(s) = 0 for any s 2 I, then B(s) is a constant vector V and

the curve w lies in a 2-dimensional affine subspace orthogonal
to V, which is isometric to the Euclidean 2-space E2.

3. Position vectors of a slant helices

The problem of the determination of parametric representa-
tion of the position vector of an arbitrary space curve accord-

ing to the intrinsic equations is still open in the Euclidean space
E3 [6,15]. This problem is not easy to solve in general case.
However, this problem is solved in three special cases only,

Firstly, in the case of a plane curve (s = 0). Secondly, in the
case of a helix (j and s are both non-vanishing constant). Re-
cently, Ali [2] adapted fundamental existence and uniqueness

theorem for space curves in Euclidean space E
3 and con-

structed a vector differential equation to solve this problem
in the case of a general helix (sj is constant). However, this
problem is not solved in other cases of the space curve.

In the light of our main problem, first we give:

Theorem 3.1. Let w = w(s) be a unit speed curve. Suppose
w = w(h) is another parametric representation of this curve by

the parameter h ¼
R

jðsÞds. Then, the principal normal vector N
satisfies a vector differential equation of third order as follows:

1

fðhÞ
1

f0ðhÞ ðN
00ðhÞ þ ð1þ f2ðhÞÞNðhÞÞ

� �0
þNðhÞ ¼ 0; ð2Þ

where fðhÞ ¼ sðhÞ
jðhÞ.

Proof. Let w = w(s) be an unit speed curve. If we write this

curve in the another parametric representation w = w(h),
where h ¼

R
jðsÞds, we have new Frenet equations as follows:

T0ðhÞ
N0ðhÞ
B0ðhÞ

2
64

3
75 ¼

0 1 0

�1 0 fðhÞ
0 �fðhÞ 0

2
64

3
75

TðhÞ
NðhÞ
BðhÞ

2
64

3
75; ð3Þ

where fðhÞ ¼ sðhÞ
jðhÞ. If we differentiate the second equation of the

new Frenet Eq. (3) and using the first and the third equations,

we have

BðhÞ ¼ 1

f0ðhÞ ½N
00ðhÞ þ ð1þ f2ðhÞÞNðhÞ�: ð4Þ

Differentiating the above equation and using the last equa-
tion from (3), we obtain a vector differential equation of third

order (2) as desired. h

The Eq. (2) is not easy to solve in general case. If one solves

this equation, the natural representation of the position vector
of an arbitrary space curve can be determined as follows:

wðsÞ ¼
Z Z

jðsÞNðsÞds
� �

dsþ C; ð5Þ

or in parametric representation

wðhÞ ¼
Z

1

jðhÞ

Z
NðhÞdh

� �
dhþ C; ð6Þ
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where h ¼
R

jðsÞds.
We can solve the Eq. (2) in the case of a slant helix. The fol-

lowing proposition are new characterizations for a slant helices
in E3:

Lemma 3.2. Let w:I fi E3 be a curve that is parameterized by

arclength with intrinsic equations j = j(s) and s = s(s). The
curve is a slant helix (its normal vectors make a constant angle,
/ = ± arccos[n], with a fixed straight line in the space) if and

only if

sðsÞ ¼ � m jðsÞ
R

jðsÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

R
jðsÞds

	 
2q ; ð7Þ

where m ¼ nffiffiffiffiffiffiffi
1�n2
p .

Proof. ()) Let d be a unit fixed vector makes a constant angle,
/ = ±arccos[n], with the normal vector N. Therefore

hN; di ¼ n: ð8Þ

Differentiating the Eq. (8) with respect to the variable
h ¼

R
jðsÞds and using the new Frenet Eq. (3), we get

h�TðhÞ þ fðhÞBðhÞ; di ¼ 0: ð9Þ

Therefore,

hT; di ¼ fhB; di:

If we put ÆB,dæ = b, we can write

d ¼ f b Tþ n Nþ b B:

From the unitary of the vector d we get b ¼ �
ffiffiffiffiffiffiffi
1�n2
1þf2

q
. There-

fore, the vector d can be written as

d ¼ � f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

1þ f2

s
Tþ n N�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

1þ f2

s
B: ð10Þ

If we differentiate Eq. (9) again, we obtain

hf0 B� ð1þ f2ÞN; di ¼ 0: ð11Þ

Eqs. (10) and (11) lead to the following differential equation

f0

ð1þ f2Þ3=2
¼ � m;

where m ¼ nffiffiffiffiffiffiffi
1�n2
p . Integration the above equation, we get

fffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

p ¼ � mðhþ c1Þ: ð12Þ

where c1 is an integration constant. The integration constant
can disappear with a parameter change h fi h � c1. Solving
the Eq. (12) with f as unknown we have

fðhÞ ¼ � mhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2h2
p : ð13Þ

Finally, s(s) = j(s)f(s), we express the desired result.

(�) Suppose that sðsÞ ¼ � mjðsÞ
R

jðsÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

R
jðsÞds

	 
2q . The function f

can be written as fðhÞ ¼ � mhffiffiffiffiffiffiffiffiffiffiffiffi
1�m2h2
p and let us consider the

vector

d ¼ n h TþN� 1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2h2

p
B

� �
:

We will prove that the vector d is a constant vector. Indeed,

applying Frenet formula (3)

d0 ¼ n Tþ h N�Tþ fB� m hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2h2
p B� f

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2h2

p
N

� �
¼ 0

Therefore, the vector d is constant and ÆN,dæ = n. This con-
cludes the proof of Lemma 3.2. h

Theorem 3.3. The position vector w = (w1,w2,w3) of a slant
helix is computed in the natural representation form:

w1ðsÞ ¼ n
m

R R
jðsÞ cos 1

n
arcsin m

R
jðsÞds

	 
� �
ds

� �
ds;

w2ðsÞ ¼ n
m

R R
jðsÞ sin 1

n
arcsin m

R
jðsÞds

	 
� �
ds

� �
ds;

w3ðsÞ ¼ n
R R

jðsÞds
� �

ds;

8><
>: ð14Þ

or in the parametric form

w1ðhÞ ¼ n
m

R
1

jðhÞ
R
cos 1

n
arcsin mhð Þ

� �
dh

� �
dh;

w2ðhÞ ¼ n
m

R
1

jðhÞ
R
sin 1

n
arcsin mhð Þ

� �
dh

� �
dh;

w3ðhÞ ¼ n
R

h
jðhÞ dh;

8>><
>>: ð15Þ

or in the useful parametric form:

w1ðtÞ ¼ n3

m3

R
cos½nt�
jðtÞ

R
cos½t� cos½nt�dt

� �
dt;

w2ðtÞ ¼ n3

m3

R
cos½nt�
jðtÞ

R
sin½t� cos½nt�dt

� �
dt;

w3ðtÞ ¼ n2

m2

R
sin½nt� cos½nt�

jðtÞ dt;

8>>><
>>>:

ð16Þ

where h ¼
R

jðsÞds; t ¼ 1
n
arcsinðmhÞ;m ¼ nffiffiffiffiffiffiffi

1�n2
p ; n ¼ cos½/� and

/ is the angle between the fixed straight line (axis of a slant
helix) and the principal normal vector of the curve.

Proof. If w is a slant helix whose principal normal vector N

makes an angle / =±arccos[n] with a straight line U, then

we can write fðhÞ ¼ � m hffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2 h2
p , where f ¼ s

j ; h ¼
R

jðsÞds and

m ¼ nffiffiffiffiffiffiffi
1�n2
p . Therefore the Eq. (2) becomes

ð1�m2h2ÞN000ðhÞ � 3m2hN00ðhÞ þN0ðhÞ ¼ 0: ð17Þ

If we write the principal normal vector as the following:

N ¼ N1ðhÞe1 þN2ðhÞe2 þN3ðhÞe3: ð18Þ

Now, the curve w is a slant helix, i.e. the principal normal

vector N makes a constant angle, /, with the constant vector
called the axis of the slant helix. So, without loss of generality,
we take the axis of a slant helix parallel to e3. Then

N3 ¼ hN; e3i ¼ n: ð19Þ

On other hand the principal normal vector N is a unit vec-
tor, so the following condition is satisfied

N2
1ðhÞ þN2

2ðhÞ ¼ 1� n2 ¼ n2

m2
: ð20Þ

The general solution of Eq. (20) can be written in the fol-
lowing form:

N1 ¼ n
m
cos½tðhÞ�; N2 ¼ n

m
sin½tðhÞ�; ð21Þ

where t is an arbitrary function of h. Every component of the
vector N is satisfied the Eq. (17). So, substituting the compo-
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nents N1(h) and N2(h) in the Eq. (17), we have the following

differential equations of the function t(h)

3t0 m2h t0 � ð1�m2h2Þt00
	 


sin½t�
� t0 � 3m2h t00 � ð1�m2h2Þðt03 � t000Þ
	 


cos½t� ¼ 0; ð22Þ
3t0 m2h t0 � ð1�m2h2Þt00
	 


cos½t�
þ t0 � 3m2h t00 � ð1�m2h2Þðt03 � t000Þ
	 


sin½t� ¼ 0: ð23Þ

It is easy to prove that the above two equations lead to the
following two equations:

m2h t0 � ð1�m2h2Þt00 ¼ 0; ð24Þ
t0 � 3m2h t00 � ð1�m2h2Þðt03 � t000Þ ¼ 0: ð25Þ

The general solution of Eq. (24) is

tðhÞ ¼ c2 þ c1 arcsinðm hÞ; ð26Þ

or

tðhÞ ¼ c2 þ c1 arccosðm hÞ; ð27Þ

where c1 and c2 are constants of integration. The constant c2
can be disappear if we change the parameter t fi t+ c2.
Substituting the solution (26) or (27) in the Eq. (25), we obtain
the following condition:

m c1 ð1þm2ð1� c1ÞÞ ¼ 0

which leads to c1 ¼
ffiffiffiffiffiffiffiffi
1þm2
p

m
¼ 1

n
, where m „ 0 and c1 „ 0.

Now, the principal normal vector take the following form:

NðhÞ ¼ n

m
cos

1

n
arcsinðm hÞ

� �
;
n

m
sin

1

n
arcsinðm hÞ

� �
; n

� �
:

ð28Þ

or

NðhÞ ¼ n

m
cos

1

n
arccosðm hÞ

� �
;
n

m
sin

1

n
arccosðm hÞ

� �
; n

� �
:

ð29Þ

If we substitute the Eq. (28) in the two Eqs. (5) and (6), we
have the two Eqs. (14) and (15). It is easy to arrive the Eq. (16),
if we take the new parameter t ¼ 1

n
arcsinðmhÞ, which com-

pletes the proof.

On other hand if we used Eq. (29), we have the following

theorem:

Theorem 3.4. The position vector w = (w1,w2,w3) of a slant
helix is given in the natural representation form:

w1ðsÞ ¼ n
m

R R
jðsÞ cos 1

n
arccos m

R
jðsÞds

	 
� �
ds

� �
ds;

w2ðsÞ ¼ n
m

R R
jðsÞ sin 1

n
arccos m

R
jðsÞds

	 
� �
ds

� �
ds;

w3ðsÞ ¼ n
R R

jðsÞds
� �

ds;

8><
>: ð30Þ

or in the parametric form

w1ðhÞ ¼ n
m

R
1

jðhÞ
R
cos 1

n
arccos mhð Þ

� �
dh

� �
dh;

w2ðhÞ ¼ n
m

R
1

jðhÞ
R
sin 1

n
arccos mhð Þ

� �
dh

� �
dh;

w3ðhÞ ¼ n
R

h
jðhÞ dh;

8>><
>>: ð31Þ
or in the useful parametric form:

w1ðtÞ ¼ n3

m3

R
sin½nt�
jðtÞ

R
cos½t� sin½nt�dt

� �
dt;

w2ðtÞ ¼ n3

m3

R
sin½nt�
jðtÞ

R
sin½t� sin½nt�dt

� �
dt;

w3ðtÞ ¼ � n2

m2

R
sin½nt� cos½nt�

jðtÞ dt;

8>>><
>>>:

ð32Þ

where h ¼
R

jðsÞds; t ¼ 1
n
arccosðmhÞ;m ¼ nffiffiffiffiffiffiffi

1�n2
p ; n ¼ cos½/� and

/ is the angle between the fixed straight line (axis of a slant he-
lix) and the principal normal vector of the curve.
4. Examples

In this section, we take several choices for the curvature j and
torsion s, and next, we apply Theorem 3.3.

Example 4.1. The case of a slant helix with

j ¼ 1; s ¼ m sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2 s2
p ; ð33Þ

which are the intrinsic equations of a Salkowski curve [18].
Substituting j(t) = 1 in the Eq. (16) we have the explicit para-

metric representation of such curve as follows:

w1ðtÞ ¼ n
4m

n�1
2nþ1 cos½ð2nþ 1Þt� þ nþ1

2n�1 cos½ð2n� 1Þt� � 2 cos½t�
h i

w2ðtÞ ¼ n
4m

n�1
2nþ1 sin½ð2nþ 1Þt� � nþ1

2n�1 sin½ð2n� 1Þt� � 2 sin½t�
h i

;

w3ðtÞ ¼ � n
4m2 cos½2nt�;

8>>><
>>>:

ð34Þ

where t ¼ 1
n
arcsinðmsÞ. One can see a special examples of such

curves in the Fig. 1.

Example 4.2. The case of a slant helix with

j ¼ m sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2 s2
p ; s ¼ 1: ð35Þ

which are the intrinsic equations of an anti-Salkowski curve
[18]. Substituting

j ¼ m sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2 s2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2h2
p

mh
¼ cot½nt�;

in the Eq. (16) we have the explicit parametric representation
of such curve as follows:

w1ðtÞ ¼ n
4m

n�1
2nþ1 sin½ð2nþ 1Þt� þ nþ1

2n�1 sin½ð2n� 1Þt� � 2n sin½t�
h i

w2ðtÞ ¼ n
4m

1�n
1þ2n cos½ð1þ 2nÞt� � 1þn

1�2n cos½ð1� 2nÞt� þ 2n cos½t�
h

w3ðtÞ ¼ n
4m2 ð2nt� sin½2nt�Þ;

8>>><
>>>:

ð36Þ
where h ¼

ffiffiffiffiffiffiffiffiffiffiffi
1�m2s2
p

m
and t ¼ 1

n
arcsinðmhÞ. One can see a special

examples of such curves in the Fig. 2.

Remark 4.3. A family of curves with constant curvature but

non-constant torsion is called Salkowski curves and a family
of curves with constant torsion but non-constant curvature is
called anti-Salkowski curves [19]. Monterde [18] studied some
of characterizations of these curves and he proved that the

principal normal vector makes a constant angle with fixed
straight line. So that: Salkowski and anti-Salkowski curves
are important examples of slant helices.



Figure 1 Slant helices with j = 1 and n ¼ 1
3
; 1
8
; 10
11
.

Figure 2 Slant helices with s = 1 and n ¼ 1
5
; 1
13
; 2
3
.
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Example 4.4. The case of a slant helix with

j ¼ l
m

cos½l s�; s ¼ l
m

sin½l s�: ð37Þ

Substituting j ¼ l
m
cos½m s� in the Eq. (14) we have the natural

representation of such curve as follows:

w1ðsÞ ¼ � m2

n l ð1þ n2Þ cos½l s� cos½l s
n
� þ 2n sin½l s� sin½l s

n
�

� �
;

w2ðsÞ ¼ � m2

n l ð1þ n2Þ cos½l s� sin½l s
n
� � 2n sin½l s� cos½l s

n
�

� �
;

w3ðsÞ ¼ � n
m l cos½l s�:

8>><
>>:

ð38Þ
Figure 3 Slant helices with j ¼ l
m

The above curve is a geodesic of the tangent developable of a
general helix [11]. One can see a special examples of such
curves in the Fig. 3.

Remark 4.5. A unit speed curve of constant precession is
defined by the property that its (Frenet) Darboux vector

W ¼ s Tþ j B

revolves about a fixed line in space with angle and constant
speed. A curve of constant precession is characterized by
having
cos½l s�; l ¼ m and n ¼ 4
5
; 1
2
; 1
3
.
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j ¼ l
m

sin½l s�; s ¼ l
m

cos½l s�

or

j ¼ l
m

cos½l s�; s ¼ l
m

sin½l s�

where l and m are constants. This curve lie on a circular one-

sheeted hyperboloid

x2 þ y2 �m2 z2 ¼ 4m2:

The curve closed if and only if n ¼ mffiffiffiffiffiffiffiffi
1þm2
p is rational [20]. Kula

and Yayli [13] have proved that the geodesic curvature of the
spherical image of the principal normal indicatrix of a curve
of constant precession is a constant function equal �m. So

that: the curves of constant precessions are important exam-
ples of slant helices.

The curves which considered in examples (4.1), (4.2) and
(4.4) are plated in Figs. 1–3, respectively.
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