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a b s t r a c t 

The N -radial Schrödinger equation is analytically solved. The Cornell potential is extended to finite tem- 

perature. The energy eigenvalues and the wave functions are calculated in the N -dimensional form using 

the Nikiforov–Uvarov (NV) method. At zero temperature, the energy eigenvalues and the wave functions 

are obtained in good agreement with other works. The present results are applied on the charmonium 

and bottomonium masses at finite temperature. The effect of dimensionality number is investigated on 

the quarkonium masses. A comparison is discussed with other works, which use the QCD sum rules 

and lattice QCD. The present approach successfully generalizes the energy eigenvalues and correspond- 

ing wave functions at finite temperature in the N -dimensional representation. In addition, the present 

approach can successfully be applied to the quarkonium systems at finite temperature. 
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1. Introduction 

The development of the radial Schrödinger equation (SE) in

quantum mechanics and its solutions play a major role in the many

fields of modern physics, in particular, in the high energy physics.

The solutions of the SE can be found only when the potential of

the system is determined [1] . There are several potentials such as

the Cornell potential as in Refs. [2,3] or mixed between the Cornell

potential and the harmonic oscillator potential as in Refs. [4,5] or

Morse potential [6] are suggested for solving the SE. The theoreti-

cal studies of the heavy-meson systems such as bottomonium and

charmonium are one of the special interest because of its relies on

entirely on the QCD theory as in Ref. [7] and references therein. 

Heavy quarkonia have been suggested as hard probes of the

quark-gluon plasma [8] since the modification of static interactions

at finite temperature eventually implies a dissolution of heavy

quarkonia bound states into the continuum of scattering states

(Mott effect). This effect results is studied in a suppression of

heavy quarkonia production in heavy-ion collisions as an observ-

able signal [9] . 
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At finite temperature, there are several works for solving the

E such as in Refs. [10–12] using different techniques in compari-

on with the present method. In Ref. [10] , the authors employed

he modified internal potential as a function of temperature to

tudy the quark-gluon plasma using the Mayer’s expansion and

henomenology thermodynamic model. In Ref. [11] , the finite tem-

erature SE was solved by using Funke–Hecke theorem and the ap-

lication on electron and proton systems. In Ref. [12] , the authors

btained the generalized form of SE based on the first low of ther-

odynamics. In Ref. [13] , the authors numerically solved the SE at

nite temperature by employing an effective temperature depen-

ent given by a linear combination of color singlet and internal

nergies. 

Recently, some authors focus to extend the SE to the higher-

imensional space which gives more detail about the systems un-

er study. Moreover, the energy eigenvalues and wave functions

re obtained in the lower-dimensional space [1] . 

The aim of the present work is to study the N -dimensional ra-

ial SE to obtain the energy eigenvalues and wave functions at

nite temperature by using the Nikiforov–Uvarov method. So far

o attempt has been made to solve the N -radial SE using the

ikiforov–Uvarov method when finite temperature is included. Ad-

itionally, the effect of dimensionality number is investigated on

he quarkonuim masses at finite temperature. 

The paper is organized as follows: In Section 2 , the NU method

s briefly explained. In Section 3 , The energy eigenvalue and wave
vier B.V. This is an open access article under the CC BY-NC-ND license. 

http://dx.doi.org/10.1016/j.joems.2016.06.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/joems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2016.06.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:abu_shady_1999@yahoo.com
http://dx.doi.org/10.1016/j.joems.2016.06.006
http://creativecommons.org/licenses/by-nc-nd/4.0/


M. Abu-Shady / Journal of the Egyptian Mathematical Society 25 (2017) 86–89 87 

f  

t  

s

2  

 

s  

�  

w  

a  

p  

t  

t

�  

i

σ  

w

σ  

τ  

a

λ  

χ  

h

χ  

w  

w

 

π

a

λ  

t  

s  

d  

d

3  

t

 

r  

i[

w  

t  

n  

 

l[
 

w

V  

w  

p  

fi  

fi  

n

V  

w  

m  

R  

i  

g[

w

[

T  

r  

o  

S

B  

f[
 

w  

μ  

w  

g  

d

 

a 1 2 3  
unction are calculated in the N -dimensional space. In Section 4 ,

he results are discussed. In Section 5 , the summary and conclu-

ion are presented. 

. Theoretical description of the Nikiforov–Uvarov (NU) method

In this section, the NU method [14] is briefly given to solve the

econd-order differential equation which takes the following form:

′′ (s ) + 

τ̄ (s ) 

σ (s ) 
� ′ (s ) + 

˜ σ (s ) 

σ 2 (s ) 
�(s ) = 0 , (1)

here σ ( s ) and ˜ σ (s ) are polynomials of maximum second degree

nd τ̄ (s ) is a polynomial of maximum first degree with an appro-

riate s = s (r) coordinate transformation. To find particular solu-

ion of Eq. (1) by separation of variables, if one deals with the

ransformation 

(s ) = �(s ) χ(s ) , (2)

t reduces to an equation of hypergeometric type as follows 

(s ) χ ′′ (s ) + τ (s ) χ ′ (s ) + λχ(s ) = 0 , (3)

here 

(s ) = π(s ) 
�(s ) 

�′ (s ) 
, (4)

(s ) = τ̄ (s ) + 2 π(s ) ; τ ′ (s ) < 0 , (5)

nd 

= λn = −nτ ′ (s ) − n (n − 1) 

2 

σ ′′ (s ) , n = 0 , 1 , 2 , . . . (6)

(s ) = χn (s ) which is a polynomial of n degree which satisfies the

ypergeometric equation, taking the following form 

n (s ) = 

B n 

ρn 

d n 

ds n 
(σ ′′ (s ) ρ(s )) , (7)

here B n is a normalization constant and ρ( s ) is a weight function

hich satisfies the following equation 

d 

ds 
ω(s ) = 

τ (s ) 

σ (s ) 
ω(s ) ; ω(s ) = σ (s ) ρ(s ) , (8)

(s ) = 

σ ′ (s ) − τ̄ (s ) 

2 

±

√ (
σ ′ ( s ) − τ̄ (s ) 

2 

)2 

− ˜ σ ( s ) + Kσ (s ) , (9) 

nd 

= K + π ′ (s ) , (10)

he π ( s ) is a polynomial of first degree. The values of K in the

quare-root of Eq. (9) is possible to calculate if the expressions un-

er the square root are square of expressions. This is possible if its

iscriminate is zero. (for detail, see Ref. [14] ). 

. The Schrödinger equation with the Cornell potential at finite

emperature 

The SE for two particles interacting via a spherically symmet-

ic (central) potential V ( r ) in the N -dimensional space, where r is

nter-particle distance, is given by [2] 

d 2 

dr 2 
+ 

(N − 1) 

r 

d 

dr 
− L (L + N − 2) 

r 2 
+ 2 μ(E − V (r)) 

]
�(r) = 0 , 

(11) 

here L , N , and μ are the angular momentum quantum number,

he dimensionality number and the reduced mass for the quarko-

ium particle (for charmonium μ = 

m c and for bottomonium μ =
2 
m b 
2 ), respectively. Setting the wave function �(r) = 

R (r) 
r , the fol-

owing radial SE is obtained 

d 2 

dr 2 
+ 2 μ

[
(E − V (r)) − L (L + N − 2) 

2 μr 2 

]]
R (r) = 0 , (12)

here V ( r ) is the Cornell potential which takes following form 

 (r) = ar − b 

r 
, (13)

here a and b are arbitrary constants will be determined later. The

otential has distinctive features of strongly interaction: The con-

nement and the asymptotic freedom which are represented in the

rst and the second terms, respectively. Eq. (13) is modified to fi-

ite temperature [15] as follows 

 (r) = a ( T , r ) r − b ( T , r ) 

r 
, (14)

here a ( T , r ) = 

a 
m D (T ) r 

(1 − e −m D ( T ) r ) and b ( T , r ) = be −m D ( T ) r where

 D ( T ) is the Debye mass that vanishes at T → 0 (for detail, see

ef. [15] ). By substituting Eq. (14) into Eq. (12) and using approx-

mation e −m D ( T ) r = 

∞ ∑ 

j=0 

( −m D ( T ) r ) 
j 

j! 
up to second-order, which gives a

ood accuracy when m D r � 1. We obtain 

d 2 

dr 2 
+ 2 μ

(
E − A + 

b 

r 
− Cr + Dr 2 − L (L + N − 2) 

2 μr 2 

)]
R (r) = 0 . 

(15) 

here, A = b m D ( T ) , C = a − 1 
2 bm 

2 
D ( T ) , and D = 

1 
2 a m D ( T ) . 

By taking r = 

1 
x , Eq. (15) takes the following form 

d 2 

dx 2 
+ 

2 x 

x 2 
d 

dx 
+ 

2 μ

x 4 

(
E − A + bx − C 

x 
+ 

D 

x 2 
− L (L + N − 2) 

2 μ
x 

)]
R (x ) = 0 . (16) 

he scheme is based on the expansion of C 
x and 

D 
x 2 

in a power se-

ies around the characteristic radius r 0 of meson up to the second

rder. Setting y = x − δ, where δ = 

1 
r 0 

, thus, we expand the c 
x and

D 
x 2 

into a series of powers around y = 0 . 

C 

x 
= 

C 

y + δ
= 

1 

δ
(1 + 

y 

δ
) −1 

= 

C 

δ

(
1 − y 

δ
+ 

y 

δ2 

)
, 

= C 

(
3 

δ
− 3 x 

δ2 
+ 

x 2 

δ3 

)
. (17) 

imilarly, 

D 

x 2 
= D 

(
6 

δ2 
− 8 x 

δ3 
+ 

3 x 2 

δ4 

)
. (18) 

y substituting Eqs. (17) and (18) into Eq. (16) . Eq. (16) takes the

ollowing form 

d 2 

dx 2 
+ 

2 x 

x 2 
d 

dx 
+ 

2 μ

x 4 
(−D 1 + D 2 x − D 3 x 

2 ) 

]
R (x ) = 0 , (19)

here, D 1 = −μ(E − A − 3 C 
δ

+ 

6 D 
δ2 ) , D 2 = μ( 3 C 

δ2 − 8 D 
δ3 + b) , and D 3 =

( C 
δ3 − 3 D 

δ4 + 

L (L + N−2) 
2 μ ) . The 1 

x expansion gives a good accuracy

hen δ tends to x . In Tables (1 ) and ( 2 ), δ is determined which

ives a good accuracy in comparison with experimental data (for

etail, see Refs. [2,3] ). 

By comparing Eqs. ( 19 ) and ( 1 ) , we find τ̄ (s ) = 2 x, σ (s ) = x 2 ,

nd ˜ σ (s ) = 2 μ(−D + D x − D x 2 ) . Hence, the Eq. (16) satisfies the
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Table 1 

Mass spectra of charmonium (in GeV) ( m c = 1 . 209 GeV [1] , a = 0 . 2 GeV 2 , δ = 

0 . 231 GeV, b = 1 . 244 and T = 0 ) . 

State 1S 1P 2S 1D 2P 3S 4S 

Results 3 .096 3 .255 3 .686 3 .504 3 .779 4 .040 4 .269 

Exp . [16] 3 .096 – 3 .686 – 3 .773 4 .040 4 .263 

Table 2 

Mass spectra of bottomonium (in GeV) ( m b = 4 . 823 GeV [1] , a = 0 . 2 GeV 2 , δ = 

0 . 378 GeV, b = 1 . 569 and T = 0 ) . 

State 1S 1P 2S 1D 2P 3S 4S 

Results 9 .460 9 .619 10 .023 9 .864 10 .114 10 .355 10 .567 

Exp . [16] 9 .460 – 10 .023 – – 10 .355 10 .580 
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a  
conditions in Eq. (1) . By following the NU method that mentioned

in Section 2 , therefore 

π = ±
√ 

( K + 2 C 1 ) x 2 − 2 Bx + 2 A . (20)

The constant K is chosen such as the function under the

square root has a double zero, i.e. its discriminant � = 4 B 2 −
8 A ( K + 2 C 1 ) = 0 . Hence, 

π = ± 1 √ 

2 A 

( 2 A − Bx ) . (21)

Thus, 

τ = 2 x ± 2 √ 

2 A 

( 2 A − Bx ) . (22)

For bound state solutions, we choose the positive sign in above

equation so that the derivative 

τ ′ = 2 − 2 B √ 

2 A 

. (23)

By using Eq. (10) , we obtain 

λ = 

B 

2 

2 A 

− 2 C 1 − B √ 

2 A 

, (24)

and Eq. (6) , we obtain 

λn = −n 

(
2 − 2 B 

2 

√ 

A 

)
− n (n − 1) . (25)

From Eq. (6) ; λ = λn . The energy eigenvalues of Eq. (15) at finite

temperature in the N -dimensional space is given 

E N nL = A + 

3 C 

δ
− 6 D 

δ2 

− 2 μ( 3 C 
δ2 + b − 8 D 

δ3 ) 
2 

[(2 n + 1) ±
√ 

1 + 

8 μC 
δ3 + 4((L + 

N−2 
2 

) 2 − 1 
4 
) − 24 μD 

δ4 ] 2 
. 

(26)

The radial of wave function of Eq. (15) takes the following form 

R nL ( r ) = C nL r 
− D 2 √ 

2 D 1 
−1 

e 
√ 

2 D 1 r 

(
−r 2 

d 

dr 

)n (
r 
−2 n + D 2 √ 

2 D 1 e −2 
√ 

2 D 1 r 

)
. (27)

C nL is the normalization constant that is determined by∫ | R nL ( r ) | 2 dr = 1 . We note that the radial wave function in

Eq. (24) does not explicitly depend on the number of dimensions.

Hence, 
∫ | R nL ( r ) | 2 dr = 1 remains unchanged. For detail, see Ref.

[3] . 
. Discussion of results 

In this section, we calculate spectra of the heavy quarkonium

ystem such as the charmonium and bottomonium mesons at fi-

ite temperature that have quark and anitquark flavor. The mass of

uarkonium is calculated in the 3-dimensional space ( N = 3 ). We

pply the following relation as in Refs. [1,2] 

 = 2 m + E N=3 
nL , (28)

here m is quarkonium bare mass for the charmonium or bot-

omonium mesons. By using Eq. (26) , we write Eq. (28) as fol-

ows: 

 = 2 m + A + 

3 C 

δ
− 6 D 

δ2 

− 2 μ( 3 C 
δ2 + b − 8 D 

δ3 ) 
2 

[(2 n + 1) ±
√ 

1 + 

8 μC 
δ3 + 4 L (L + 1) − 24 μD 

δ4 ] 2 
(29)

q. (29) represents the quarkonium masses at finite temperature in

he 3-dimensional space. One can obtain the quarkonium masses

t zero temperature by taking T = 0 leads to A = D = 0 and C = a .

herefore, Eq. (29) takes the following form 

 = 2 m + 

3 a 

δ
− 2 μ( 3 a 

δ2 + b) 2 

[(2 n + 1) ±
√ 

1 + 

8 μa 
δ3 + 4 L (L + 1) ] 2 

. (30)

q. (30) coincides with Ref. [2] , in which the authors obtained the

uarkonium mass at zero temperature. Free parameters a , b , and

are fitted with experimental data with using Eq. (30) as in Refs.

2,3] . All parameters are fixed as in Ref. [2] to check accuracy of

he present results in comparison with the results in Ref. [2] . The

resent results are in good agreement with available experimental

ata for all states of charmonium and bottomonium mesons and

lose with results in Ref. [2] as in Tables (1 ) and (2) 

At finite temperature, the behavior of the quarkonium states is

iscussed. The parameters values at zero temperature are used as

he initial parameters at finite temperature. To calculate the mass

f spectra of charmonium and bottomonium masses at finite tem-

erature, we define the explicit form of m D ( T ) as follows as in Ref.

10] : 

 D ( T ) = γαs ( T ) T , (31)

here γ is fixed parameter and αs ( T ) is running coupling constant

hich takes the following form at finite temperatures 

s ( T ) = 

2 π(
11 − 2 

3 
n f 

)
ln 

(
T 

0 . 104 T c 

) . (32)

In Fig. (1) , the mass of spectrum 1S of bottomonium is plot-

ed as a function of ratio temperature T 
T c 

where the critical tem-

erature T c = 170 MeV [17] at different values of N . In three

imensions space, the curve decreases with increasing tempera-

ure. By increasing the dimensional number N , we note that the

urves shift to higher values. This indicates that the binding en-

rgy increases with increasing dimensionality number and qualita-

ive agreement is noted for all values of N . In comparison with Ref.

18] , the authors found that the spectrum of bottomonium mass

ecreases at higher-values of temperature in the framework of the

CD sum rules. In addition, the behavior of bottomonium mass

s in agreement with lattice QCD. Therefore, the behavior of bot-

omonium is in qualitative agreement with the QCD sum rules and

attice QCD. In Ref. [13] , the authors found that the spectrum of

ottomonium mass decreases with increasing temperature in the

ramework of the SE, in which the different method is used in

omparison with the present work. 

In Fig. 2 , the mass spectrum of 1S of charmonium is plotted

s a function of T 
T at different values of N . We note that the
c 
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Fig. 1. Mass Specrum 1S of bottomonium is plotted as a function of ratio temper- 

ature T 
T c 

for parameters m b = 4 . 823 GeV, a = 0 . 2 GeV 2 , b = 1 . 569 , δ = 0 . 378 GeV at 

different values of N. 

Fig. 2. Mass spectrum of 1S of charmonium mass is plotted as a function of ratio 

temperature T 
T c 

for parameters m c = 1 . 209 GeV, a = 0 . 2 GeV 2 b = 1 . 244 δ = 0 . 231 

GeV at different values of N. 
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urves increase with increasing temperature up to T = 0 . 5 T c , then

he curves decrease with increasing temperature. In addition, the

urves shift to higher values. This indicates that the binding en-

rgy increases with increasing the number of dimensionality and

lso qualitative agreement is noted for all values of N . This behav-

or is in qualitative agreement with QCD sum rules and lattice QCD

s in Ref. [18] and references therein. 

. Summary and conclusion 

In the present work, the N -dimensional Schrödinger equation is

nalytically solved using the NV method. The Cornell potential is

xtended to include finite temperature based on Ref. [15] . The en-

rgy eigenvalues and corresponding wave functions are obtained in

he N -dimensional form at finite temperature. The energy eigen-

alues and corresponding wave functions are obtained in lower di-

ensions and zero temperature which coincide with other works.

e apply the present results on the quarkonium masses at finite

emperature and find the qualitative agreement with the QCD sum

ules, lattice QCD, and other approaches. We add future investi-

ations by studying the effect of dimensionality number on the

uarkonium masses at finite temperature. We find that the quarko-

ium masses increase with increasing dimensionality number ( N )

t finite temperature. 

The novelty in this work that NU method successfully applies

o find the solution of the N -radial SE at finite temperature. Ad-

itionally, the dimensionality number plays an important role at

nite temperature. The present results are in agreement with the

CD sum rules, lattice QCD, and other approaches. We hope to ex-

end this work for further investigations of other characteristics of

uarkonium at finite temperature. 
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