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stretchable melting surface is studied. The vortex viscosity of micropolar fluid along a melting surface 

is proposed as a constant function of temperature while dynamic viscosity and thermal conductivity are 

temperature dependent due to the influence of internal heat source on the fluid. Similarity transforma- 

tions were used to convert the governing equation into non-linear ODE and solved numerically. A para- 

metric study is conducted. An analysis of the results obtained shows that the flow-field is influenced 

appreciably by heat source, melting, velocity ratio, variable viscosity and thermal conductivity. 
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. Introduction 

Within the last few decades, many researchers have reported

he behavior of fluid flow within a thin layer formed on a stretch-

ble surface in the presence of pressure gradient. The study of

tagnation point flow was pioneered by Hiemenz [1] . Stagnation

oint flow appears in virtually all fields of science and engineer-

ng. Shateyi and Makinde [2] stated that a flow can be stagnated

y a solid wall or a stagnation point in the interior of the fluid

omain. For more related studies on stagnation point flow, pre-

iction of skin-friction and heat/mass transfer near stagnation re-

ions see Refs. [3–6] . Realistically, during the industrial production

f polymer fluids, colloidal solutions and fluid containing small ad-

itives; there is often a point where the local velocity of the fluid

ossesses symmetric stress tensor and micro-rotation of particles

s zero. Some fluids possess microstructure and belong to class of

uid with nonsymmetric stress tensor. This kind of fluid consists of

igid, randomly oriented particles suspended in a viscous medium;
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ee Lukaszewicz [7] . Micropolar fluid supports couple stress and

istributed body torque which cannot be accurately study by us-

ng classical Navier–Stokes equation or the viscoelastic flow mod-

ls. Eringen in [8,9] started an analysis on the theory of micropolar

uids which provided a mathematical model for its non-Newtonian

ehavior. Recently, Sandeep et al. [10] adopted the idea and re-

orted the effect of radiation on a stagnation point flow of microp-

lar fluid over a nonlinearly stretching surface. It is a well-known

act in the field of fluid dynamics that static pressure is highest

hen the velocity is zero and hence static pressure is at its max-

mum value at stagnation points. In most cases, engineers in the

ndustry tend to introduce internal heat generation to reduce drag

nd enhance easy flow of fluid around stagnation point where the

elocity is zero. Internal energy generation can be explained as a

cientific method of generating heat energy within a body by a

hemical, electrical or nuclear process. Natural convection induced

y internal heat generation is a common phenomenon in nature.

repeau and Clarksean [11] carried out a similarity solution for a

uid with an exponentially decaying heat generation term. How-

ver, micropolar fluid flow towards a stagnation point on a melt-

ng surface is significant. In the presence of space heat source,
vier B.V. This is an open access article under the CC BY-NC-ND license. 
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dynamic viscosity and thermal conductivity may certainly vary

with temperature whereas the vortex viscosity may never be in-

fluenced or influenced infinitesimally. 

From the knowledge of kinetic theory of matter, every solid

melts if expose to a high temperature. In an earlier study, the effect

of melting on heat transfer was studied by Tien and Yen [12] . In

recent years, many researchers have investigated and reported the

effect of melting parameters. For more details, see Refs. [13–16] .

In all of the above mentioned studies, fluid viscosity and thermal

conductivity was assumed to be constant function of temperature

within the boundary layer. However, it is known that the physical

properties of the fluid may change significantly when expose to

internal generated temperature. For lubricating fluids, heat gener-

ated by the internal friction and the corresponding rise in temper-

ature affect the viscosity of the fluid and so the fluid viscosity can

no longer be assumed constant. In a case of melting as reported

by many researchers; it is important to notice that temperature of

fluid layers at free stream may also have significant effect on the

intermolecular forces of the micropolar fluid. The increase of tem-

perature may also leads to a local increase in the transport phe-

nomena by reducing the viscosity across the momentum boundary

layer and so the heat transfer rate at the wall may also be affected

greatly. According to Refs. [17,18] and Meyers et al. [19] , it is a well-

known fact that properties of fluid which are most sensitive to

an increase in temperature are viscosity and thermal conductivity.

Considering this concept, effects of temperature-dependent viscos-

ity and variable thermal conductivity on unsteady MHD flow past

an impulsively started vertical surface and MHD non-Darcy mixed

convective diffusion of species over a stretching sheet was consid-

ered in [20,21] . Motivated by all the works mentioned above, it is

of interest to extend the work of [4,22,23] by including such ef-

fects on the flow and also consider the diffusion of species (mass)

in micropolar fluid flow over a melting surface. This is to further

examine a case in which the vortex viscosity of micropolar fluid is

negligibly influenced due to the nature of wall temperature in the

case of melting heat transfer. 

2. Problem formulations 

Steady laminar incompressible flow, heat and mass transfer of

a micropolar fluid towards a horizontal linearly stretching melting

surface is considered. It is assumed that the temperature of the

melting surface is T m 

while the temperature in the free-stream is

T ∞ 

such that T m 

< T ∞ 

. Consequently, the species/mass of the mi-

cropolar fluid at the melting wall C m 

and at the free stream C ∞ 

satisfies C m 

< C ∞ 

. The temperature and concentration of the solid

far from the interface is T o ( < T m 

) and C o ( < C m 

) respectively. The x -

axis is along the melting surface while y -axis is normal to it. It is

assumed that the stretching of fluid layer at the free stream (i. e.

region of inviscid) is u e → ax and stretching velocity of the melting

surface u w 

= cx where both a and c are known as stretching index

with unit s −1 . Positive values of a and c corresponds to stretch-

ing of the surface while x measures the distance along the surface

of the plate. Two equal and opposite forces are introduced along

x -axis so that the horizontal melting wall is stretched keeping the

origin fixed. This external force induces the fluid to flow in x direc-

tion. According to Sir Isaac Newton, the differential form of viscous

forces 

τ ∗ = 

F 

A 

= μ
∂u 

∂y 
. 

Where the local shear velocity is ∂u 
∂y 

and μ is known as constant

of proportionality. Since τ ∗ = μ∂u 
∂y 

, this formulae assumes that the

fluid satisfies all the conditions of Couette flow along a parallel

lines and y axis perpendicular to the flow, points in the direction

of maximum shear velocity. Upon using the scaling analysis (order
f magnitude) according to Ludwig Prandtl, this often leads to the

implification of the remaining viscous term of momentum equa-

ion as 

μ

ρ

∂ 2 u 

∂y 2 
= 

1 

ρ

∂ 

∂y 

(
μ

∂u 

∂y 

)
(1)

hen investigating a case in which viscosity of the fluid flow vary

ith temperature due to the correlation between the two concepts

i.e. variation of viscosity due to pressure gradient as in the case of

ouette flow and variation of viscosity due to temperature). In a

ase of micropolar fluid where the addition of dynamic viscosity

nd vortex viscosity plays important role in the modeling of de-

iatoric stress tensor, it may not be realistic to impose the same

ondition as in Eq. (1) on the fluid flow over a melting surface.

ikewise, it may not be valid to neglect the influence of temper-

ture on the dynamic viscosity of micropolar fluid. It is very im-

ortant to note that base on this fact, the vortex viscosity might

ot be influenced the same way with dynamic viscosity. A vortex

s a region in a fluid medium in which the flow is mostly rotat-

ng around an axis line, the vortical flow that occurs either on a

traight axis or a curved axis Loper [24] and Ref. [18] . Examples

nclude whirlpools in the smoke rings, dust devil, wake of a boat,

addle or aeroplane. It is important to also note that both vortex

nd rotation of micro-elements may be restrained near the wall

hich possesses low heat energy. In view of this, vortex viscosity

s assumed to be constant function of temperature. There are sev-

ral models for shear viscosity e.g. exponential model, Arrhenius

odel, Williams Landel–Ferry model, Masuko–Magill model and

atchelor model. All these models were developed for either liq-

id or gases in which vortex viscosity is zero or totally neglected

r out of consideration. Under the usual boundary-layer approxi-

ations, the basic equations taking into account the presence of

nternal heat generation in the energy equation for a micropolar

uid can be written as 

∂u 

∂x 
+ 

∂v 
∂y 

= 0 , (2)

 

∂u 

∂x 
+ v 

∂u 

∂y 
= u e 

∂u e 

∂x 
+ 

1 

ρ

∂ 

∂y 

(
μ(T ) 

∂u 

∂y 

)
+ 

τ

ρ

∂ 2 u 

∂y 2 

+ 

τ

ρ

∂N 

∂y 
−

(
μ + τ

ρδ

)
(u e − u ) , (3)

 

∂N 

∂x 
+ v 

∂N 

∂y 
= 

γ ∗

ρ j 

∂ 2 N 

∂y 2 
− τ

ρ j 

(
2 N + 

∂u 

∂y 

)
, (4)

 

∂T 

∂x 
+ v 

∂T 

∂y 
= 

1 

ρC p 

∂ 

∂y 

(
κ(T ) 

∂ T 

∂ y 

)

+ 

κ(T ) a 

C p μ(T ) 
[ A 

∗(T ∞ 

− T m 

) e −y 
√ 

a 
ϑ + B 

∗(T − T m 

)] , (5)

 

∂C 

∂x 
+ v 

∂C 

∂y 
= D m 

∂ 2 C 

∂y 2 
. (6)

he appropriate boundary conditions on velocity, micro-rotation

nd temperature are 

 w 

= cx, κ(T ) 
∂ T 

∂ y 
= ρ[ λ∗ + c s (T m 

− T o )] v (x, 0) , 

 = −m o 
∂u 

∂y 
, T = T m 

, C = C m 

at y = 0 , (7)

 e → ax, N → 0 , T → T ∞ 

, C → C ∞ 

as y → ∞ . (8)

he formulation of κ(T ) ∂T 
∂y 

= ρ[ λ∗ + c s (T m 

− T o )] v (x, 0) in

q. (7) states that the heat conducted to the melting surface
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s equal to the heat of melting plus the sensible heat required to

aise the solid temperature T o to its melting temperature T m 

. The

oundary conditions for gyration N following Ref. [25] indicates

hat in the neighborhood of the boundary the only rotation is

ue to the fluid shear and therefore gyration vector must be

qual to angular velocity (i. e. m o = 0 . 5 indicates the vanishing

f anti-symmetric part of the stress tensor and denotes weak

oncentrations). Following the work of Ref. [22] , spin gradient

iscosity and micro-inertia per unit mass is defined as 

∗ = 

(
μ + 

τ

2 

)
, j = 

μ

ρa 
. (9)

his assumption is invoked to allow the field of equations predict

he correct behavior in the limiting case when the microstructure

ffects become negligible and the total spin N reduces to the angu-

ar velocity [22,25] . Also, temperature dependent variable fluid vis-

osity model was also built on the condition that T w 

> T ∞ 

. Since

he temperature of the surface is equivalent to the melting tem-

erature which is very small, it is realistic to assume that vortex

iscosity is negligibly influenced by temperature. Hence, the math-

matical model of temperature dependent viscosity model used by

ukhopadhyay [26] which was developed using the experimental

ata of [18] together with the mathematical model of tempera-

ure dependent thermal conductivity model of Charraudeau [27] ,

sed in [28] which have been modified following the discourse

resented in Animasaun [29] as 

(T ) = μ∗[ ℵ 1 + h̄ 1 (T ∞ 

− T )] , κ(T ) = κ∗[ ℵ 2 + h̄ 2 (T − T m 

)] . 

(10) 

odification of those mentioned models is necessary due to the

elting condition that is incorporated into the mathematical for-

ulation. Also, the influence of temperature on the thermal con-

uctivity of the micropolar fluid during heat conduction in the

elting process is properly considered. It is worth mentioning that

ll models in Eq. (10) are valid in this research since T ∞ 

> T m 

. μ∗

nd κ∗ are the constant value of the coefficient of viscosity and

hermal conductivity at the freestream respectively. A case where

 1 = ℵ 2 = 1 and ( � 1 , � 2 ) > 0 is considered in this research work.

he following relations are now introduced for u and v together

ith similarity variables 

 = 

∂ψ 

∂y 
, v = −∂ψ 

∂x 
, η = y 

√ 

a 

ϑ 

, ψ = x f (η) 
√ 

aϑ , 

 = xa 

√ 

a 

ϑ 

g(η) , θ = 

T − T m 

T ∞ 

− T m 

, φ = 

C − C m 

C ∞ 

− C m 

. (11) 

he first two mathematical relations in Eq. (11) satisfy continuity

quation Eq. (2) . The corresponding modified governing equations

f Eqs. (3) –(6) are solved by using the similarity transformations

n Eq. (11) . The following locally similar ordinary differential equa-

ions are obtained: 

1 + ξ − θξ + K] 
d 3 f 

dη3 
− ξ

dθ

dη

d 2 f 

dη2 
− λ[1 + ξ − θξ + K] 

(
1 − df 

dη

)

+ f 
d 2 f 

dη2 
+ 1 − df 

dη

df 

dη
+ K 

dg 

dη
= 0 , (12) 

1 + ξ − θξ + 

K 

2 

)
d 2 g 

dη2 
+ f 

dg 

dη
− g 

df 

dη

− K 

[1 + ξ − θξ ] 

(
2 g + 

d 2 f 

dη2 

)
= 0 , (13) 
g  
1 + εθ ] 
d 2 θ

dη2 
+ ε 

dθ

dη

dθ

dη
+ P r f 

dθ

dη
+ 

[1 + εθ ] 

[1 + ξ − θξ ] 
(A 

∗e −η + B 

∗θ ) = 0 , 

(14) 

d 2 φ

dη2 
+ S c f 

dφ

dη
= 0 . (15)

he dimensionless equations are 

df 

dη
= σ, m [1 + εθ ] 

dθ

dη
+ P r f (η) = 0 , g(η) = −0 . 5 

d 2 f 

dη2 
, 

(η) = 0 , φ(η) = 0 at η = 0 , (16) 

df 

dη
→ 1 , g(η) → 0 , θ (η) → 1 , φ(η) → 1 as η → ∞ . (17)

n Eq. (14) , θ (η) = 0 ; it is worth mentioning that the temperature

f wall (i.e. horizontal melting stretchable surface) is not at abso-

ute zero since T m 

(melting temperature is significant; greater than

 o but less than T ∞ 

. Temperature dependent viscous parameter

= h̄ 1 (T ∞ 

− T m 

) , micropolar coupling constant K = τ/μ, Porosity

arameter λ = ϑ/δa, temperature dependent thermal conductivity

arameter ε = h̄ 2 (T ∞ 

− T m 

) , Prandtl number P r = C p μ/κ, Schmidt

umber S c = μ/D m 

, velocity ratio parameter σ = c/a and melting

arameter m = [ C p (T ∞ 

− T m 

)] / [ λ∗ + c s (T m 

− T o )] . The physical quan-

ities of interest (i.e. the local skin-friction coefficient C f , the di-

ensionless wall couple stress M w 

, the local Nusselt number Nu x 
nd the local Sherwood number Sh x ) are defined as 

 f = 

2 τw 

ρ(u e ) 2 
, C s = 

m w 

x 

a �
, 

u x = 

xq w 

κ(T ∞ 

− T m 

) 
Sh x = 

xL w 

κ(C ∞ 

− C m 

) 
. (18) 

here Reynold number ( Re x = 

u e xρ
μ ), surface shear stress ( τw 

), wall

ouple stress ( M x ), the heat transfer from the plate ( q w 

) and the

ass transfer from the plate ( L w 

) are defined by 

w 

= 

(
[ μ + τ ] 

∂u 

∂y 
+ τN 

∣∣∣∣
y =0 

, m w 

= 

(
�

∂N 

∂y 

∣∣∣∣
y =0 

, 

 w 

= 

(
−κ

∂T 

∂y 

∣∣∣∣
y =0 

L w 

= 

(
−D m 

∂C 

∂y 

∣∣∣∣
y =0 

. (19) 

sing the similarity variables in Eq. (11) , we get 

 . 5 C f 

√ 

Re x = [1 + K] f ′′ (0) + Kg ′ (0) , g ′ (0) = c s (Re x ) 
−1 , 

e −1 / 2 
x Nu x = −θ ′ (0) 

e −1 / 2 
x Sh x = −φ′ (0) . (20)

. Numerical method of solution 

In this section, the adopted numerical method to solve di-

ensionless governing equations Eq. (12) to Eq. (15) subject to

q. (16) and Eq. (17) are discussed. The solutions of the nonlinear

oundary valued problem are obtained using Shooting technique

ith fourth-order Runge–Kutta Gill method. The set of coupled or-

inary differential equations along with boundary conditions are

onverted from BVP to IVP using the method of superposition in-

roduced by Na [30] ). The BVP cannot be solved on an infinite in-

erval and it would be impractical to solve it on a very large fi-

ite interval. The asymptotic boundary conditions in Eq. (17) as

→ ∞ are replaced by those at a large but finite value of η = 4 .

o integrate the corresponding IVP, f ′ ′ (0), g ′ (0), θ ′ (0) and φ′ (0) are

eeded but no such values exist after the non-dimensionalization

f the boundary conditions. The suitable guesses values for f ′ ′ (0),

 

′ (0), θ ′ (0) and φ′ (0) were chosen and integration is carried out.
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Table 1 

Comparison of f ′ ′ (0) and −θ ′ (0) for various values of σ , m and K when ξ = λ = ε = 

A ∗ = B ∗ = 0 , S c = 0 and P r = 1 with previously published articles. 

σ m K Pop et al. Pop et al. Wang [31] Present 

[22] f ′ ′ (0) [22] −θ ′ (0) f ′ ′ (0) f ′ ′ (0) 

0 0 0 1 .232588 −0 .570465 1 .232588 1 .232590614 

0 0 1 1 .006404 −0 .544535 1 .006540428 

0 1 0 1 .037003 −0 .361961 1 .036768724 

5 0 0 −10 .264749 −1 .396355 −10 .26475 −10 .264749327 

Fig. 1. (a) Dimensionless velocity profiles for various values of ξ when σ < 1. 

(b) Dimensionless velocity profiles for various values of ξ when σ > 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Dimensionless micro-rotation profiles for various values of ξ when σ < 

1. (b) Dimensionless micro-rotation profiles for various values of ξ when σ > 1. 

e  

fl

i  

i  

s  

d  

v  

z  

A  

e  

A  

c  

fl  

s  

o  

t  

g  

t

(  

c  

l  

i  

i  

w  

n  

i  

w  

v  

r  

b  

o  

t  

v  

ε  
The step size is taken as � η = 0 . 001 . The guess values were ad-

justed using secant method to give better approximation for the

solution. The procedure is repeated until we get the results up to

the desired degree of accuracy 10 −5 . 

4. Results and discussions 

Using the numerical scheme discussed in the previous section,

computation has been carried out for various values of some pa-

rameters which are encountered in this research. In order to assess

the accuracy of our results, certain results are compared with those

reported by Pop et al. [22] and Wang [31] as shown in Table 1 , and

they are found to be in good agreement. Figs. 1a and 1b depict the

variation of velocity distribution at various values of temperature

dependent viscous parameter ξ when ε = 0 . 2 , λ = 0 . 25 , m = 0 . 2 ,

K = 0 . 3 , A 

∗ = B ∗ = 0 . 08 , P r = 0 . 71 , S c = 0 . 62 when velocity ratio

parameter σ < 1 and σ > 1. It is observed from these figures that

the velocity decreases with an increase in ξ when σ = 0 . 5 . Oppo-

site effect is observed on velocity profiles when σ1.5. In real life,

the implication of the velocity ratio parameter σ governing the

stagnation flow at η = 0 can be explained mathematically. When

σ = c/a and σ is any natural number less than unity; this im-

plies that stretching velocity rate of the horizontal melting wall

“c ” is less than the stretching rate of fluid layer at free stream “a ”

(i.e. in the inviscid stream). Due to this reason, the acceleration of

the external stream is increased and subdues the effect of param-
ter ξ which supposed to increase the velocity profiles as the fluid

ows along the horizontal melting surface ( x −direction). When σ
s any natural number greater than unity; this implies that stretch-

ng velocity rate of the horizontal melting wall “c ” is more sub-

tantial than the stretching rate of fluid layer at free stream. This

rastically reduces the acceleration of the external stream; hence

elocity profile increases with parameter ξ . Physically, the hori-

ontal wall is generating very small amount of heat energy since

 

∗ = B ∗ = 0 . 08 are internal heat source terms which are to gen-

rate thermal energy near the wall and within the fluid domain.

t constant vortex viscosity, σ > 1, A 

∗ = B ∗ = 0 . 08 ; when the mi-

ropolar fluid heats up, molecules become excited and begin to

ow (i.e. intermolecular forces which hold all the fluid molecules

o tight is weaken). The energy of this movement is enough to

vercome the forces that bind the molecules together, allowing

he micropolar fluid to move faster and decreasing its viscosity

radually away from the wall; hence, the velocity increases from

he wall to the free stream with an increase in the value of ξ
see Fig. 1b ). The effect of temperature dependent dynamic vis-

osity parameter ξ at a constant vortex viscosity on angular ve-

ocity of micropolar fluid (i.e. micro-rotation profile) are displayed

n Figs. 2a and 2b ) when material parameter K = 0 . 3 . From Fig. 2a ,

t is seen that micro-rotation of particle increases and decreases

hen σ = 0 . 5 and σ = 1 . 5 respectively with an increase in mag-

itude of parameter ξ . This can be traced to the corresponding

ncrease and decrease of the acceleration of the external stream

hen σ < 1 ( σ = 0 . 5 ) and σ > 1 ( σ = 1 . 5 ) respectively. Typical

alues for the ratio of viscous diffusion rate to thermal diffusion

ate are around 0.05 for mercury, 0 . 16 − 0 . 7 for mixtures of no-

le gases with hydrogen and around 0 . 7 − 0 . 8 for air and many

ther gases. Fig. 3a ) depicts the effect of temperature dependent

hermal conductivity parameter ε on temperature profile θ ( η) at

arious values of P r . In order to unravel the effect of parameter

 in a case of melting, four cases were considered; in each cases,
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Fig. 3. (a) Dimensionless temperature θ ( η) at various values of ε when P r varies. 

(b) Dimensionless temperature gradient θ ′ ( η) profiles for various values of melting 

parameter m . 
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Fig. 4. (a) Dimensionless temperature profiles at various values of space dependent 

internal heat source parameter A ∗ . (b) Dimensionless temperature profiles at various 

values of space dependent internal heat source parameter B ∗ . 
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arameter ε increases within 0 ≤ ε ≤ 1. It is observed that when

 r 
 1, temperature profiles increases with η and also with an in-

rease in the magnitude of ε (see case A). It is further observed

hat with an increase in the magnitude of P r , the temperature pro-

les increases near the wall within (0 ≤ η ≤ 2.4) and decreases

hereafter. To further clarify this strange effect, the magnitude of

 r was further increased. It is observed that θ ( η) increases with ε 
ear the wall within the range (0 ≤ η ≤ 1.35). When P r = 0 . 71 , the

emperature function only increases within a very thin layer near

he wall and decreases significantly thereafter till free stream (see

ase D). This can be explained as follows; at a constant value of

 P , decrease in P r directly implies increases in thermal conductiv-

ty property of the micropolar fluid. This explains the expansion

f the thin layer in which temperature increases, as magnitude of

 r decreases with an increase in temperature dependent thermal

onductivity parameter, the interval near the wall in which tem-

erature profile increases tends to expand. It is observed that the

emperature profile is a decreasing function of melting parameter

 while it causes temperature gradient function θ ′ ( η) to decrease

ear the wall and increase thereafter till free stream (see Fig. 3b ).

ariation of temperature and concentration for non-Newtonian mi-

ropolar fluid with different values of melting parameter m was

nvestigated but not presented herein for brevity. The temperature

nd concentration profiles are decreasing functions of melting pa-

ameter m . Increase in m corresponds to increase in the melting

rocess in which heat energy from the fluid domain is consumed.

ue to the correlation between temperature and concentration, the

ighest concentration is observed at the smallest value of melting

arameter. Figs. 4a and 4b depict the influence of the temperature-

ependent internal heat generation parameters A 

∗ and B ∗ on the

icropolar fluid in boundary layer. Increase in both parameters

eads to an increase in the temperature of the fluid. It is imper-
tive for us to note that an increase in the magnitude of both

arameters satisfies the boundary conditions and significantly in-

reases the temperature function with the fluid domain. The local

kin friction coefficient of stagnation point micropolar fluid flow

ver a melting surface ( 
0 . 5 C f 

√ 

Re x −Kg ′ (0) 

[1+ K] 
) is plotted against melting

arameter at each value of porosity parameter in Fig. 5a . This fig-

re reveals that at each value of λ within 0 ≤ λ ≤ 0.6, local skin

riction coefficient increases with parameter m . Physically, an in-

rease in the magnitude of parameter m corresponds to an increase

n the transition rate from solid to liquid. The internal energy of

he melting stretchable surface is increased due to the application

f heat resulting in a rise of temperature; this tends to reduce the

moothness of the surface and fluid flows very slow. In the same

gure, it is noticed that at a given value of parameter m , local skin

riction coefficient increases with an increase in λ. It is noticed in

ig. 5b that Re −1 / 2 
x Sh x decreases with an increase in Schmidt num-

er S c at any given value of melting parameter m within 0 ≤ m ≤
.4. The effect of S c on Re −1 / 2 

x Sh x is significant when m = 0 com-

ared to when m = 1 . 4 . The influence of parameter ξ and ε on

he local skin friction coefficient 
0 . 5 C f 

√ 

Re x −Kg ′ (0) 

[1+ K] 
, couple stress at

he wall c s Re −1 
x , Nusselt number Re −1 / 2 

x Nu x and Sherwood num-

er (Re x ) 
−1 / 2 Sh x was investigated. For brevity, this table is not

isplayed. When m = λ = 0 . 2 , ε = 0 , K = 0 . 5 and A 

∗ = B ∗ = 0 . 1 it

s observed that both 

0 . 5 C f 

√ 

Re x −Kg ′ (0) 

[1+ K] 
and c s Re −1 

x decreases while

e −1 / 2 
x Nu x increases with an increase in the magnitude of ξ . It is

lso noticed that the Sherwood number (Re x ) −1 / 2 Sh x which is pro-

ortional to the local mass transfer rate increases negligible with

. It is pertinent to note that the suction at the wall have replaced

he melting model. In view of this, the transverse velocity at the

all is of the form f (0) = −[ mθ ′ (0)] / [ P r ] . In view of this, an ef-

ect of Prandtl number P r on physical quantities of interest are
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Table 2 

Values of local skin-friction coefficient f ′ ′ (0), Couple stress at the wall g ′ (0), local heat transfer rate −θ ′ (0) 

and local mass transfer rate −φ′ (0) when ξ = ε = 0 . 3 , λ = 0 . 4 , K = 0 . 5 , A ∗ = B ∗ = 0 . 1 , S c = 0 . 62 , m = 1 with 

various values of P r when σ < 1 and σ > 1. 

P r ⇓ , σ = 0 . 8 f (η = 0) f ′′ (η = 0) g ′ (η = 0) −θ ′ (η = 0) −φ′ (η = 0) 

0 .2 −1 . 767597181 0 .105872879 0 .021696964 −0 . 353519436 −0 . 114089522 

0 .4 −1 . 062013975 0 .137686026 0 .039300307 −0 . 424805590 −0 . 251234714 

P r ⇓ , σ = 1 . 2 f (η = 0) f ′′ (η = 0) g ′ (η = 0) −θ ′ (η = 0) −φ′ (η = 0) 

0 .2 −1 . 866539137 −0 . 125470942 −0 . 033014296 −0 . 373307827 −0 . 141300454 

0 .4 −1 . 146886946 −0 . 157679939 −0 . 054456960 −0 . 458754778 −0 . 287663911 

Fig. 5. (a) Local skin friction coefficients 
0 . 5 C f 

√ 
Re x 

1+ K) 
against melting parameter m at 

various values of porosity parameter λ. (b) Sherwood number (Re x ) −1 / 2 Sh x against 

melting parameter m at various values of Schmidt number S c . 
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highly relevant to Engineers in the industry. Typical variations of

the transverse velocity at the wall, local skin friction coefficient,

local heat transfer and local mass transfer with increasing val-

ues of Prandtl number when velocity ratio parameter σ < 1 and

σ > 1 is shown in Table 2 . It is observed that when σ < 1 and

σ > 1, the transverse velocity coefficients (ψ(x, y ) / (x 
√ 

aϑ ) | y =0 in-

creases with P r . As magnitude of P r is increased from 0.2 to 0.6,

the percentage increase in transverse velocity coefficients when

σ = 0 . 8 and σ = 1 . 2 are estimated as 53.9% and 52.3% respec-

tively. It is seen in the same table that local skin friction coefficient

(0 . 5 C f 

√ 

Re x ) / [1 + K] increases with P r when σ = 0 . 8 and decreases

with P r when σ = 1 . 2 . In this study, using the stretching veloc-

ity ratio σ = 1 . 2 implies stretching rate of the fluid layer at the

melting wall c(= 1.2 or 1) is greater than the rate of stretching of

the fluid layer at the free stream a (= 1 or 0.83333). This naturally

enhance the fluid flow since [ f ′ (0) = 1 . 2] > [ f ′ (∞ ) = 1] . Surpris-

ingly, the velocity function f ′ ( η) decreases with P r while tempera-

ture function θ ( η) and concentration function φ( η) increases with

P r . The stretching tends to insert a positive pressure which ought

to enhance the flow but shear between any two layers in the fluid

domain is negatively influenced by increasing the magnitude of P r .

At a constant value of C , increase in the magnitude of P r directly
P 
mplies decreases in thermal conductivity κ of the fluid; this leads

o a decrease in Nusselt number which is proportional to local heat

ransfer rate Re −1 / 2 
x Nu x when σ = 1 . 2 . 

. Conclusion 

Steady laminar mixed convection flow, heat and mass transfer

f stagnation micropolar fluid flow towards a horizontal linearly

tretching sheet taking into account the influence of internal ex-

onentially heat generation and melting is studied considering the

ariation in fluid viscosity and thermal conductivity due to tem-

erature differences. It can be concluded that local skin-friction

oefficient, the dimensionless wall couple stress, the local Nusselt

umber and the local Sherwood number of the fluid flow problem

ecrease with an increase in both temperature dependent variable

uid viscosity and thermal conductivity at constant vortex viscos-

ty. An increase in the melting parameter m reduces the tempera-

ure gradient profiles of micropolar fluid flow over a melting sur-

ace within 0 ≤ η ≤ 0.788. Temperature and concentration profiles

ecrease with the increase of melting parameter m . The temper-

ture distribution increases within the fluid domain (0 ≤ η ≤ 4)

ith an increase in parameter ε only for fluid with ( P r 
 1). Sher-

ood number Re −1 / 2 
x Sh x decreases significantly with Schmidt num-

er when magnitude of melting parameter is small. 
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