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1. Introduction

Recently, many researches have studied the existence of peri-
odic solutions for dynamic equations on time scales [1-8].
However, few papers have been published on the existence of
almost periodic solutions for dynamic equations on time
scales. In fact, the existence of almost periodic, asymptotically
almost periodic, pseudo-almost periodic solutions is among
the most attractive topics in qualitative theory of differential
equations and difference equations due to their applications,
especially in biology, economics and physics [9-22]. Therefore,
it is interesting to study the existence of almost periodic solu-
tions for dynamic equations on time scales.
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Motivated by the above, our main purpose of this paper is to
present a notion of almost periodic functions on time scales and
study the existence of periodic solutions for almost periodic dy-
namic equations on time scales. The results in this paper con-
tains some results obtained for differential and difference
equations in [11-14].

The organization of this paper is as follows: In Section 2, we
introduce some notations and definitions. In Section 3, we study
some basic properties about almost periodic functions on time
scales. In Section 4, by using the properties of almost periodic
functions on time scales and Liapunov functionals, we study
the existence of almost periodic solutions to a general almost
periodic dynamic equation on time scales.

2. Preliminaries

In this section, we shall recall some basic definitions, lemmas
which are used in what follows.

Let T be a nonempty closed subset (time scale) of R. The
forward and backward jump operators g,p: T — T and the
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graininess p: T — R™ are defined, respectively, by
o(t)=inf{s € T : 5> 1},
<t} and pu(t)=o0(t)—1t.

p(t)y =sup{seT:s

A point t € T is called left-dense if # > inf T and p(¢) = ¢, left-
scattered if p(¢) < t, right-dense if t < sup T and o(¢) = ¢, and
right-scattered if a(¢) > ¢. If T has a left-scattered maximum
m, then T* = T \ {m}; otherwise T* = T.

If T has a right-scattered minimum m, then T, = T \ {m};
otherwise T, = T.

A function f: T — R is right-dense continuous provided
that it is continuous at right-dense point in T and its left-side
limits exist at left-dense points in T. If f'is continuous at each
right-dense point and each left-dense point, then f'is said to be
continuous on T. We define C[J, R] = {u(¢) is continuous on
J}, and C'[J,R] = {u(¢) is continuous on J}.

For y: T — Rand ¢ € T*, we define the delta derivative of
¥(8), ¥2(5), to be the number (if it exists) with the property that
for a given ¢ > 0, there exists a neighborhood U of ¢ such that

(e (1)) = y($)] =y (D)o () = ]| < ela() = s

for all s € U.

For each t € T, let N be a neighborhood of ¢. Then, we de-
fine the generalized derivative (or Dini derivative), D" u®(¢), to
mean that, given & > 0, there exists a right neighborhood
N, c N such that

u(a(1)) — us)
u(t,s)

for s € Ny, s > t, where u(t,s)=a(t) — s.

If ¢ is right-scattered and u is continuous at ¢, this reduces to
Dy — o) )

a(t)—t

For V& Cy[T x R",R], D" V*(¢,x(f)) to mean that, given
¢ > 0, there exists a right neighborhood N, c N such that

1
) [(V(a(), x(a(1))) — Vs, x(a (1)) — u(t, )/, x(1)))]

<D VA1, x(1) + ¢

<Dt (0) +¢

for each s € N,,s > t, where u(t,s) = a(t) — s. If ¢ is right-scat-
tered and V(¢,x(¢)) is continuous at ¢, this reduces to

V(a(1), x(a(1))) — V{1, x(1))

a(t) —t

DA (,x(1)) =

If y is continuous, then y is right-dense continuous, and if y is
delta differentiable at ¢, then y is continuous at .

Let y be right-dense continuous. If Y*(¢) = y(r), then we
define the delta integral by

A function r: T — R is called regressive if
1+ pu(t)r(t) #0

for all # € T*. The set of all regressive and rd-continuous func-
tions will be denoted by R. We define the set R" of all posi-
tively regressive elements of R by

Rt ={peR:1+u()pt)>0 forall reT}.

If r is regressive function, then the generalized exponential
function e, is defined by

t
e, (t,8) = exp {/ o) (r(r))Ar}7 fors, teT
with the cylinder transformation

Log(1+hz) ifh#0
6’1(2) = " . 7
z if h=0.

Definition 2.1 1. We say that a time scale T is periodic if there
exists p > 0 such that if 1 € T, then 1+ p € T. For T#R, the
smallest positive p is called the period of the time scale.

Remark 2.1. By the definition above, if a time scale T is
periodic, then sup T = oo, and u(f) must be bounded, and
forany 1 € T, u(t) < p, u(t + p) = pu(1).

Example 2.1. Let ¢ > 1, consider the time scale T = {¢" : n €
Z} U{0}. Obviously, it is not a periodic time scale and we have
o(t)=inf{q" :n € [m+1,00)} = ¢"" = qq" = qt

if t=¢" € T and ¢(0) = 0. So we obtain

a(t) = gt teT
and consequently

u(t) = o(t) — 1 = (g — 1)t

Hence pu(t) = oo as t — oc.

for all

forall reT.

Throughout this paper, we always use T to denote a peri-
odic time scale and E” to denote R” or C", and use the notation:

T — {np:neZ}, if T isa periodic time scale with period p,
PR, ifT=R.

For convenience, we denote sequence {o,} by « and

B C o if sequence f§ = {f,} is a subsequence of a = {«,},

T f(t) = lim,_, . f(t + a,), if the limit exists. The mode of con-
vergence will be specified at each use of the symbol.

Definition 2.2 11. Let 4 C B C R, we say that 4 is relatively
dense in B if there exists a positive number / such that for all
a € B we have

[a,a+1zNA#0,

where () is the empty set, [a,a + [z =
the inclusion length.

[a,a + [N B-[is called

Definition 2.3. We say that the function f{¢) € C(T,E") is
almost periodic if for any given ¢ > 0, the set

T(f,e, T)={teT,: [ft+1)—ft) <e Vi€ T}

is relatively dense in T ,; that is, for any given ¢ > 0, there exist
an/ = [(¢) > 0 satisfying that each interval of length / contains
at least one 7 = t(¢) € T(f,¢, T) such that

f(t+7)—flt) <e, VYiteT.
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The set T(f, ¢, T) is called e-translation set of f{7), 7 is called ¢-
translation of f(7).

Remark 2.2. In above definition, if T = R, then this definition
converts to the definition of almost periodic functions in con-
tinuous case, see [11,14]. If T = Z, then this definition turns to
the definition of almost periodic sequence, see [12,13,15,16].

Definition 2.4. f(r) € C(T,E") is called an asymptotically
almost periodic function on T if

S) = p(1) +q(2),

where p(?) is an almost periodic function on T, and ¢(¢) — 0 as
t— oo.

Definition 2.5. f{t,x) € C(T x D, E"), where D is an open set in
E" or D = E". f(¢,x) is said to be almost periodic in ¢ uniformly
for x € D, or uniformly almost periodic for short, if for any
¢ > 0 and compact set S in D, there exists / = [(¢, S) satisfies
that each interval of length /(¢, S) contains a 7 such that

At +1,x) — ft,x)] <¢,

tis called the e-translation number of f{#,x). The e-translation
set of f{(z,x) for x € S is denoted by

T(f,e,S, T)={teT,: |[ft+1,x) —ft,x)| <&, V(t,x)eT xS}

vV (,x) €T x S.

Definition 2.6. Let f{z,x) € C(T x D,E"), where D is an open
set in E” or D = [E". The set H(f) = {g(t,x): there exits x € T,
such that T,f(z,x) = g(t,x) exists uniformly on T x S, where
S c D is any compact set} is called the hull of f.

3. Properties

In this section, we will give some basic properties about almost
periodic, uniformly almost periodic and asymptotically almost
periodic functions on time scales, respectively.

To introduce the criteria and the properties of uniformly al-
most periodic functions on time scales, we first establish the
following lemmas.

Lemma 3.1. Let f(t,x) € C(T x D,E") be almost periodic in t
uniformly for x € D. Then for any given sequence o' = {0y} C
T,, there exist a subsequence p C o' and a continuous function
g(t,x) such that Tgf(t,x) = g(t,x) uniformly on T x S, where
S is any compact set in D. Moreover, g(t,x) is also uniformly
almost periodic.

Proof. If T = R, then Lemma 3.1 is equivalent to Theorem 2.2
in Ref. [14]. Now we assume that T#R, p is period of T.

First, for any given ¢ > 0, there exists an / = /(¢/2,S) such
that every interval of length / contains an ¢/2-translation
number. Therefore, for any sequence o = {a,} CT,,
there exist 7, € T, and 7y, € T, such that o), = 7, +y,, where
o, € T(f,¢/2,S,T) and y, € {0, p, - - - ,np},np < L. Since the set
{0, p, ..., np} is finite, there must be infinite number of 7y,
equal to some y € {0, p, ..., np}. Let {a,} be the set of all «,
such that y, = y. Then for any two integers p,m and any
(t,x) € T x S, we have

At + O‘pvx) —flt+ o, x)| < sup |f{t+ “pvx) = J{t + o, X)|

(1,x)eTxS

< sup At 4 op — o, X) — S, )]
(1,x)eTxS

= sup lf(t + Tp — T,y x) _f([7 x)|

(,x)ET xS

< sup lf(t + T{r - vax) 7f(t + Tp7x)|
(t,x)eTxS

+ sup |f(t+ 1, x) — f(£,x)]

(,x)eTxS
<eg/2+¢/2=¢.

This proves that for any given ¢ > 0, compact set S and
sequence o/, there exists subsequence o« o' such that the norm
of the difference between any two functions from the function
sequence {f{t + o,,x)} less than ¢, for (¢,x) € T x S. By Cau-
chy convergence principle, this shows that the sequence
{f(t + o,,x)} is uniformly convergent on T x S.

Now we prove that g(z, x) is continuous on T x D. Suppose
that g(¢,x) is discontinuous at a point (7y,x9) € T x D, then
there exist a number g > 0, and sequences {0,,},{fm}s {Xm}>
where 3, > 0, and 8, >0 as m— +oo, | to—t,] +|x0—
X, < &,, such that

|g(Z0,X0) _g(tnhxm)‘ = €. (31)

Let X = {x,,} U {xo}, then X is a compact set in D. Therefore,
there exists positive integer N = N(g, X) such that forn > N,
the following inequality holds uniformly for m,

&
lf(tm + .Bn: xm) - g(tmaxm” < ?O (3'2)
Moreover, for n > N we have

&
/(2o + B,y x0) — g(t0, Xo)| < go (33)

Since f(1,x) € C(T x D,E") and J,, can be arbitrary small
when m is sufficient large, for a large enough m we have

lf(IO + ﬁ"’ X()) 7f([”7 + ﬁmxm)‘ < %)

From 3.2, 3.3 and 3.4, it is easy to obtain a result which con-
tradicts (3.1). Therefore, g(z,x) is continuous on T x D.

Finally, for any compact S c D and any given ¢ > 0, take
1€ T(f,¢,S,T), then for all (£,x) € T x S we have

(3.4)

lf(t+ﬁn + T?‘X) _f(t+[))n7x)| < &.
From this, let n —> + oo, we get
lg(t+1)—glt,x)| <e V(,x)eTxS.

Hence, g(z,x) is also uniformly almost periodic. [

Lemma 3.2. Let f(t,x) € C(T x D,E"). Suppose that for any
sequence o C T, there exists a subsequence o C o such that
T, f(t,x) exists uniformly on T x S, where S is any compact
set in D. Then f(t,x) is uniformly almost periodic.

Proof. Suppose that the conclusion does not hold. Then there
exist an & > 0 and a compact set Sy D such that for any
large / > 0, we can find an interval of length / which contains
no gp-translation number of f{z,x) for x € S.
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Now we pick a number o € T, and let [a;, a; + 2|« |] be an
interval containing no any ég-translation number, where
a € T,. If we set oy =a;+ ||, then a <o) —of <ai+
2|oy| and hence o), — o) cannot be an gy-translation number.
Next, let a2, a> + 2|o}| + 2|o5|] be an interval which contains
no any ¢p-translation number, where a, € T,. Set o} =a>
+lof| + |o], then it is easy to see that oy — o and of — o are
both in [ay, @ + 2|o}| 4 2|0 |]. Therefore, oy — o) and o — o
are not gy-translation numbers. In a similar way, we can define
oy, %5, ... so that none of the difference o —o; is an &-
translation number. Thus, for any i and j, i #/,

sup [/'(t + o, x) —flt+ o}, x)]

(t,x)eTxS

= sup |f(r o - x) — f1,3)] >

(t,x)eTxS

which means that the sequence {f(7+ «,,x)} cannot contain
any uniformly convergent subsequence. This contradicts the
assumption of the theorem. Therefore, f{(¢, x) must be uniformly

almost periodic. The proof of Lemma 3.2 is complete. O

As an immediate consequence of Lemmas 3.1 and 3.2, we
obtain that

Proposition 3.1. f{z,x) € C(T x D,E") is a uniformly almost
periodic function if and only if for any sequence o/ C T,, there
exists a subsequence o C o such that T,f(t,x) exists uniformly
on T x S, where S is any compact set in D. Furthermore, the
limit sequence is also a uniformly almost periodic function.

Since an almost periodic function can be regarded as a spe-
cial case of a uniformly almost periodic function, from Propo-
sition 3.1, one has

Proposition 3.2. f(¢) € C(T,E") is an almost periodic function if
and only if for any sequence o/ C T, there exists a subsequence
a o such that T,f(t) exists uniformly on T. Furthermore, the
limit sequence is also a uniformly almost periodic function.

From Propositions 3.1, 3.2 and 3.3, it is easy to prove the
following proposition.

Proposition 3.3.

(1) Let f(t),g(t) € C(T,E") be almost periodic functions,
then f(t) £ g(t), f(t) g(t) are also almost periodic
Sfunctions. If inf,cr|g(¢)| > 0, then the quotient f(t)/g(t)
is almost periodic too.

(i) Let f(t,x),g(t,x) € C(T x D,E") be almost periodic in t
uniformly for x € D, then f(t,x)) = g(t,x), f(t,x) "
g(t,x) are also uniformly almost periodic functions. If
inf(,x)evxs|g(z,x)| > (), where Sc D be any compact
set, then the quotient f(t,x)[g(t,x) is uniformly almost
periodic too.

Proposition 3.4.

() Iff(t,x) € C(T x D, E") is almost periodic in t uniformly for
X € D, then there exists a function F(r,x) € C(R x D, [E")
which is almost periodic in r uniformly for x € D such that
F(t,x) = f(t,x) for (t,x) € T x D;

(@) If F(r,x) € C(R x D, E") is almost periodic in r uniformly
for x € D, then F(t,x) is also continuous on T X D and
almost periodic in t uniformly for x € D.

Proof. (i) Assume that f{¢, x) € C(T x D) is almost periodic in
t for x € D. We define a function F(r,x) on R x D as:

At x), for r=tand x€ D,
if ¢ is right — dense,
F(r,x) =
) St x) + 55 o (), x) = ft,x)], for re[ta(t)) and x € D,

if ¢ is right — scattered.

Clearly, F(r,x) is continuous on R x D and F(¢,x) = f(t,x) for
(t,x) € T x D. Next, we show that the function F(r,x) defined
above is almost periodic in r uniformly for x € D.

Since f{¢, x) is almost periodic in ¢ uniformly for x € D, for
any given ¢ > 0 and any compact set S c D there exists an /(g/
3,S) such that any interval of length /(¢/3,.S) contains a t and

lf(l‘+f,x) —f(l,x)|<8/3, \V/(I,X)G(TXS).
If ¢ is right-dense, F(r,x) = f(t,x), for r = ¢, then
|F(r+t,x) — F(r,x)| < &/3 < e. (3.5)

If ¢ is right-scattered, t <r < o(f), then t + 1< r + 1 < 0(?)
+ 7. Noting that 0<r—t<o(t)—t=0(t + 1) —(t + 1)
< p, we have

|F(r +1,x) — F(r,x)

B r+7)—(t+1)
7P(Z+T’x)+a(l+r)f(t+r)

[flo(t+ 1), x) — f(t + 7,x)]

7f(t7 X) -

it 5,5) —fl2) oo (o) +5,)
—a(2), %)) = [t +7,x) = A1, )]}
< e+ 7,x) =, %) + [flo (1) + 7,x) = fla (1), x)]
) — (8, )]
<e/3+¢/3+¢/3=¢ (3.6)
From (3.5) and (3.6), we conclude that
|[F(r+1,x) — F(r,x)| <e¢, V(r,x)eRxS.

Thus, F(t,x) is almost periodic in r uniformly for x € D.

(i7) Let F(r,x) € C(R x D, E") be uniformly almost periodic,
then for any sequence o' C T, there exists a subsequence a < o
such that 7T,F(¢t + a,,x) exists uniformly on R x S, where S is
any compact set in D. Consequently, T,/(t + o,,x) = T, F(t +
o, x) exists uniformly on T x S. In view of Lemma 3.2 and
Definition 2.9, this shows that f{z,x) is uniformly almost
periodic. [

It follows from Proposition 3.4 that
Proposition 3.5.
M) If f(¢) € C(T,E") is an almost periodic function, then

there exists an almost periodic function F(r) € (R, [E")
such that F(r) = f(t) for t € T,
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@it) If F(r) € C(R,E") is an almost periodic function, then
F(t) is an almost periodic function on T.

Remark 3.1. If F(r) € C(R, E") is a periodic function, we can-
not obtain that F(¢) € T x E" is also a periodic function. For
example, F(¢) = sint is periodic on R, but it is only almost peri-
odic and not periodic on Z.

Similar to the proof of Proposition 3.4, one can easily show
that

Proposition 3.6.

@) If f(t) € C(T,E") is an asymptotically almost periodic
function, then there exists an asymptotically almost peri-
odic function F(r) € (R,E") such that F(r) = f(t) for
teT.

@ity If F(r) € C(R,E") is an asymptotically almost periodic
function, then F(t) is an asymptotically almost periodic
function on T.

As immediate consequences of above propositions, we have
the following results which correspond to the results in the
continuous case (see [14,23]).

Proposition 3.7. If f(¢,x) € C(T x D,E") is almost periodic in t
uniformly for x € D, then f(t,x) is bounded and uniformly
continuous on T X S, where S c D is any compact set.

Proposition 3.8. If f(t,x) € C(T x D,E") is almost periodic in t
uniformly for x € D and p(t) is an almost periodic function such
that p(t) c S for all t € T, where S c D is any compact set.
Then f(t,p(t)) is almost periodic in t.

Proposition 3.9. If f(r) € C(T, E") is an asymptotically almost
periodic function, then its decomposition

S0) = p(1) +4(1)

is unique, where p(t) € C(T, E") is an almost periodic function
and lim,_,.q(t) = 0.

Proposition 3.10. f(¢) € C(T, E") is an asymptotically almost
periodic function if and only if for any sequence o' € T, such that
o, >0 and o, — +00 as n— oo, there exists a subsequence
oo such that T,f exists uniformly on T+ := T N0, 00).

Proposition 3.11. If 0 € T. Then f(t) € C(T, E") is an almost
periodic function on T if and only if for any sequences o/ C T,
and B’ C T, there exist subsequences o. C o and f < B’ such that
forany te€T,

T, fl) = TLTufl0). (3.7)
Proof. Suppose f(z) € C(T, E") is an almost periodic function
on T. Then there exists an almost periodic function F(r,x) on

R such that F(r) = f(¢) for all t € T. For any sequence o/ C T,
B C T,, there exist subsequence & < o, f  f’ such that

T.4pF(r) = T,TgF(r) uniformly holds on R.

Hence, we obtain

T pf(t) = T, Tyf(t) uniformly holds on T.

Conversely, by (3.7) we know that for any sequence y C T,,
there exists a subsequence y c 9’ such that T.f{r) exists on every
t € T. By Proposition 3.1, it suffices to show that T,f{(r) exists

uniformly on T. Otherwise, there must exist g > 0, subse-
quences o <y, <y and sequence s’ = {s,} C T, such that

(s, +o4,) = f(s, + B,)| = & > 0. (3.8)

From (3.7), we know that there exist subsequences o” o, 5"
c ¢ such that

];.Il+lllf,(t) = ]}H Tduf(t)

We take p” < f such that f”,«” and s” are common subse-
quence of f',o/ and ', respectively. From (3.7) it follows that
there exist subsequences § — f/ and o« c o such that

Ts'+ﬁf(t) = T‘TM((Z‘)

We take o < o” such that «, f and s are common subsequence
of o, f” and s”, respectively. Thus, we have

T of(t) = T,T,f(t) holdsonreT.
Since T,f(t) = Tyf(t) = T,f(1), it follows that
Tr+af(t) = T&Jr[if(l) holds on 7 € T,

that is, for each t € T,

holds on 7 € T.

holds on r € T.

imf(¢ + s, + B,) = Imf{t + s, + o),
which contradicts (3.8) if we take 1 =0 € T. This completes
the proof. [

Proposition 3.12. f(¢,x) € C(T x D,E") is an uniformly almost
periodic function on T x D if and only if for any sequences
o CT, and B C T, there exist subsequences o.co and
pc B such that

Tm+lif(t7 X) = TzT/if(l7 X)

where S is any compact set in D.

uniformly holds on T x S, (3.9)

4. Almost periodic dynamic equations on time scales

Consider the following almost periodic dynamic equation on
time scale T:

XA :f(l, x)>

where 0 € T,f{z,x) € C(T x D,R) is almost periodic in ¢ uni-
formly for x € D, D denotes R" or an open subset of R".

(4.1)

Lemma 4.1. Let f(t,x) be uniformly almost periodic and
g € H(f). Then there exists a sequence o = {a,} C T, such that
o, > o0 as n— oo and Tuf(t,x) = g(t,x) uniformly on T x S
for any compact set S c D.

Proof. Since g € H(f), there exists a sequence o' C T, such that
T.f(t,x) = g(t,x) uniformly on T x S. If o, — co as n — oo,
then we are done by letting o = «'. Otherwise, let ¢, = 1/n
and choose o), € [—a,, + n, —a, + k + 1(g,)] such that

|1+, x) = flt,x)| < 1/n forall (1,x) €T xS.

n’
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Then it follows that f{f + o/, x) uniformly converges to f{z,x)
on T x S as n — oo, that is,

Tzr’f([’ X) :f(tv x)

Now by Proposition 3.11, for the sequences o’ and ¢’ there ex-
ist subsequences o c o and ¢ C ¢’ such that

TaHrJf(lv X) = Tngf(l,X) = Ta’ Tdf(lv x) = T‘lf(l’ X) = T“’f(t’ x)
= g(¢, x) uniformly on T x S.

uniformly on T x S.

By the choice of ¢ =g/, it is trivial that o, + 0 — oo as
n — oo. Therefore, by replacing o/ with « + ¢, which is a sub-
sequence of o/ + ¢, we can fulfill the requirement. [

Definition 4.1. If g € H(f), we say that

Xt = g(t,x)

is a hull equation of (4.1).

Theorem 4.1. If ¢(t) is a asymptotically almost periodic solu-
tion of (4.1) on T+, then (4.1) has an almost periodic solution.

Proof. Since ¢(7) is asymptotically almost periodic, it has the
decomposition

é(1) = p(1) +q(1),

where p(7) is almost periodicin rand g(¢) — O as ¢ — oo. By Lem-
ma 4.1, there exists a sequence o/ = {«,} C T, such thate] — oo
asn — oo, and T,f(t, x) = g(t, x) uniformly on T x S. By Prop-
osition 3.1, there exists a sequence o < o such that T,p(r) = y(?)
uniformly on T. Since T,/(t,x) = T,f(t, x) = g(t, x) uniformly
on T x S, we have that T,¢(t) = T,p(t) = Y(¢) is an almost
periodic solution of the corresponding hull equation

Xt =g(1,x)

on T. Now T_,g(t,x) = f(t,x) uniformly on T x S and
T_y(t) = p(¢) uniformly on T, hence p(7) is an almost periodic
solution of (4.1). O

Theorem 4.2. If for each g € H(f), the hull equation XA(1) =

g(t,x(t)) has a unique solution in S, then these solutions are
almost periodic. In particular, system (4.1) has an almost peri-
odic solution in S.

Proof. Let ¢(¢) be the unique solution of x*(¢) = g(1,x(r)) in S
with g € H(f). For any given sequence o' C T,, we will show
that there is a subsequence o  of such that T,f(¢r + «,) exists
uniformly on ¢ € T, and hence by Proposition 3.2 we conclude
that ¢(r) is almost periodic.

Note that g € H(f) is uniformly almost periodic by Lemma
2.1. Then for a given sequence o C T, we can pick o < o such
that T,(t,x) = h(t,x) uniformly on T'xS. Trivially,
he H(g) c H(f). Since {¢(t + a,)} €S, we may choose a
subsequence of «, denoted by o again, such that

D1 +0) = ¢"(1)

on any finite interval of T.

Obviously, ¢"() is a solution of

X = h(t, x).

Suppose that ¢(¢ + «,) is not convergent uniformly on T as

n—oo. Then for some g > 0, there exist sequences
s ={s} CT,,{m} CZand {k,} C Z such that

m, — oo, ki — oo asn— oo,

while

|p(s], + o) — D(s, + oc,(;l)| > &. (4.2)

Then by Proposition 3.11, for sequence {s,}, {o, }, and {Ofk;},
there exist {s,} C {£,},{%n,} C {%m,}, and {o,} C {op } such
that

T, 8(t,x) = T, Ti(1, X)
and
Tv+ockg(lvx) = Tock Tv([7 X)

hold uniformly on T x S.

On the other hand, there exist some functions ¢(¢) and y(¢)
such that Ty, ¢(1) = @(1), Tsq ¢(t) = Y(¢) on any interval of
T. Since that T, g(t, x) = T, g(t,x) = h(t, x), we have T, g
(t,x) = Tyi0,8(t, x) = Tsh(t,x) = (t,x) for some [e H(h),
taking a subsequence if necessary.

Thus, ¢(¢) and ¥(¢) are both the solutions in S of

x2(1) = (2, x(1)).
Note that / € H(h) c H(g) c H(f), by the assumption we must

have (1) = y(1).
However, it follows from (4.2) that

[9(0) = ¥(0)] = &.
This is a contradiction. Therefore, ¢(7) is an almost periodic
solution in S of x2(r) = g(,x(¢)).

In particular, since '€ H(f), we conclude that (4.1) has an
almost periodic solution in S. [

Lemma 4.2 24. Let y,f€ C,yand p € R*, then

DYy (1) < p()y(t) +f(t) forall (€T

implies

(1) < y(t0)e,(t,t0) + /le],(t7 a(1))f(x)Ar forall teT,

to

where ty € T.

Now, by using Liapunov functions on time scales, we inves-
tigate the existence of an almost periodic solution of (4.1)
which is uniformly asymptotically stable in the whole, that
is, every solution which remains in D in the future approaches
the almost periodic solution as 1 — oo. To this end, for system
(4.1), we consider its product system:

XA :f([,x)7 yA :f(tay)' (43)

Theorem 4.3. Suppose that there exists a Liapunov function

V(t,x,y) € C(TT x D x D,R)  satisfying  the  following
conditions:
@ allx =)l )< V(txy) <bllx—)H), where abek

with K ={a € C(R*",R") : a(0) = 0 and a is increasing},
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(i) | Vitx,p) —vitxop )l <L x; —xd + 1y, —ps],
where L > 0 is a constant;
(iii) D" Véu)(t,x,y) < —cV (t,x,y) where —c € R* and ¢ > 0.

Moreover, if there exists a solution x(t) of (4.1) such that
x(t) €S forte€ T, where S D is a compact set. Then there
exists a unique uniformly asymptotically stable almost periodic
solution p(t) of (4.1) in S. Furthermore, if f(t,x) is periodic with
period w in t, then p(t) is a periodic solution of (4.1) with period
.

Proof. Let o = {o,} C T, be a sequence such that o/, — oo as
n — oo and T, f(t,x) = f(t,x) uniformly on T x S. Assume that
¢(t) = S is a solution of (6.1) for £ € T*. Then ¢(t + o) is a
solution of the dynamic equation

x4 = flt + o, X),

which is also in S. For a given ¢ > 0, choose an integer ko(¢) so
large that if m = k > ko(¢), we have

b(2B)e_.(o,0) < a(e)/2 (4.4)
and
U+ o) — U1+ oy )] < <49 (4.5)

2L

where B is a positive constant such that S < {x] d < B}. It fol-
lows from (i) and (iii) that

D+ VA(tv (b(t)v ({b(l — Oy — ‘xk)) < _CV(tv (b(t)? d)(l — O — O(/x’))
+ LIf(t + ot — o, (2 + ot
= o)) — St p(1 + oo — o))

In virtue of (4.4), we have
D+ VA(tv (b(t)v d)([ — Oy — Ofk))
< eV (0, — 2 — ) + 57

If m =k > o(¢), by Lemma 4.2, condition (i) and (4.3) and

(4.5) imply that

V(t+ o, ¢t + o), (= o)) < e—e(t + o, 0)V(0, $(0), (ot
a(e)

—a) + 82 (1 e

(4.6)

+ OC[”O))
< e—c([ =+ Ol 0) V(07 d)(o)’ ¢(OC’”

Therefore, by condition (i), we have

lp(t+ou) — p(t+ o) <e forallteT™ ifm =k = k.
This shows that ¢(f) is asymptotically almost periodic, and
thus system (4.1) has an almost periodic solution p(f) < S in
virtue of Theorem 4.1.

By using the Liapunov function V(t, x, y), with the standard
arguments, it is easy to show that p(z) is uniformly asymptot-
ically stable and every solution remaining in D approaches p(¢)
as t — oo, which also implies the uniqueness of p(f).

In the case where f{(z,x) is periodic in ¢ with period
w,p(t + w) is also a solution of (4.1) which remains in S. By
the uniqueness of solution, we know that p(r + w) = p(¢). This
completes the proof. [

Example 4.1. Consider the following dynamic equation on
time scale T:

Xt = a(Of(x) + p(1),

where (1), p(¢) is almost periodic on T,f{x) is monotone
increasing and  f(—o0) = —o0,f(to0) = + oo. Let
w =sup,{u(r)}, if there exist constants o, such that
f(x) = o> 0,a() < —f < 0and 2 — p'uf > 0, then there ex-
ists a unique uniformly asymptotically stable almost periodic
solution of (4.7).

(4.7)

Proof. We first prove that (4.7) has bounded solutions on T+.
Denote the right-hand of (4.7) by F(¢, x), it is easy to see that there
exists a constant M > 0 such that F(z, My) < 0, f(t, — My) > 0
for t € T*. Therefore, the solution of (4.7) with initial value
(0,x0) satisfies | x(£;0,x0) < My for t € T* while | xJ < M.
For any M > M, we obtain that the set Q = {x(7):x(¢) is a solu-
tion of (4.7) and | x(1| < M for t € T*}#0.

Consider product system:

xh = a(f(x) +p(r), ¥t =a(Ofy) +p(2).

For x,yeQ, let Liapunov function V(z,x,y) = (x — ).
Obviously,

1

S =P < V(nxy) <2x -l

Set a = §x?,b = 2x?, condition (i) of Theorem 4.3 is satisfied.
Next,

V(t,310,00) = V(t,x2,00) | = (61 = 1)" = (52 = 1)’
=(x1=y1) + (2 =)l (x1 =)
— (2= yo) [ <AM(|x1 = x2| + [y = 1)
Let L = 4M, condition (if) of Theorem 4.3 is satisfied.
At last,

X (x =) < —ap(2 — wap)(x — y)*.

Set ¢ = af(2 — paf), then ¢ > 0 and —c € R, so condition
(iii) of Theorem 4.3 is also satisfied.

Therefore, by using Theorem 4.3, there exists a unique
uniformly asymptotically stable almost periodic solution of
(4.7). The proof is complete. [
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