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Abstract By constructing a correspondence relationship between independence spaces and posets,

under isomorphism, this paper characterizes loopless independence spaces and applies this charac-

terization to reformulate certain results on independence spaces in poset frameworks. These state

that the idea provided in this paper is a new approach for the study of independence spaces. We

outline our future work finally.
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1. Introduction

As one of classes of structures of infinite matroids, indepen-
dence spaces possess quite fruitful consequences (cf. [1–10]).
Additionally, Oxley also points out in [1] that for general cases,

there have been three main approaches to the study of infinite
matroids, one is primarily the independent-set approach,
another is the closure-operator approach, and the third ap-
proach is via lattices.

Recalling the results relative to independence spaces in
[1–10], we find out that most of them are obtained from pri-
marily independent-set approach and some of them use

closure-operator approach. According to the known results,
seldom research results on independence spaces for general sta-
tus are obtained by lattice approach, though some results are
tian Mathematical Society.
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produced for some special cases of independence spaces using
lattice approach (cf. [2, Chapter 3], [11,12] and [13, Section 1.7
in Chapter 1]).

After we analyze the status quo of independence spaces, we
state that if we hope to generalize the applied fields of indepen-
dence spaces, then we should search out a new approach to

study on independence spaces not only independent-set and
closure-operator approaches. Perhaps, lattice approach fits to
be a key for changing the current situation. However, we be-

lieve that many researchers have already tried this approach
to study independence spaces for general cases not only for
some special ones. The status quo is that very few results are

provided for independence spaces by lattice approach. This
indicates that lattice approach will perhaps not be a key what
we expect. We should find out a new approach to study inde-
pendence spaces. For this, we observe the following:

(1.1) In view of the definition of an independence space pro-
vided in [1,2], we may say that an independence space

is uniquely determined by its collection of independent

sets.
gyptian Mathematical Society. Open access under CC BY-NC-ND license.
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(1.2) For a given independence space M, we can associate a

poset whose elements are the independent sets of M
ordered by inclusion.

(1.3) The results in [16] illustrates that poset theory is a good

way to study Mpi-spaces, though Mpi-spaces are a dif-
ferent class of infinite matroids from independence
spaces.

All of these suggest that we may build up the correspon-
dence relationship between independence spaces and posets.
This article is motivated by the ideas above.

We narrate the construction of this paper as follows:
Section 2 introduces relevant definitions and properties

pertaining to posets and independence spaces. In Section 3,

under isomorphism, we establish a correspondence
relationship between posets with some pre-conditions and
independence spaces without loops. Second, we present the

relationship between Boolean lattices and independence
spaces in which every member owes a unique maximal inde-
pendent set. Afterward, a consequence on independence
spaces is dealt with poset approach. In Section 4, we outline

our future work.

2. Preliminaries

In this section, we may begin by considering the fundamental
properties what are needed in the sequel. In addition, some

notations used in the sequel are given.
In what follows, we assume that E is an arbitrary – possibly

infinite – set; 2X denotes the family of all the subsets of a set X.

For a poset {A}, Max{A} denotes the maximal elements in
{A}. Y �� X represents Y to be a finite subset of a set X.

We introduce a basic property relative to poset theory. The
others are referred to [14,15].

Lemma 2.1 [14]. Any interval sublattice of a Boolean algebra is
a Boolean algebra.

Analogously to the definition of height function in a poset
with finite length in [14, p. 4], this paper will accept the height
function of a poset as the following: let P be a poset with the

least element 0. Then, the height h(x) of an element x 2 P is
the least upper bound of the lengths of the chains
0 = x0 < x1 < � � �< xn = x between 0 and x. If the least

upper bound exists as n <1, then h(x) is n. Otherwise, h(x)
is1.

h(x) = 1 if and only if x covers 0; such elements are called
‘‘atoms’’ of P.

For simplicity, if there is no confusion from the text, then a
poset (P,6) is said to be P. In a poset P, b p a stands for ‘‘a
covers b’’; the interval {x 2 P:a 6 x 6 b} is in notation [a,b];

for H = {a,b} ˝ P, �H sometimes is in notation a � b. If
two posets P1 and P2 are isomorphic, then it will be denoted
by P1 @ P2.

Some notations and terms of independence spaces are re-
viewed here, the others are referred to [1,2]. The description
of finite matroids is seen in [1,2].

Definition 2.1. [2, pp.385-387;& 1]. An independence space M

is a set E together with a collection I of subsets of E (called
independent sets) such that
(i1) I–;.
(i2) If A 2 I and B ˝ A, then B 2 I .
(i3) If A;B 2 Iand ŒAŒ,ŒBŒ <1 with ŒAŒ = ŒBŒ + 1, then

$a 2 AnB fits B [ fag 2 I .
(i4) If A ˝ E and every finite subset of A is a member of I ,

then A 2 I .

From Definition 2.1, it is easy to show that ; 2 I .
For an independence space M ¼ ðE; IÞ, in this article, we

sometimes write I as IðMÞ.
We define a loop of an independence spaceM ¼ ðE; IÞ to be

an element x of E such that {x} is not an independent set.
Similarly to finite matroids (cf. [2]), we may present the fol-

lowing definition: for two independence spaces Mi, i.e.,
ðEi; I iÞ; ði ¼ 1; 2Þ, M1 is isomorphic to M2, in notation,
M1 . M2, if and only if there is a bijection w: E1 fi E2 satisfy-

ing I 2 I 1 () wðIÞ 2 I 2.
3. Relations

This section will deal with the relationship between an inde-
pendence space M ¼ ðE; IÞ and a poset.

If M is an independence space on E, we can associate with

M a poset PðMÞ whose elements are the independent sets of M
ordered by inclusion.

Let A be the atoms of PðMÞ. By (i2), we know a 2 I for
any a 2 A and A ¼ ffbgjb 2 E; fbg 2 Ig.

In this paper, we do not distinguish an element b and a set
{b} of single element. Hence, B ¼ fd 2 Ejfdg 2 Ig is the same
to A.

Therefore, if there is no confusion from the text, then we
sometimes denoteA by fd 2 Ejfdg 2 Ig and fdg 2 I by d 2 I .

We first present some basic properties of PðMÞ.

Lemma 3.1. For an independence space M ¼ ðE; IÞ, the poset

ðI ; # Þ, i.e., PðMÞ, has the following properties.

(m1) ; is the least element in ðI ; # Þ.
(m2) For any I 2 I , the interval [;, I] in ðI ; # Þ is isomorphic

to the poset (2I,˝). Furthermore, every I in ðI ; # Þ and
I 2 I n f;g is a join of atoms, that is,

I ¼
S

a2AI
a ¼ [AI , and further I ¼ AI , where AI is the

family of atoms in ðI ; # Þ contained in I.
(m3) For any X ; Y 2 ðI ; # Þ, if h(X), h(Y)<1 and

h(X) = h(Y) + 1, then there is a 2 XnY such that
Y [ a covers Y in ðI ; # Þ, where h is the height function
of ðI ; # Þ.

(m4) Let X #A. If there is Y �� X satisfying Y R ðI ; # Þ, then
X R ðI ; # Þ.

Proof. (m1) is straightforward from ; 2 I . (m2) is easily fol-

lowed from (i2). (i4) implies (m4).

To prove (m3), we first prove that if ŒZŒ <1 for any

Z 2 I , then the heigh function h(Z) of Z is ŒZŒ.

If ŒZŒ <1, then the maximum in {h0(x)Œx 2 (2Z,˝)} is ŒZŒ
according to the property of Boolean lattice of (2Z,˝), where h0

is the heigh function of (2Z,˝). Hence, h(Z) = ŒZŒ holds.
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Recalling back (i3), h(X), h(Y) <1 and the above result,

we assure that (m3) holds.

Equivalently to (m3), we can say that for any

X;Y 2 ðI ; # Þ, if h(X),h(Y) <1 and h(X) = h(Y) + 1, then
there is a 2 AX n AY such that Y [ a covers Y in ðI ; # Þ.

For an independence space M ¼ ðE; IÞ, Lemma 3.1 verifies
that PðMÞ satisfies (m1)–(m4). However, the following exam-
ple will demonstrate that PðMÞ may not be a lattice.

Example 1. Let E = {1, . . . , n, . . .}, n 6<1, and
I ¼ f;; f1g; . . . ; fng; . . .g. Then, it is easy to testify ðE; IÞ to
be an independence space. But, obviously, ðI ; # Þ is not a
lattice.

Conversely, for a poset P, we seek sufficient conditions to

assure the existence of an independence space. In light of (m1),
we will consider only posets with the least element.

Lemma 3.2. Let P be a poset with the least element 0, A be the
collection of atoms inP, and Ax be the atoms contained in x 2 P.

If P satisfies the following (q1)–(q4), then there exists an inde-
pendence space M(P) such that P ffi ðI ; # Þ and M(P) has no
loops, where I is the set of independent sets of M(P).

(q1) Every element in Pn{0} is a join of atoms, i.e., x ¼ _Ax is
true for x 2 Pn{0}.

(q2) If x 2 P, then ½0; x� ffi ð2Ax ; # Þ.
(q3) For any x, y 2 P, if h(x), h(y) <1 and

h(x) = h(y) + 1, then there exists ax 2 Ax n Ay satisfy-

ing y p y � ax in P, where h is the height function of P.

(q4) For S #A, if there is X �� S satisfying �X R P, then

�S R P.

Proof. We will carry out the proof step by step.

Step 1. We prove that if x, y 2 P satisfy x „ y, then
Ax–Ay .Otherwise, by (q1) and Ax ¼ Ay , it
follows that _Ax ¼ _Ay , and so, x = y, a

contradiction.
Step 2. Let x, y 2 P. We prove that x 6 y () Ax #Ay .
()) Let a 2 Ax. Then, in virtue of the definition of Ax and
x 6 y, we may state that a 6 x 6 y holds. Therefore,
a 2 Ay holds. Thus, Ax #Ay .

(�) x,y 2 P and (q1) together causes x ¼ _Ax and y ¼ _Ay

respectively. Ax #Ay brings about ð2Ax ; # Þ to be a sub-
poset of ð2Ay ; # Þ. Hence, [0,x] is a subposet of [0,y] in
light of (q2). Therefore, x 6 y is correct.
Step 3. Let x 2 P. By the induction on h(x) and (q2), it is
easy to obtain that if h(x) <1, then hðxÞ ¼ jAxj.

Step 4. Let X #A satisfy �X 2 P. This step proves that if
x = � X, then X ¼ Ax.Taken X #A; x ¼ _X 2 P
and (q1) together guarantees X #Ax.Assume
X � Ax. Considered (q2) with X 2 2Ax , we may

indicate that there is a 2 [0,x] such that a corre-
sponds to X for ½0; x� ffi ð2Ax ; # Þ and a < x. For
any y 2 X, by (q2) and X #Ax, we may say that y

is an atom in P satisfying y 6 a. Furthermore,
�X 6 a< x follows a contradiction to �X= x.
Step 5. In virtue of Step 4, we may say that every Ax is

uniquely determined by x 2 P.
Step 6. Let I ¼ fAxjx 2 Pg. We prove that ðA; IÞ is an

independence space with I as its family of indepen-

dent sets, and additionally, ðA; IÞ has no loops.We
will denote ðA; IÞ by M(P).This step will be fin-
ished by the following Steps 6.1–6.5.
Step 6.1 Since 0 is the least element in P, it follows that 0
is not a join of atoms. Thus, it gets A0 ¼ ;.
Therefore, ; 2 I holds.

Step 6.2 Let Ay 2 I and X #Ay . We prove X 2 I .Ay 2 I
and Step 5 will cause that there is a unique
y 2 P satisfying y ¼ _Ay . (q2) guarantees

½0; y� ffi ð2Ay ; # Þ. X #Ay means X 2 ð2Ay ; # Þ.
Hence, considered the Boolean lattice
property for ð2Ay ; # Þ, (q1), Steps 4 and 5, we
gain X 2 I .

Step 6.3 To prove (i3) is true for I .Let A;B 2 I and

ŒAŒ,ŒBŒ <1 with ŒAŒ = ŒBŒ + 1. In view of

the definition of I , Steps 4 and 5, there exists

uniquely x, y 2 P satisfying A ¼ Ax and B ¼ Ay

respectively. We easily know that for any

t 2 P, if jAtj <1, then the height of At in

ð2At ; # Þ is jAtj. Considered (q2) and the finite-

ness of jAxj and jAy j, it is easy to get (i3) to be

correct for I .
Step 6.4 Let S #A. We will prove: if there is X �� S sat-

isfying X R I , then S R I .Otherwise, in view of
S 2 I and (q2), there is s 2 P satisfying s= �S
and S ¼ As. However, X R I , Step 4 and (q4)
together implies �X R P, and further, �S R P.

This is a contradiction.
Step 6.5 For any x 2 A, it has x to be an atom in P. That

is to say, Ax ¼ x. Thus, x 2 I holds. Therefore,

ðA; IÞ has no loops.
Step 7. To prove P ffi ðA; IÞ. h

Let f : P! ðI ; # Þ be defined as x#Ax for any x 2 P. It is

easy to know that f is a bijection according to Step 1, Step 4,
Step 5 and the definition of I in Step 6. By Step 2, f is an or-
der-preserving two-sided inverse. Therefore, P ffi ðI ; # Þ is
true according to (1) in Definition 2.1.

Now unfortunately, the structure of an independence space
M is not completely specified by the poset PðMÞ of its indepen-
dent sets.

Example 2. Let a R E1 and M1 ¼ ðE1; IÞ be an independence

space satisfying E1 ¼ fxjfxg 2 Ig. Evidently,

M2 ¼ ðE1 [ a; IÞ is an independence space and {a} is a loop

of M2 though PðM1Þ ¼ PðM2Þ.

This indeterminacy of M from PðMÞ is due to the existence
of loops. The importance of independence spaces without

loops lies in the following theorem.

Theorem 3.1. Suppose that M is an independence space
without loops. Then, M is uniquely determined by its poset
PðMÞ if and only if PðMÞ has the least element and satisfies

(q1)–(q4).
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Proof. Let M ¼ ðE; IðMÞÞ be an independence space without

loops. We see that the set of atoms in PðMÞ is E. Recalling
Lemma 3.1, it follows that PðMÞ has the least element and sat-
isfies (q1)–(q4). Further, Lemma 3.2 causes MðPðMÞÞ satisfy-
ing PðMÞ ffi ðIðMðPðMÞÞÞ; # Þ, i.e., ðIðMÞ; # Þ ¼ PðMÞ ffi
ðIðMðPðMÞÞÞ; # Þ, and meanwhile, MðPðMÞÞ is defined on
the set of atoms of PðMÞ, that is, on the set {{x}Œx 2 E}.
Hence, MðPðMÞÞÞ ’M holds. h

Corollary 3.1.

(1) A poset P is isomorphic to the poset PðMÞ of an indepen-

dence space M without loops if and only if P has the least
element and satisfies (q1)–(q4).

(2) Let M be an independence space without loops defined on
E. Then, PðMÞ is a Boolean lattice if and only if

jMaxPðMÞj ¼ 1.
(3) Let P be a poset with the least element and P satisfy

(q1)–(q4). Then, P is a Boolean lattice if and only if P

is bounded, i.e., P does also have the maximum element.

Proof. The proof of (1) is straightforward from Lemma 3.2

and Theorem 3.1. Both (2) and (3) are routine verification from
Theorem 3.1.

Thus, Theorem 3.1 indicates clearly that the study of
independence spaces without loops is just the study of posets in
which every element has the least element and satisfies (q1)–
(q4). Many of the interesting properties of independence

spaces are preserved if we just pay attention to independence
spaces without loops.

It is also useful to reformulate some of the results on
independence spaces in poset frameworks. For an indepen-
dence space M ¼ ðE; IÞ, Oxley proves in [1] that MŒT, i.e.

ðT; IjTÞ, is an independence space on T ˝ E by independent-
set approach. In [8], Mao gets the same with closure-operator
approach. Here, under the umbrella of poset frameworks, we

will obtain the same result. h

Theorem 3.2. Let M ¼ ðE; IÞ be an independence space and
T ˝ E. Let IjT be fXjX#T;X 2 Ig. Then, MjT ¼ ðT; IjTÞ is
an independence space.

Proof. First, we notice that

(a1) M ¼ ðE; IÞ is an independence space with S to be the

collection of loops if and only if ðE n S; IÞ is an indepen-
dence spaces without loops.

(a2) If M has S to be the collection of loops, then by the def-
inition ofMŒT, M jT ¼ ðT ; IjT Þ will have S \ T to be the

collection of loops.
(a3) Combining (a1) with (a2), we may state that

M jT ¼ ðT ; IjT Þ is an independence space on T with

S \ T to be the collection of loops if and only if
M jðT n ðS \ T ÞÞ ¼ ðT n ðS \ T Þ; IjT Þ is an independence
spaces without loops. h

Thus, we pay our attention only to the independence spaces

without loops.
Let M ¼ ðE; IðMÞÞ be an independence spaces without

loops. By Theorem 3.1, it follows that PðMÞ is a poset with
the least element and satisfies (q1)–(q4), and in addition, the
set A of atoms in PðMÞ is E. IðMÞjT ¼ fXjX#T;X 2 IðMÞg
implies that ðIðMÞjT; # Þ is a subposet of PðMÞ. In the follow-

ing, we denote ðIðMÞjT; # Þ by PT. Moreover, the least element
0 exists in PT since ; ˝ T.

In PðMÞ, let Ax be the set of atoms contained in x 2 PðMÞ.
In PT, let AT be the collection of atoms and AT

y be the collec-
tion of atoms contained in y 2 PT. Because E ¼ A implies
T ¼ AT, it follows Ay ¼ AT

y for any y 2 PT. x 2 IðMÞjT indi-

cates x 2 IðMÞ, and so x ¼ _Ax holds in PðMÞ. Hence,
x ¼ _AT

y is correct. That is, (q1) holds for PT.
Let a 2 PT. In PT, let [0,x]T be the interval for x 2 PT.

Then, the following expression is true: ½0; a� ¼ fx 2
PðMÞj06 x6 ag ¼ fxjx 2 IðMÞ;;#x#ag ¼ fxjx 2 IðMÞ;
;#x#a#Tg ¼ ½0;a�T. On the other hand, [0,a] is a Bool-
ean lattice by (q2), and ½0;a� ffi ð2Aa ; # Þ holds. Hence
½0;a�T ffi ð2A

T
a ; # Þ holds because of Aa ¼AT

a and
[0,a] = [0,a]T.

Let the height function of PT be hT. For any x 2 PT, there is

x 2 PðMÞ. If we consider with the definition of height function
in a poset, then it is easy to obtain hT(z) = h(z) for any z 2 PT

and h(z) <1.

Let x, y 2 PT such that hT(x), hT(y) <1 and
hT(x) = hT(y) + 1. Evidently, hT(x) = h(x) and hT(y) = h(y)
hold. In PðMÞ, using (q3) and considering with AT

x ¼ Ax

and AT
y ¼ Ay, it follows that (q3) is correct in PT.

The truth of (q4) in PT is followed because (q1) holds in PT

and (q4) is correct in PðMÞ.
In one word, PT is a poset satisfying (q1)–(q4) and has the

least element 0. Therefore, by Theorem 3.1, there is an inde-
pendence space M(PT) on T without loops such that under iso-
morphism, PT is the family of independent sets of M(PT). This

means that up to isomorphism, MðPTÞ ¼ ðT;PTÞ ¼
ðT; fXjX 2 IðMÞ;X#TgÞ ¼MjT is correct. That is to say,
MŒT is an independence spaces without loops.

Theorem 3.1 makes clearly that we also can reformulate
some of results on posets in independence space frameworks.
We will do if we expect in the future.

4. Conclusion

It is well known that a lattice is a poset but not vice versa.

Example 1 demonstrates that ðI ; # Þ may not be a lattice for
some independence space M ¼ ðE; IÞ. All of these illustrate
that the idea provided in this paper is a new approach for the

study on independence spaces.We call this idea poset approach.
Theorem 3.1 builds up a relationship between posets and

independence spaces. Applying this relationship, Theorem 3.2

states clearly that poset approach is a way to study on indepen-
dence spaces. We will approach properties for independence
spaces from different angles utilizing Theorem 3.1 in our future

work. We hope the relationship provided in Theorem 3.1 to be
useful for the other classes of structures of infinite matroids.
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