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. Introduction 

The Bilal distribution, Bilal ( θ ), is introduced by Abd-Elrahman

2] as a member of some families of distributions. He shows that,

his distribution is a member of the class of new better than aver-

ge renewal failure rates, and its density function is always uni-

odal and has less of skewness and kurtosis than the density

f the exponential distribution by about 25% and 28%, respec-

ively. Furthermore, however, the distribution function, q th quan-

ile, failure rate function are in compact forms and the different

oments are obtained in explicit forms in terms of the exponen-

ial function. The cumulative distribution (cdf), and the probability

ensity (pdf) functions of Bilal ( θ ) distribution are respectively as

ollows 

 X (x ; θ ) = 1 − e −
2 x 
θ

(
3 − 2 e −

x 
θ

)
, x ≥ 0 , (θ > 0) , (1) 

f X (x ; θ ) = 

6 

θ
e −

2 x 
θ

(
1 − e −

x 
θ

)
. (2) 

he q th quantile, x q , is an important quantity, especially for gen-

rating random varieties using the inverse transformation method.
∗ Corresponding author. 
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his quantity is obtained from (1) as [2] 

 q =−θ ln [ U(a q ) ] , (3) 

here a q = 

1 
3 arctan ( 

2 
√ 

q (1 −q ) 
2 q −1 ) , and 

(a q ) = 

{ 

0 . 5 + sin (a q + 

π
6 
) if 0 < q < 0 . 5 , 

0 . 5 if q = 0 . 5 , 

0 . 5 − cos (a q + 

π
3 
) if 0 . 5 < q < 1 . 

Although the Bilal model has only one parameter, this distribu-

ion is much better than some other recent distributions for fitting

wo different real data sets, namely, (i) Hinkley’s [3] data; and (ii)

he data for waiting times (in minutes) before service of 100 bank

ustomers that is examined and analyzed, respectively, by Ghitany

t al. [4] and Zakerzadeh and Mahmoudi [5] in fitting the Lindely

nd the compounding Lindely-Geometric distributions, see [2] for

eference. 

In this paper, based on Type-2 censored sample, both maxi-

um likelihood (MLE) and Bayesian estimates are considered. For

LE, ˆ θML , we established existence and uniqueness theorem. The

isher information about the unknown parameter as well as the

orresponding asymptotic confidence interval (ACI) are obtained

ith the use of asymptotic normality of the MLE and the miss-

ng information principle. An EM algorithm for estimating θ , say
ˆ , is also presented. For Bayesian approach, we set Bayesian es-
EM 

. This is an open access article under the CC BY-NC-ND license. 
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X  
timates based on squared error, LINEX, Entropy and Precautionary

loss functions. By using the method of Tierney and Kadane [1] , ap-

proximate Bayeian estimators for the parameter θ are developed.

On the other hand, by using Gibb’s sampling approach, Bayes es-

timators and the highest posterior density (HPD) credible intervals

for the parameter θ are derived. Simulation studies are conducted

for comparing the resulting estimators, for various sample and cen-

soring sizes. Finally, we draw some concluding remarks. 

2. Maximum likelihood estimation 

Suppose n items, which follow Bilal ( θ ) distribution, are put on

a life-testing experiment and we observe only the first r failure

times, say x (1) < x (2) < ��� < x ( r ) . It follows from (1) and (2) that,

the likelihood function of θ can be written as 

� ( Data | θ ) ∝ θ−r e −
2 
θ

( 

(n − r) x (r) + 

r ∑ 

i =1 

x (i ) 

) 

×
(

3 − 2 e −
x (r) 
θ

)n −r r ∏ 

i =1 

(
1 − e −

x (i ) 
θ

)
. (4)

The corresponding likelihood equation is then given by 

∂ ln (� ) 

∂η
= 

r 

η
− 2 (n − r) x (r) 

{
1 − e −η x (r) 

3 − 2 e −η x (r) 

}
−

r ∑ 

i =1 

x (i ) 

{ 
3 −
(
1 − e −η x (i ) 

)−1 
} 

= 0 , η = 

1 

θ
. (5)

Theorem 2.1. The MLE, ˆ θML , for θ based on a Type-2 censored sam-

ple exists and it is unique. 

Proof. See Appendix . 

The solution of (5) , say η� , can be numerically obtained, and

by using the invariance property of the MLE, ˆ θML is then equal to
1 
η� . �

2.1. Fisher information about the parameter θ

The well known missing information principle will be used for

computing the Fisher information about the unknown parameter θ
under Type-2 censoring data from Bilal ( θ ) distribution. This tech-

nique have been used by, e. g. , Ng et al. [6] and Abd-Elrahman [7] .

In order to do this, first of all: 

1. Let X = (x (1) , x (2) , . . . , x (r) ) 
′ denote the ordered observed

censored data. 

2. Let Y = (X (r+1) , X (r+2) , . . . , X (n ) ) 
′ denote the unobserved or-

dered data. 

The vector Y can be thought of as the missing data. Combine X

and Y to form W , which is the complete data set. 

As an especial case of the Theorem of Ng et al. [6] , one can see

that, for s =r+1 , r+2 , . . . , n, the conditional distribution of each

X ( s ) ∈ Y given X ( s ) > x ( r ) follows the truncated underlying distri-

bution with left truncation at x ( r ) . Therefore, using (1) and (2) , we

have 

f X (s ) | X (r) 
(x | X (s ) > x (r) ; θ ) = 

6 e −
2 ( x −x (r) ) 

θ

(
1 − e −

x 
θ

)
θ
(

3 − 2 e −
x (r) 
θ

) , 

x > x (r) , (θ > 0) . (6)

The Fisher information of the ordered observed censored and

complete data are denoted by I X ( θ ) and I W 

( θ ), respectively. Denote
 Y | X ( θ ) for the ordered unobserved (missing) information related to

he vector Y . Hence, based on the conditional distribution in (6) ,

he expected Fisher information related to the vector Y is given

y 

 Y | X (θ ) = −(n −r) IE 

[
∂ 2 ln [ f X (s ) | X (x | X (s ) >x (r) ; θ )] 

∂θ2 

]
= (n −r) T 1 

(
x (r) , θ

)
, (7)

here 

 1 

(
x (r) , θ

)
= 

1 

θ2 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 −
( 

6 e −
x (r) 
θ

3 −2 e −
x (r) 
θ

) 

⎡ ⎢ ⎢ ⎣ 

( x (r) 

θ

)2 
3 −2 e −

x (r) 
θ

−
∞ ∑ 

j=0 

(
1 + 

(
1 + 

(3+ j) x (r) 

θ

)2 
)

e −
j x (r) 

θ

( 3+ j ) 
3 

⎤ ⎥ ⎥ ⎦ 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 

, (8)

hich is the Fisher information related to each x ( s ) , s = r + 1 , r +
 , . . . , n, where x ( s ) is distributed as in (6) . Therefore, it follows

rom (8) that, the Fisher information about the parameter θ related

o the complete data set W is given by 

 W 

(θ ) = n lim 

t→ 0 + 
T 1 ( t, θ ) = 

n 

(
1 + 12 

∑ ∞ 

j=0 ( 3 + j ) 
−3 
)

θ2 
, 

= 

( 24 ζ (3) − 25 ) n 

2 θ2 
= 

1 . 92468284 n 

θ2 
, (9)

ζ (3) = 

∞ ∑ 

i =1 

i −3 = 1 . 202056903 . 

ote that, Eq. (9) goes in line with the result due to Abd-Elrahman

2] . Therefore, the Fisher information gains from a given Type-2

ensored sample, x (1) , x (2) , ���x ( r ) , from Bilal ( θ ) distribution is then

iven by 

 X (θ ) = 

1 . 92468284 n 

θ2 
− (n − r) T 1 

(
x (r) , θ

)
, (10)

here T 1 ( x ( r ) , θ ) is given by (8) . Once I X ( θ ) is calculated at θ = 

ˆ θML ,

he asymptotic variance of the MLE of the parameter θ is then

iven by 

̂ 

 ar ( ̂  θML ) = 

{ 
I X ( ̂  θML ) 

} −1 

. 

onsequently, the asymptotic 100 (1− α) % confidence interval, ACI,

f ˆ θML is given by 
 

ˆ θML − Z α
2 

SD ( ̂  θML ) , ˆ θML + Z α
2 

SD ( ̂  θML ) 
] 
, (11)

here SD ( ̂  θML ) = 

√ ̂ V ar ( ̂  θML ) and Z α
2 

is the percentile (1− α
2 ) of

he standard normal distribution. 

.2. EM algorithm 

The EM algorithm was proposed by Dempster et al. [8] as a

ery powerful tool in handling the incomplete data problem. It is

n iterative method by repeating to fill in the missing data with

xpected values and to update the parameter estimates. An EM

lgorithm for obtaining the MLE, ˆ θEM 

, when the data are Type-

 censored from Bilal ( θ ) distribution, can be easily constricted as

ollows: 

In the E-Step, the expectation of X (s ) [3 − ( 1 − e −
X (s ) 
θ ) −1 ] given

 ( s ) > x ( r ) , s = r + 1 , r + 2 , . . . , n, is needed. By using (6) , it is easy
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o show that 

E 

[
X (s ) 

(
3 −
(

1 − e −
X (s ) 
θ

)−1 
)∣∣∣∣X (s ) > x (r) 

]
= θ + 3 x (r) 

(
1 − 1 

3 − 2 e −
x (r) 
θ

)
. 

n the M-Step, on the (h + 1) th iteration of the EM algorithm, the

alue of ˆ θ(h +1) may then be calculated as follows 

ˆ (h +1) = 

1 

n 

{
( n − r ) 

[
ˆ θ(h ) + 3 x (r) 

(
1 − 1 

3 − 2 e −x (r) / ̂
 θ(h ) 

)]
+ 

r ∑ 

j=1 

x ( j) 

(
3 − 1 

1 − e −x ( j) / ̂
 θ (h ) 

)} 

. (12) 

Dempster et al. [8] have shown that, the EM algorithm ensures

he convergence of this procedure to a local maximum, irrespective

f the starting point. However, a reasonable starting value for ˆ θ(0) 

s the estimate of the parameter θ based on the observed vector

f observations X = (x (1) , x (2) , . . . , x (r) ) 
′ as a “pseudo-complete”

ample of size r . For a given data X , ˆ θ
EM 

can be iteratively calcu-

ated using (12) . These iterations will be repeated 10 0 0 times. As

 stoping rule, the iterations will be terminated after some value

f h ≤ 10 0 0 with a level of accuracy less than 1 . 2 × 10 −7 of the

bsolute relative error, which is defined as 

= 

∣∣∣∣ ˆ θ (h +1) − ˆ θ (h ) 

ˆ θ (h ) 

∣∣∣∣. 
. Bayes estimations 

It is assumed that the prior for η, η = 

1 
θ
, has a gamma prior

istribution with hyper parameters c and d ; and it has the pdf 

1 (η) = 

d c 

�(c) 
ηc−1 e −d η, η > 0 , (c, d > 0) . (13) 

his prior is frequently used when the range of a population pa-

ameter under estimation is from zero to infinity. The hyper pa-

ameters can be chosen to suit the prior belief of the experimenter

n terms of location and variability of the prior distribution. It may

e easy to show that, the non-informative prior, Jiffery’s prior, of η
s an especial case of (13) , which can be obtained by substituting

 = d = 0 in (13) . 

Combining (4) and (13) , the posterior density function of η, 

(η| Data ) = 

� ( Data | η) π1 (η) ∫ ∞ 

0 � ( Data | η) π1 (η) d η
, (14) 

akes the form 

(η| Data ) = C 0 η
c+ r−1 exp [ −a η + T (η) ] , (15)

here 

 

−1 
0 = 

∫ ∞ 

0 

ηc+ r−1 exp [ −a η + T (η) ] d η, 

 = d + 2 [(n − r) x r + 

∑ r 
j=1 x j ] and T (η) = (n − r) ln 

(
3 − 2 e −x (r) η

)
 

∑ r 
i =1 ln 

(
1 − e −x (i ) η

)
. 

In the Bayesian frame work, a loss function is needed. However,

t is well known that, the squared error loss function (SLF) is well

ustified when the losses are symmetric in nature. But losses may

ot be symmetric. Therefore, in this article we consider, in addition

o SLF, three different asymmetric loss functions which are found

n literatures, namely, LINEX (LLF), Entropy (ELF), and Precaution-

ry (PLF) loss functions, (see [9–11] , ). 
Under any of these loss functions, the Bayes estimators of a

unction g ( η) requires the evaluation of a ratio of two integrals of

he form 

 G = 

∫ ∞ 

0 G (η) Q(η) d η∫ ∞ 

0 Q(η) d η
, (16) 

here Q ( η) is the posterior density of η except for the normalizing

onstant and G ( η) is a continuous function of η, which is related

o the function g ( η). The integrals involved in (16) are usually not

btainable in closed form. However, an approximate procedure can

e used for this propose. We will adopt the approximation form

eveloped by Tierney and Kadane [1] . 

.1. Tierney and Kadanes’ approximation 

Tierney and Kadane [1] gave an approximated expression, of or-

er n −2 , where n is the sample size, for the evaluation of the ratio

f integrals of the form (16) by writing the two expression 

 (η) = 

1 

n 

ln ( Q(η) ) , L � (η) = L (η) + 

1 

n 

ln ( G (η) ) . 

o that (16) takes the form 

 G = 

∫ ∞ 

0 exp [ n ( L � (η) ) ] d η∫ ∞ 

0 exp [ n ( L (η) ) ] d η
. (17) 

ollowing Tierney and Kadane [1] , Eq. (17) can be written in the

pproximate form 

̂ 
 G = 

σ � 

σ
exp 

[
n 

(
L � ( ̂  η� ) − L ( ̂  η) 

)]
, (18) 

here ˆ η and ˆ η� are the modes of L ( η) and L � ( η), respectively, 

= −1 /L ′′ ( ̂  η) , σ � = −1 / L � ′′ ( ̂  η� ) and 

′ ≡ ∂ 

∂ η
. 

his form requires that each of the two integrands in (17) is uni-

odal function of η. 

In our case, it follows from (15) that, the function L ( η) can be

ritten as 

 (η) = 

1 

n 

[ (c + r − 1) ln (η) − a η + T (η) ] , (19) 

hich satisfies 

 

′′ (η) = 

∂ 2 L (η) 

∂ η2 

= −1 

n 

[ 
r + c − 1 

η2 
+ 

6 (n − r) x 2 r e 
−x r η

( 3 −2 e −x r η) 
2 

+ 

r ∑ 

j=1 

x 2 
j 
e −x r η

( 1 −e −x r η) 
2 

] 
<0 . 

(20) 

sing a similar technique which is used for proving Theorem 2.1 ,

t is easy to show that, the following equation 

 

′ (η) = 

1 

n 

[ 
c + r − 1 

η
− a + T ′ (η) 

] 
= 0 , (21)

here 

 

′ (η) = 

2 (n − r) x r e −x r η

3 − 2 e −x r η
+ 

r ∑ 

j=1 

x j e 
−x r η

1 − e −x r η
, 

as a unique root at ˆ η, say, which can be obtained numerically. 

Now, for the Bayes estimators of θ = g(η) = 

1 
η with respect to

LF, LLF, ELF and PLF, respectively, which are depicted in Table 1 ,

e consider 

L � SLF (η) = L (η) − ln (η) /n, L � LLF (η) = L (η) − a 1 / (n η) , a 1 > 0 , 

 

� 
ELF (η) = L (η) + ln (η) /n, L � PLF (η) = L (η) − 2 ln (η) /n. 

t may be easy to show that, each of these functions is a unimodal

unction of η. Their modes, respectively, are at ˆ η� , ˆ η� , ˆ η� and

SLF LLF ELF 
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Table 1 

SLF and some asymmetric loss functions that are found in literature. 

Loss Functional form Bayesian estimator 

function 

SLF L 1 (� ) ∝ � 

2 , � = ˆ η−η IE η|Data [ g ( η)] 

LLF L 2 (� ) ∝ 

(
e a 1 � −a 1 �−1 

)
, (a 1  = 0) − 1 

a 1 
ln 

(
IE 

η| Data 

[
e −a 1 ̃g(η) 

])
ELF L 3 (δ) ∝ [ δ − ln (δ) − 1 ] , δ = 

ˆ η
η

{ 
I E 

η| Data 

[
1 

g(η) 

]} −1 

PLF L 4 
(

ˆ η, η
)

∝ 

( ̂ η−η) 2 

ˆ η

{ 
I E 

η| Data 

[
g 2 (η) 

]} 1 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1  [
 

c

4

 

i  

N  

a  

l  

w

S  

S  

 

S  

 

S  

S  

 

 

S  

 

S  

 

 

S  

 

 

S  

 

 

 

 

 

 

 

 

 

 

f  

t  

S  

w  

i

ˆ η� 
PLF 

, which can be numerically obtained by solving the following

equations, separately, 

0 = L � 
′ 

SLF (η) = L ′ (η) − 1 / ( n η) , 0 = L � 
′ 

LLF (η) = L ′ (η) + a 1 / (n η2 ) , 

a 1 > 0 , 

0 = L � 
′ 

ELF (η) = L ′ (η) + 1 / (n η) , 0 = L � 
′ 

PLF (η) = L ′ (η) − 2 / (n η) , 

where L ′ ( η) is as given by (21) . Therefore, 

L � 
′′ 

SLF (η) = L ′′ (η) + 1 / (n η2 ) , L � 
′′ 

LLF (η) = L ′′ (η) − 2 a 1 / (n η3 ) , 

a 1 > 0 , 

L � 
′′ 

ELF (η) = L ′′ (η) − 1 / (n η2 ) , L � 
′′ 

PLF (η) = L ′′ (η) + 2 / (n η2 ) , 

where L ′ ′ ( η) is as given by (20) . Note that, once ˆ η and ˆ η� 
ξ

are calcu-

lated, σ = −1 /L ′′ ( ̂  η) , σ � 
ξ

= −1 /L � 
′′ 

ξ
( ̂  η� 

ξ
) , L ( ̂  η) and L � 

ξ
( ̂  η� 

ξ
) are readily

obtained, where ξ stands for SLF, LLF, ELF or PLF. 

Remark. During our simulation, given below, we observe that

when a 1 < 0, the unimodality of L � 
LLF 

(η) is not valid for some

cases. This may be expected since, for a 1 < 0, the function

exp (−a 1 /η) is not unimodal or even pounded in the rang (0, ∞ )

of η, i.e., exp (−a 1 /η) does not satisfy one of the regularity condi-

tions of Tierney and Kadanes’ approximation form. 

In view of Table 1 and Eq. (18) , Tierney and Kadanes’ approx-

imate Bayes estimators for the parameter θ , with respect to SLF,

LLF, ELL and PLF, respectively, can be written as 

ˆ θ
S 

= 

σ � 
SLF 

σ
exp { n [ L � SLF ( ̂  η

� 
SLF ) − L ( ̂  η) ] } , 

ˆ θ
L 

= − 1 

a 1 

{ 
ln 

(σ � 
LLF 

σ

)
+ n [ L � LLF ( ̂  η

� 
LLF ) − L ( ̂  η) ] 

} 
, 

ˆ θ
E 

= 

σ

σ � 
ELF 

exp { n [ L ( ̂  η) − L � ELF ( ̂  η
� 
ELF ) ] } , 

ˆ θ
P 

= 

√ 

σ � 
PLF 

σ
exp 

{ 
n 

2 

[ L � PLF ( ̂  η
� 
PLF ) − L ( ̂  η) ] 

} 
. (22)

3.2. Approximate Bayesian estimation using MCMC technique 

Following Pradhan and Kundu [12] , it can be easy to construct

an approximate Bayesian estimator for θ using MCMC technique,

with respect to SLF, LLF, ELF or PLF, and their corresponding cred-

ible intervals. Where, by using the algorithm of Devroye [13] , it

is possible to generate a Gibb’s sample from the posterior density

function of η. This algorithm requires to ensure that (15) has a log-

concave density function property. The function (15) is already the

case, compare (20) . We use this algorithm for generating a sample

η1 , ���, ηM 

, M = 10 0 0 say, from (15) . In view of Table 1 , the ap-

proximate Bayes estimators for g ( η), with respect to SLF, LLF, ELF

and PLF, respectively. can be written as 

˜ g(η) 
S 
= 

1 

M 

M ∑ 

i =1 

g(ηi ) , 
˜ g(η) 

L 
= − 1 

a 1 
ln 

[∑ M 

i =1 e 
−a 1 g(ηi ) 

M 

]
, 

˜ g(η) 
E 

= M 

[ 
M ∑ 

i =1 

1 

g(ηi ) 

] −1 

, ˜ g(η) 
p 
= 

[∑ M 

i =1 ( g(ηi ) ) 
2 

M 

]1 / 2 

. 

(23)
Denoting | x | the largest integer less than or equal to x , the

00 (1 − α)% HPD symmetric credible interval for g ( η) becomes

g (| Mα/ 2 | +1) , g (| M(1 −α) / 2 | ) 
]
. When M = 10 0 0 , 95% HPD symmetric

redible interval for g ( η) becomes [ g (26) , g (975) ]. 

. Numerical computations and comparisons 

In order to compare the performance of the estimators obtained

n the above sections, we design some simulation experiments.

ote that, throughout our simulation, we find that ˆ θ
ML 

is, almost,

s the same as ˆ θ
EM 

. This may be expected since the maximum like-

ihood estimate of θ is unique. Therefore, to avoid repetitions, we

ill denote this unique MLE as ˆ θ
M 

. 

The following steps were applied for the simulation: 

tep (1) Values of n , r and the hyper parameters c and d were se-

lected as c=5 and d =8 . This gives IE (θ ) = 

d 
c−1 = 2 . 

tep (2) A value for the parameter of θ , say θ0 , is generated

from gamma( c , d ) distribution using the IMSL [14] routine

DRNGAM . 

tep (3) Using (3) and the IMSL [14] routine DRNUN together with

some sorting routine, ordered sample from Bilal ( θ0 ) dis-

tribution can be generated. 

tep (4) By using (12) and (22) , ˆ θ
M 

, ˆ θ
S 
, ˆ θ

L 
, ˆ θ

E 
and 

ˆ θ
P 
, can be com-

puted and stored. 

tep (5) A Gibb’s sample of size M =10 , 0 0 0 can be generated from

the posterior density (15) , using Devroye’s algorithm [13] .

Substituting g(η) = 

1 
η = θ in (23) , and using this gener-

ated Gibb’s sample, ˜ θ
S 
, ˜ θ

L 
(with a 1 = 0 . 5 and a 1 = 1 ), ˜ θ

E 

and 

˜ θp can be calculated and stored. 

tep (6) By using (11) , lower and upper bounds of the asymptotic

100 (1− α) % confidence interval, ACI, of ˆ θM 

as well as its

length be calculated and stored. 

tep (7) As described in Section 3.2 , lower and upper bounds of

the 95% HPD HPD symmetric credible interval for the

Bayes estimator of θ as well as its length can be calcu-

lated and stored. 

tep (8) The generated value θ0 , which is obtained from Step (2),

may be used as the true value of the parameter θ . The

biases as well as the squared errors for the estimators can

then be calculated and stored. 

tep (9) Steps (2)–(8) were repeated 10,0 0 0 times. The average bi-

ased (AB) and estimated risk (ER) for MLE are calculated,

respectively, as 

AB ( ̂  θM 

) = 

1 

K 

K ∑ 

k =1 

∣∣∣ ˆ θM,k − θ0 ,k 

∣∣∣, K = 10,0 0 0 , 

ER ( ̂  θM 

) = 

√ 

1 

K 

K ∑ 

k =1 

(
ˆ θM,k − θ0 ,k 

)2 

, 

where ˆ θM,k and θ0, k , respectively, are the MLE and the

true value for the parameter θ in the k th repetition. Sim-

ilarly, the biases and ERs for the other estimators can be

calculated. The averages of the lower and upper bounds

and their corresponding length of the asymptotic confi-

dence interval for the MLE as well as the symmetric cred-

ible interval for the Bayes estimator, which are obtained

from Step (6) and Step (7), respectively, over the 10,0 0 0

runs, can be calculated and stored. 

On the other hand, we consider also the case when no prior in-

ormation about the parameter θ are available. This is done by set-

ing c = d = 0 in (13) , corresponding to the non-informative prior.

imilar steps like the above ones are carried out, but the samples

ere generated using θ0 = 2 . The numerical results are presented

n Tables 2 –5 . 
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Table 2 

Average Biased and ERs of the MLs and Bayes estimates for θ . 

n r ˆ θ
M 

ˆ θ
S 

ˆ θ
L 
, a 1 = 0 . 5 ˆ θ

L 
, a 1 = 1 ˆ θ

E 
ˆ θ

P 

AB (ER) AB (ER) AB (ER) AB (ER) AB (ER) AB (ER) 

15 9 0 .3530 (0.5114) I 0 .3227 (0.4726) 0 .3241 (0.4806) 0 .3276 (0.4994) 0 .326 8 (0.4 891) 0 .3255 (0.4701) 

II 0 .3259 (0.4702) 0 .3244 (0.4803) 0 .3277 (0.4983) 0 .3236 (0.4792) 0 .3321 (0.4725) 

12 0 .3167 (0.4590) I 0 .2952 (0.4301) 0 .2963 (0.4372) 0 .2996 (0.4536) 0 .2988 (0.4435) 0 .2970 (0.4280) 

II 0 .2970 (0.4279) 0 .2962 (0.4368) 0 .2992 (0.4526) 0 .2958 (0.4351) 0 .3014 (0.4295) 

15 0 .2953 (0.4263) I 0 .2774 (0.4027) 0 .2783 (0.4089) 0 .2815 (0.4238) 0 .2805 (0.4142) 0 .2788 (0.4008) 

II 0 .2791 (0.4005) 0 .2782 (0.4081) 0 .2811 (0.4224) 0 .2779 (0.4064) 0 .2828 (0.4019) 

30 18 0 .2481 (0.3645) I 0 .2350 (0.3470) 0 .2351 (0.3498) 0 .2367 (0.3593) 0 .2361 (0.3532) 0 .2365 (0.3465) 

II 0 .2367 (0.3471) 0 .2352 (0.3501) 0 .2367 (0.3590) 0 .2351 (0.3498) 0 .2397 (0.3486) 

24 0 .2239 (0.3234) I 0 .2147 (0.3128) 0 .2151 (0.3162) 0 .2166 (0.3250) 0 .2157 (0.3184) 0 .2156 (0.3121) 

II 0 .2157 (0.3120) 0 .2151 (0.3160) 0 .2166 (0.3245) 0 .2147 (0.3148) 0 .2178 (0.3127) 

30 0 .2091 (0.3014) I 0 .2017 (0.2911) 0 .2020 (0.2933) 0 .2031 (0.3005) 0 .2025 (0.2955) 0 .2025 (0.2906) 

II 0 .2027 (0.2906) 0 .2021 (0.2932) 0 .2031 (0.30 0 0) 0 .2018 (0.2926) 0 .2044 (0.2913) 

60 36 0 .1731 (0.2504) I 0 .1695 (0.2470) 0 .1701 (0.2498) 0 .1714 (0.2558) 0 .1702 (0.2502) 0 .1699 (0.2464) 

II 0 .1700 (0.2467) 0 .1702 (0.2501) 0 .1715 (0.2561) 0 .1697 (0.2485) 0 .1709 (0.2469) 

48 0 .1572 (0.2279) I 0 .1541 (0.2251) 0 .1543 (0.2272) 0 .1551 (0.2319) 0 .1543 (0.2274) 0 .1545 (0.2247) 

II 0 .1545 (0.2249) 0 .1544 (0.2274) 0 .1551 (0.2319) 0 .1541 (0.2262) 0 .1554 (0.2250) 

60 0 .1459 (0.2120) I 0 .1436 (0.2102) 0 .1439 (0.2122) 0 .1446 (0.2164) 0 .1440 (0.2122) 0 .1439 (0.2098) 

II 0 .1440 (0.2098) 0 .1439 (0.2121) 0 .1445 (0.2161) 0 .1437 (0.2109) 0 .1446 (0.2098) 

( c = 5 , d = 8 , 10,0 0 0 repetitions, simulated mean for θ = 1 . 9983 ), I results related to Tierney and Kadanes’ Bayes approximation form, 

II results related to MCMC technique. 

Table 3 

Same as in Table 2 , but based on Jiffery’s prior and θ0 = 2 . 

n r ˆ θ
M 

ˆ θ
S 

ˆ θ
L 
, a 1 = 0 . 5 ˆ θ

L 
, a 1 = 1 ˆ θ

E 
ˆ θ

P 

AB (ER) AB (ER) AB (ER) AB (ER) AB (ER) AB (ER) 

15 9 0 .3531 (0.4 4 47) I 0 .3621 (0.4599) 0 .3514 (0.4452) 0 .3356 (0.4217) 0 .3493 (0.4369) 0 .3761 (0.4814) 

II 0 .3759 (0.4812) 0 .3519 (0.4462) 0 .3366 (0.4232) 0 .3535 (0.4455) 0 .3962 (0.5095) 

12 0 .3176 (0.4010) I 0 .3232 (0.4107) 0 .3158 (0.4007) 0 .3044 (0.3833) 0 .3148 (0.3943) 0 .3329 (0.4259) 

II 0 .3334 (0.4267) 0 .3165 (0.4017) 0 .3052 (0.3845) 0 .3176 (0.4008) 0 .3475 (0.4468) 

15 0 .2957 (0.3731) I 0 .2995 (0.3801) 0 .2938 (0.3723) 0 .2849 (0.3585) 0 .2934 (0.3673) 0 .3072 (0.3919) 

II 0 .3081 (0.3932) 0 .2946 (0.3735) 0 .2856 (0.3596) 0 .2956 (0.3727) 0 .3191 (0.4089) 

30 18 0 .2480 (0.3119) I 0 .2515 (0.3176) 0 .2480 (0.3130) 0 .2419 (0.3040) 0 .2465 (0.3089) 0 .2566 (0.3252) 

II 0 .2567 (0.3252) 0 .2482 (0.3133) 0 .2422 (0.3045) 0 .2483 (0.3123) 0 .2636 (0.3350) 

24 0 .2247 (0.2820) I 0 .2270 (0.2856) 0 .2246 (0.2824) 0 .2201 (0.2759) 0 .2234 (0.2795) 0 .2306 (0.2909) 

II 0 .2309 (0.2912) 0 .2248 (0.2827) 0 .2203 (0.2763) 0 .2247 (0.2820) 0 .2359 (0.2981) 

30 0 .2097 (0.2630) I 0 .2112 (0.2656) 0 .2093 (0.2631) 0 .2058 (0.2579) 0 .2086 (0.2609) 0 .2140 (0.2697) 

II 0 .2143 (0.2701) 0 .2095 (0.2634) 0 .2060 (0.2582) 0 .2096 (0.2628) 0 .2181 (0.2756) 

60 36 0 .1748 (0.2211) I 0 .1761 (0.2231) 0 .1750 (0.2216) 0 .1727 (0.2184) 0 .1743 (0.2200) 0 .1779 (0.2257) 

II 0 .1781 (0.2258) 0 .1752 (0.2218) 0 .1730 (0.2186) 0 .1751 (0.2214) 0 .1805 (0.2292) 

48 0 .1578 (0.1990) I 0 .1586 (0.2003) 0 .1578 (0.1992) 0 .1561 (0.1969) 0 .1573 (0.1981) 0 .1599 (0.2021) 

II 0 .1600 (0.2023) 0 .1579 (0.1994) 0 .1563 (0.1971) 0 .1578 (0.1991) 0 .1617 (0.2047) 

60 0 .1464 (0.1850) I 0 .1471 (0.1859) 0 .1464 (0.1851) 0 .1451 (0.1832) 0 .1460 (0.1842) 0 .1481 (0.1874) 

II 0 .1484 (0.1877) 0 .1467 (0.1854) 0 .1453 (0.1835) 0 .1466 (0.1851) 0 .1498 (0.1897) 

(I) results related to Tierney and Kadanes’ Bayes approximation form, (II) results related to MCMC technique. 
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Table 4 

Avageres of 95% credible intervals for θ and their corresponding average length. 

ACI HBD 

n r Lower Upper (Average Lower Upper (Average 

length) length) 

15 9 1 .1240 2 .8685 (1 .7445) 1 .3473 2 .9604 (1 .6131) 

12 1 .2141 2 .7866 (1 .5725) 1 .3927 2 .8616 (1 .4688) 

15 1 .2712 2 .7311 (1 .4599) 1 .4236 2 .7963 (1 .3727) 

30 18 1 .3842 2 .6198 (1 .2357) 1 .4959 2 .6793 (1 .1833) 

24 1 .4454 2 .5571 (1 .1117) 1 .5341 2 .6051 (1 .0710) 

30 1 .4853 2 .5179 (1 .0326) 1 .5607 2 .5588 (0 .9982) 

60 36 1 .5631 2 .4350 (0 .8719) 1 .6182 2 .4695 (0 .8513) 

48 1 .6075 2 .3928 (0 .7854) 1 .6514 2 .4197 (0 .7683) 

60 1 .6351 2 .3646 (0 .7295) 1 .6724 2 .3877 (0 .7153) 

( c = 5 , d = 8 , 10,0 0 0 repetitions, simulated mean for θ = 1 . 9983 ). 

 

 

. Concluding remarks 

(1) All of the obtained results can be adapted to the case of

complete sample by taking r = n . 

(2) It may be clear from Tables 2 and 3 that, for fixed r , as n

is increased the ABs as well as ERs of the MLs and/or Bayes

estimates for θ are decreased. On the other hand, Tables 4

and 5 that, for fixed r , as n is increased the average lengths

of the 95% ACI and/or 95% HPD for θ are decreased. This

may indicate that all of the estimators of the parameter θ
are simultaneously consistent. 

(3) Table 2 may show that the ABs and ERs related to Tierney

and Kadanes’ Bayes approximation form, with respect to any

of the four loss functions, are quite closed to their corre-

sponding ones related to the Bayes estimators obtained by

using the MCMC technique. Moreover, in all cases, the ABs

and ERs related to ML method are bigger than the corre-

sponding ones obtained using any of the Basyian techniques.

Furthermore, Table 2 may also show that, in most cases,

the approximate Bayes estimators by using MCMC technique

with respect to the squared error loss function, SLF, has the
smallest estimated risk. Therefore, the estimator ˜ θ S may be

recommended to be used when prior information about the

parameter θ are available. 
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Table 5 

Same as in Table 4 , but based on Jiffery’s prior and θ0 = 2 . 

ACI HBD 

n r Lower Upper (Average Lower Upper (Average 

length) length) 

15 9 1 .1262 2 .8742 (1 .7480) 1 .3538 3 .2740 (1 .9202) 

12 1 .2166 2 .7925 (1 .5759) 1 .4034 3 .0933 (1 .6899) 

15 1 .2737 2 .7366 (1 .4628) 1 .4356 2 .9831 (1 .5476) 

30 18 1 .3856 2 .6226 (1 .2370) 1 .5087 2 .8005 (1 .2918) 

24 1 .4475 2 .5608 (1 .1133) 1 .5475 2 .6971 (1 .1496) 

30 1 .4870 2 .5206 (1 .0337) 1 .5732 2 .6336 (1 .0604) 

60 36 1 .5653 2 .4384 (0 .8732) 1 .6302 2 .5204 (0 .8902) 

48 1 .6093 2 .3956 (0 .7863) 1 .6622 2 .4586 (0 .7965) 

60 1 .6372 2 .3676 (0 .7304) 1 .6827 2 .4206 (0 .7380) 
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(4) For a fixed loss function, Table 3 may show that, in all

cases, the method of Tierney and Kadane results in approx-

imate Bayes estimator which is much better than the corre-

sponding ones obtained by using the MCMC technique or ML

method, in terms of ABs and ERs point of view. Moreover,

the use of ML method produces estimate risks smaller than

the corresponding ones by using the MCMC technique un-

der any of four loss functions except LLF with a 1 = 1 . More-

over, Table 3 may also show that, in all cases, the approxi-

mate Bayes estimators form from Tierney and Kadane with

respect to the LINEX loss function, LLF, (with a 1 = 1 ) has

the smallest estimated risk. Therefore, the estimator ˆ θ L with

a 1 = 1 may be recommended to be used when no prior in-

formation about the parameter θ are available. 

(5) This article provides classical and Bayesian approaches for

finding an estimated value for the parameter θ of Bilal ( θ )

distribution based on a given Type-2 right censoring sam-

ple. One of these estimators are based on our provided EM

algorithm, which can be readily applied to the progressive

Type-2 censoring scheme. When prior information about the

parameter θ are available, the use of the MCMC technique,

for obtaining Bayes estimator for θ , can be readily utilized

for obtaining prediction intervals for unobserved lifetimes in

the same sample, which follows Bilal ( θ ) model; and in a fu-

ture sample from the same population based on a Type-2

censored sample. Work is in proses with these further re-

searches. 
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Appendix 

Proof of existence and uniqueness of the solution of ( 5 ): 

It follows from (5) that, 

∂ 2 ln (� ) 

∂ η2 
= − r 

η2 
− 6 ( n − r ) x (r) 

2 e −x (r) η

( 3 − 2 e −x (r) η) 
2 

−
r ∑ 

i =1 

x (i ) 
2 e −x (i ) η

( 1 − e −x (i ) η) 
2 

< 0 . 
his may imply that, the MLE, ˆ θML = 

1 
ˆ ηML 

, for η is unique. To in-

ure that ˆ ηML exists, following Balakrishnan and Kateri [15] with

 modification, we rewrite (5) as h 1 (η) = h 2 (η) , where h 1 (η) = 

r 
η

nd 

 2 (η) = 2 (n − r) x (r) 

{
1 − e −η x (r) 

3 − 2 e −η x (r) 

}
+ 

r ∑ 

i =1 

x (i ) 

{ 
3 −
(
1 − e −η x (i ) 

)−1 
} 
. 

ince 
∂ h 2 (η) 

∂η
= 

∑ r 
i =1 

x (i ) 
2 e 

−x (i ) η

(1 −e 
−x (i ) η) 2 

+ 

6 (n −r) x (r) 
2 e 

−x (r) η

(3 −2 e 
−x (r) η) 2 

> 0 , lim η→ 0 + 

 2 (η) = −∞ and lim η→∞ 

h 2 (η) = 

∑ r 
i =1 2 x (i ) + 2 x (r) (n − r) > 0 ,

 2 ( η) is then a pounded increasing function of η. But h 1 ( η) is

 positive strictly decreasing function with right limit + ∞ at 0.

his insure that h 1 (η) = h 2 (η) holds exactly once at some value

= η� . 
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