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Abstract In this paper, we introduce the notion of dual Q-algebras and we show that the

CI-algebras are equivalent to the dual Q-algebras.
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1. Introduction

Several algebras with one binary and one nulary operations
were introduced to set up an algebraic counterpart of implica-

tion reduct of classical or non-classical propositional logics. In
1966, Imai and Iseki [2] introduced two classes of abstract alge-
bras: BCK-algebras and BCI-algebras. It is known that the
class of BCK-algebras is a proper subclass of the class of

BCI-algebras. In [1], Hu and Li introduced a wide class of ab-
stract algebras: BCH-algebra. They shown that the class of
BCI-algebras is a proper subclass of the class of BCH-algebras.

In [5], Neggers and Kim introduced the notion of d-algebras,
which is generalization of BCK-algebras and investigated rela-
tion between d-algebras and BCK-algebras. Neggers et al.

introduced the notion of Q-algebras [6], which is a generaliza-
tion of BCH/BCI/BCK-algebras.
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Recently, Kim and Kim defined a BE-algebra [3]. Meng,

defined notion ofCI-algebra as a generalization of aBE-algebra
[4].

In this note, we state and prove the relationship between Q-

algebras and CI-algebras.
2. Preliminaries
Definition 2.1 [6]. A Q-algebra is a non-empty set X with a
consonant 0 and a binary operation \ satisfying the following
axioms:

(I) x \ x = 0,
(II) x \ 0 = x,

(III) (x \ y) \ z= (x \ z) \ y,

for all x, y, z 2 X.

Example 2.2 [6]. Let X= {0,1,2,3} be a set with the follow-

ing table:
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Then (A,\, 0) is a Q-algebra.

Theorem 2.3 [6]. If (X,\,0) is a Q-algebra, then (x \ (x \ y))
\ y = 0, for all x, y 2 X.

Definition 2.4 [6]. A non-empty subset S of a Q-algebra X is

called a subalgebra of X if x \ y 2 S for any x, y 2 S.

Definition 2.5 [4]. A CI-algebra is an algebra (X;\, 1) of type
(2,0) satisfying the following axioms:

(CI1) x \ x = 1;
(CI2) 1 \ x = x;
(CI3) x \ (y \ z) = y \ (x \ z) for all x, y, z 2 X.

In any CI-algebra X one can define a binary relation ‘‘ 6 ’’

by x 6 y if and only if x \ y = 1. A CI-algebra X has the
following properties:

(2.1) y \ ((y \ x) \ x) = 1,
(2.2) (x \ 1) \ (y \ 1) = (x \ y) \ 1,
(2.3) 1 6 x) x = 1 for all x, y 2 X.

A non-empty subset S of a CI-algebra X is called a subalge-
bra of X if x \ y 2 S whenever x, y 2 S.

3. CI-algebra is equivalent to the dual Q-algebra
Definition 3.1. Let (X,\, 0) be a Q-algebra and binary opera-

tion ‘‘\’’ on X is defined as follows:
x � y ¼ y � x

Then (X,�, 1) is called dual Q-algebra. In fact, the axioms of
that are as follows:

(DQ1) x � x = 1,
(DQ2) 1 � x = x,
(DQ3) x � (y � z) = y � (x � z),

for all x, y, z 2 X.

Theorem 3.2. Any CI-algebra is equivalent to the dual Q-

algebra.
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