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1. Introduction 

A surface M in Euclidean 3-space R 3 is called Weingarten sur-

face if there is a relation between its two principal curvatures k 1 ,

k 2 . If there exist a linear function S of two variables such that

S(k 1 , k 2 ) = 0 , or in the form 

k 1 = mk 2 + n, (1.1)

where m , n are constants, the surfaces is called a linear Weingarten

surface and it abbreviate by LW-surface [1] . In particular if K and H

denote the Gaussian and mean curvatures respectively of a surface

M, and are related through the linear relation 

aH + bK = c, (1.2)

where a, b and c are constants and a 2 + b 2 � = 0 , in this case then

that M is a special Weingarten surface and we abbreviate it by SW-

surface [2] . Weingarten introduce this type of surfaces in the con-

text of the problem of finding all surfaces isometric to a given sur-

face of revolution [3,4] . Study of Weingarten surfaces has a long

history [5,6] , and more recently [7,8] . Application of Weingarten

surfaces on computer aided geometric design and shape investiga-

tion can seen in [9] . Cyclic surfaces in R 3 are one-parametric family

of circles [10] . R. López in [1] proved that a cyclic surfaces is linear

Weingarten surfaces with (m, n ) = (m, 0) must be Riemann type.

In [2] he proved that all special Weingarten cyclic surface with

aH + bK = c must be a surface of revolution, a Riemann minimal
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urface or generalized cone. In [11] we investigated a cyclic sur-

aces by using circle of curvature of a space curve. We obtained

ome conditions on this curve to ensure that this cyclic surface is

f zero or nonzero constant Gaussian curvature. We presented a

rocedure to determine a geodesic curves on this surface. In this

aper, we show that what conditions should be imposed on the

pace curve such that the cyclic surface generated by circle of cur-

ature of this curve is a LW-surface or a SW-surface. For more de-

ails see [5–8] 

. Basic concepts 

Consider a surface M in R 3 with Gaussian curvature K and mean

urvature H . Let X = X (u, v ) be a local parametrization of M . The

angent vectors to the parametric curves of the surface M are 

 u = 

∂X 

∂u 

, X v = 

∂X 

∂v 
(2.1)

he unit normal vector filed on M is given by 

 = 

X u ∧ X v 

| X u ∧ X v | (2.2)

here ∧ means the cross product in R 3 . The first fundamental

uadratic form on the surface M is 

 = < d X, d X > = g 11 d u 

2 + 2 g 12 d ud v + g 22 d v 2 (2.3)

here g αβ are the first fundamental coefficients, where 

 11 = 〈 X u , X u 〉 , g 12 = 〈 X u , X v 〉 , g 22 = 〈 X v , X v 〉 , (2.4)

he second fundamental quadratic form is given by 

I = −〈 d N , d X 〉 = h d u 

2 + 2 h d ud v + h d v 2 , (2.5)
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here g αβ are the second fundamental coefficients, where 

 11 = 〈 N , X uu 〉 , h 12 = 〈 N , X v u 〉 , h 22 = 〈 N , X vv 〉 , (2.6)

he Gaussian and mean curvatures are given by 

 = 

h 11 h 22 − h 

2 
12 

g 11 g 22 − g 2 
12 

, (2.7) 

 = 

h 11 g 22 − 2 h 12 g 12 + h 22 g 11 

2(g 11 g 22 − g 2 
12 

) 
, (2.8) 

Let � : I → R 

3 be a unit speed curve with � ′ � = 0 where � ′ =
 �/ d u . The arc-length parameter u of a curve � is determined

uch that ‖ � ′ (u ) ‖ = 1 . Let us denote t (u ) = � ′ (u ) where t ( u ) is

 unit tangent vector of � at u . We define the curvature of � by

 (u ) = ‖ � ′′ (u ) ‖ . If k ( u ) � = 0, then the unit principal normal vector

 ( u ) of the curve � at u is given by � ′′ (u ) = k (u ) n (u ) . The unit

inormal vector of � at u is defined as b (u ) = t (u ) × n (u ) . Then

e have the Frenet-Serret formulae: 
 

t ′ 
n 

′ 
b 

′ 

) 

= 

( 

0 k 0 

−k 0 τ
0 −τ 0 

) ( 

t 
n 

b 

) 

, ′ = 

d 

du 

(2.9) 

here τ ( u ) is the torsion of the curve � at u 

efinition 2.1. The circle of curvature of a curve � = �(u ) at a

oint m is the limiting position of a circle drawn through m and

wo other points of the curve, such that these two points tends to

 [12] . 

The circle of curvature of the curve � lies on the osculating

lane and the center of curvature at any point is given by 

 (u ) = �(u ) + ρ(u ) n (2.10)

here ρ(u ) = 1 /k (u ) is the radius of curvature of the curve � [12] .

efinition 2.2. [10] A cyclic surface in Euclidean space R 3 is a sur-

ace determined by a smooth uniparametric family of pieces of cir-

le. 

emark 2.3. A cyclic surface can be generated by a circles of cur-

ature of a space curve [13] . 

The representation of cyclic surfaces foliated by circles of cur-

ature of the space curve � is given by 

 : X (u, v ) = c (u ) + ρ(u )(t cos v + n sin v ) (2.11)

here c ( u ) are the center of curvatures given by (2.10) 

. Cyclic Weingarten-surfaces 

In this section, we obtained the condition such that the cyclic

urface parameterized by Eq. (2.11) is LW-surface or SW-surface.

ur method depends on, equations reduces (1.1), (1.2) to an ex-

ression that can be rewrite as a linear combination of the func-

ions cos (i v ) , sin (i v ) whose coefficients A i , B i are function of the

-variable. Therefore, they must be vanish in some u-interval. The

aussian and mean curvatures of a surface M are 

 = 

K 1 

W 

2 
, (3.1) 

 = 

H 1 

2 W 

3 / 2 
, (3.2) 

here H 1 = g 22 [ X u , X v , X uu ] − 2 g 12 [ X u , X v , X u v ] + g 11 [ X u , X v , X vv ] ,

 1 = [ X u , X v , X uu ][ X u , X v , X vv ] − [ X u , X v , X u v ] 2 . W = g 11 g 22 − g 2 12 , 

The principal curvatures k 1 , k 2 are given by √ 

2 
√ 

2 

 1 = H + H − K , k 2 = H − H − K (3.3) (
.1. Cyclic LW-surfaces 

If the cyclic surface M which given by (2.11) is LW-surface , then

t satisfies the condition (1.1) . Using Eqs. (3.1), (3.2) and (3.3) this

ondition take the form 

(1 − m ) H 1 − 2 W 

3 / 2 n = −(1 + m ) 
√ 

H 

2 
1 

− 4 W K 1 (3.4)

fter some computations, the condition (1.1) can be written as the

ollowing 

(−mH 

2 
1 + (1 + m ) 2 W K 1 + n 

2 W 

3 ) 2 − n 

2 (1 − m ) 2 H 

2 
1 W 

3 = 0 (3.5)

emark 3.1. The surface M is totally umbilical if m = 1 , n = 0 , and

he condition (1.1) becomes 

 

2 
1 − 4 W K 1 = 0 (3.6)

.1.1. Case n = 0 

In this case, the Eq. (3.5) take the form 

H 

2 
1 − (1 + m ) 2 W K 1 = 0 (3.7)

y using Eqs. (2.9) and (2.10) , we can expressed (3.7) by trigono-

etric polynomial on cos (i v ) , sin (i v ) , 0 ≤ i ≤ 6, these coefficients

 i , B i , are functions on the u-variable. Therefore, these coefficients

ust vanish in some u-interval. The work then is to compute ex-

licitly these coefficients by successive manipulations. We used the

ymbolic program mathematica to check out our computations. 

6 
 

i =0 

(A i cos (i v ) + B i sin (i v )) = 0 . (3.8)

ince this is an expression on the independent trigonometric terms

os n v and sin n v , all coefficients A i , B i vanish identically. 

After some computation, the values for A 6 , B 6 are 

 6 = 

1 

32 

(−1 + m ) 2 ρ(u ) 6 τ (u ) 2 (ρ(u ) 2 τ (u ) 2 + ρ ′ (u ) 2 ) 2 

 6 = 0 

rom A 6 we have the two possibilities 

Case (1) τ (u ) = 0 , which leads to zero coefficients identically 

Case (2) m = 1 , then 

 6 = . . . = B 5 = 0 

 4 = 

ρ(u ) 8 

8 

(ρ(u ) τ (u ) 3 − ρ ′ (u ) τ ′ (u ) + τ (u ) ρ ′′ (u )) 2 

hus, the solution of the differential equation A 4 = 0 is 

(u ) = ± ρ ′ (u ) √ 

c 2 − ρ2 (u ) 

⇒ ρ(u ) = c sin 

(∫ 
τ (u ) du 

)
+ constant 

r ρ(u ) = c cos 

(∫ 
τ (u ) du 

)
+ constant (3.9) 

here c constant, this leads to all coefficients (3.8) are vanished.

ndeed we have proved the following theorem: 

heorem 3.2. The cyclic surface generated by circles of curvature of

he space curve is a linear Weingarten surface with condition k 1 =
k 2 if the curve is a plane curve or its torsion and radius of curvature

re related by the relation (3.9) and the surface M is part of a sphere
totally umbilical). 
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3.1.2. Case n � = 0 

Similarly as in Section (3.1.1) , we can express (3.5) in the fol-

lowing form 

12 ∑ 

i =0 

(A i cos (i v ) + B i sin (i v )) = 0 . (3.10)

After some computation, the values for A 12 , B 12 , A 11 are given as 

A 12 = 

ρ(u ) 12 

2048 

(ρ(u ) 2 τ (u ) 2 + ρ ′ (u ) 2 ) 4 

× ((−(−1 + m ) 2 + n 

2 ρ(u ) 2 ) τ (u ) 2 + n 

2 ρ ′ (u ) 2 ) 2 

B 12 = A 11 = 0 

From A 12 We have the two possibilities 

Case (1) (ρ(u ) 2 τ (u ) 2 + ρ′ (u ) 2 ) = 0 that is ρ′ (u ) = 0 , τ (u ) = 0 

Then, all the coefficients are vanished identically. 

In this case, the center of curvature of the circle is fixed, i.e.,

c(u ) = c 0 , then 

| X (u, v ) − c 0 | = ρ = constant (3.11)

Case (2) 

(−(−1 + m ) 2 + n 

2 ρ(u ) 2 ) τ (u ) 2 + n 

2 ρ ′ (u ) 2 = 0 . 

that is τ (u ) = ± nρ′ (u ) √ 

(−1+ m ) 2 −n 2 ρ(u ) 2 

⇒ ρ(u ) = 

m − 1 

n 

sin 

(∫ 
τdu 

)
+ constant 

or ρ(u ) = 

m − 1 

n 

cos 

(∫ 
τdu 

)
+ constant (3.12)

Then, A 12 = B 12 = A 11 = . . . = A 0 = 0 identically. 

Thus, we have proved the following: 

Theorem 3.3. The cyclic surface generated by circles of curvature of

a space curve is a linear Weingarten surface with condition if the

curve is a circle or the radius of curvature and the torsion are related

through (3.12) . 

Remark 3.4. The cyclic surface generated by a circle of curvature

(3.11) of a circle is contained in a sphere. 

3.2. Cyclic SW-surfaces 

Without loss of generality, we can take a = 1 in the condition

(1.2) . By using the Eqs. (3.1) and (3.2) , the condition (1.2) , can be

written in the following form 

H 1 

2 W 

3 / 2 
+ b 

K 1 

W 

2 
= c, (3.13)

H 

2 
1 W − 4(cW 

2 − bK 1 ) 
2 = 0 . (3.14)

3.2.1. Case c = 0 

In this case (3.14) takes the form 

H 

2 
1 W − 4(bK 1 ) 

2 = 0 (3.15)

As in the previous section, we can expressed (3.15) as follows 

8 ∑ 

i =0 

(A i cos (i v ) + B i sin (i v )) = 0 . (3.16)

After some computation, the non vanishing coefficients of

Eq. (3.16) are given as 

A 8 = 

1 

32 

ρ(u ) 8 τ (u ) 2 (ρ(u ) 2 τ (u ) 2 + ρ ′ (u ) 2 ) 2 

× ((−b 2 + ρ(u ) 2 ) τ (u ) 2 + ρ ′ (u ) 2 ) 

Thus, we have the two possibilities, we have all the coefficients are

vanished identically. 
Case (1) τ (u ) = 0 , 

Case (2) ((−b 2 + ρ(u ) 2 ) τ (u ) 2 + ρ′ (u ) 2 ) = 0 

hat is, τ (u ) = ± ρ′ (u ) √ 

b 2 −ρ(u ) 2 

⇒ ρ(u ) = b sin 

(∫ 
τdu 

)
+ constant 

r ρ(u ) = b cos 

(∫ 
τdu 

)
+ constant (3.17)

hus, we have the proof at the following theorem: 

heorem 3.5. The cyclic surface generated by circles of curvature

f the space curve is a special Weingarten surface with condition

 + bK = 0 if the curve is a plan curve or its torsion and radius of

urvature are related by the relation (3.17) . 

.2.2. Case c � = 0 

Similarly, we can express (3.14) as the following form 

8 
 

i =0 

(A i cos (i v ) + B i sin (i v )) = 0 . (3.18)

fter some computation, the non vanishing coefficients of Eq.

3.18) are 

 8 = − 1 

32 

ρ(u ) 8 (ρ(u ) 2 τ (u ) 2 + ρ ′ (u ) 2 ) 2 

× ((b 2 − (1 + 2 bc) ρ(u ) 2 + c 2 ρ(u ) 4 ) τ (u ) 4 

− (1 + 2 bc − 2 c 2 ρ(u ) 2 ) τ (u ) 2 ρ ′ (u ) 2 + c 2 ρ ′ (u ) 4 ) 

rom A 8 , We discuss the following three cases for the vanishing all

he coefficients identically 

Case (1) (ρ(u ) 2 τ (u ) 2 + ρ′ (u ) 2 ) = 0 then, that is ρ′ (u ) = 0 ,

(u ) = 0 

Case (2) ((b 2 − (1 + 2 bc) ρ(u ) 2 + c 2 ρ(u ) 4 ) τ (u ) 4 − (1 + 2 bc −
 c 2 ρ(u ) 2 ) τ (u ) 2 ρ′ (u ) 2 + c 2 ρ′ (u ) 4 ) = 0 after simplification, we

ave 

(u ) = ± ρ ′ (u ) √ 

( d √ 

2 
) 2 − ρ(u ) 2 

here d 2 = 

1+2 bc±√ 

1+4 bc 
c 2 

By integration, we have 

ρ(u ) = 

d √ 

2 

sin 

(∫ 
τ (u ) du 

)
+ constant 

r ρ(u ) = 

d √ 

2 

cos 

(∫ 
τ (u ) du 

)
+ constant (3.19)

hus, we have the proof at the following theorem: 

heorem 3.6. The cyclic surface generated by circles of curvature of a

pace curve is a special Weingarten surface with condition H + bK = c

f the curve is a circle or the radius of curvature and the torsion are

elated by (3.19) . 

.3. Cyclic W-surfaces 

A surface M in 3-dimensional Euclidean space R 3 is called a

eingarten surface if there is a relation between its two curva-

ures K and H, that is, if the jacobian determinant is identically

ero [14] , i.e., 

(K, H) = 

∣∣∣∂(K, H) 

∂(u, v ) 

∣∣∣ ≡ 0 (3.20)

r the following form 

∂H 

∂u 

∂K 

∂v 
− ∂H 

∂v 
∂K 

∂u 

= 0 , (3.21)
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fter some computations we have 

2 

∂H 1 

∂u 

W − 3 H 1 
∂W 

∂u 

)(
∂K 1 

∂v 
W − 2 K 1 

∂W 

∂v 

)

−
(

2 

∂H 1 

∂v 
W − 3 H 1 

∂W 

∂v 

)(
∂K 1 

∂u 

W − 2 K 1 
∂W 

∂u 

)
= 0 (3.22) 

sing the same technique as in the previous section we have 

9 
 

i =0 

(A i cos (i v ) + B i sin (i v )) = 0 . (3.23)

fter some computation, the non vanishing coefficient of Eq.

3.23) is 

 9 = − 1 

128 

ρ(u ) 13 ρ(u ) ′ (ρ(u ) 2 τ (u ) 2 + ρ ′ (u ) 2 ) 

× (ρ(u ) τ (u ) 3 − ρ ′ (u ) τ ′ (u ) + τ (u ) ρ
′′ 
(u )) 3 

hus, we have three cases for the vanishing of A 9 identically as 

Case (1) ρ′ (u ) = 0 Case (2) τ (u ) = 0 

Case (3) 

(u ) τ (u ) 3 − ρ ′ (u ) τ ′ (u ) + τ (u ) ρ
′′ 
(u ) = 0 , τ (u ) � = 0 

r in the following form 

(u ) = ± ρ ′ (u ) √ 

d − ρ(u ) 2 

y integration we have 

ρ(u ) = d sin 

(∫ 
τ (u ) du 

)
+ constant 

r ρ(u ) = d cos 

(∫ 
τ (u ) du 

)
+ constant (3.24) 

here d is constant. 

Thus, we have the proof at the following theorem: 

heorem 3.7. The cyclic surface generated by circles of curvature of

he space curve is a W-surface with condition (3.21) if the curve is

 plan curve or its radius of curvature is constant or the radius of

urvature and the torsion is related by (3.24) . 

. Cyclic HK-quadratic surfaces 

In this section we study surface satisfying some algebraic equa-

ion in the mean curvature and the Gaussian curvatures. 

H 

2 + 2 bHK + cK 

2 = constant, a � = 0 . (4.1)

his type of surfaces is called HK- quadratic surface [15] . Using

3.1), (3.2) the HK-quadratic surface satisfies the condition 

 

(
H 1 

2 W 

3 
2 

)2 

+ 2 b 

(
H 1 

2 W 

3 
2 

)(
K 1 

W 

2 

)
+ c 

(
K 1 

W 

2 

)2 

= 1 

r, equivalently, 

H 

2 
1 W + 4 bW 

1 
2 H 1 K 1 + 4 cK 

2 
1 = 4 W 

4 

quivalently, we have 

 b 
√ 

W H 1 K 1 − (4 W 

4 − aH 

2 
1 W − 4 cK 

2 
1 ) = 0 , a � = 0 . (4.2)

sing the Eqs. (2.9) and (2.10) , we can expressed (4.2) by trigono-

etric polynomial on cos (i v ) , sin (i v ) . Exactly, there exist smooth

unctions on u, namely A i , B i , such that (4.2) writes as 

8 
 

i =0 

(A i cos (i v ) + B i sin (i v )) = 0 . (4.3)

ince this is an expression on the independent trigonometric terms

os n v and sin n v , all coefficients A , B must vanish identically. 
i i 
After some computation, the non vanishing coefficient of

q. (4.3) is 

 8 = 

1 

32 

ρ(u ) 8 (ρ ′ (u ) 2 + ρ(u ) 2 τ (u ) 2 ) 2 
(
τ (u ) 4 (aρ(u ) 2 + c 

−ρ(u ) 4 ) + τ (u ) 2 (a − 2 ρ(u ) 2 ) ρ ′ (u ) 2 − ρ ′ (u ) 2 
)

hus, we have the two possibilities for vanishing the coefficients

dentically as in the following. 

Case (1) (ρ(u ) 2 τ (u ) 2 + ρ′ (u ) 2 ) = 0 i.e. τ (u ) = 0 , ρ′ (u ) = 0 

Case (2) 

(τ (u ) 4 (aρ(u ) 2 + c − ρ(u ) 4 ) 

+ τ (u ) 2 (a − 2 ρ(u ) 2 ) ρ ′ (u ) 2 − ρ ′ (u ) 4 ) = 0 , 

(u ) � = 0 and ρ ′ (u ) � = 0 at the same time 

he solution of this equation is 

1 , 2 (u ) = ±

√ 

−
ρ ′ (u ) 2 

(√ 

a 2 +4 c + a −2 ρ(u ) 2 
)

aρ(u ) 2 + c−ρ(u ) 4 √ 

2 

, 

3 , 4 (u ) = ±

√ 

ρ ′ (u ) 2 
(√ 

a 2 +4 c −a +2 ρ(u ) 2 
)

aρ(u ) 2 + c−ρ(u ) 4 √ 

2 

(4.4) 

a) then, from τ 1 ( u ) we have 

B 7 = 

−bρ(u ) 7 ρ′ (u ) 4 

64(aρ(u ) 2 + c−ρ(u ) 4 ) 2 
((a 

√ 

a 2 + 4 c − a 2 − 2 c) ρ(u ) 4 + 

2 c( 
√ 

a 2 + 4 c − a ) 

ρ(u ) 2 − 2 c 2 )(− ρ′ (u ) 2 ( 
√ 

a 2 +4 c + a −2 ρ(u ) 2 ) 

aρ(u ) 2 + c−ρ(u ) 4 
) 3 / 2 √ 

ρ(u ) 2 ρ′ (u ) 2 ( sin ( v 
2 
)+ cos ( v 

2 
)) 4 ((a −

√ 

a 2 +4 c ) ρ(u ) 2 +2 c) 

aρ(u ) 2 + c−ρ(u ) 4 

Thus, 

(i) ρ′ ( u ) � = 0, b = 0 

then, Thus we have all coefficients vanishes. 

(ii) ρ′ ( u ) � = 0, c = 0 , a = 1 

Then, τ (u ) = −
√ 

− ρ′ (u ) 2 

ρ(u ) 2 
, this is contradiction 

b) From τ 2, 3, 4 ( u ) we have the same results. 

heorem 4.1. The cyclic surface generated by circles of curvature of a

ircle is a HK-quadratic surface. The cyclic surfaces satisfied equation

H 

2 + cK 

2 = 1 if the torsion of a space curve is given by Eq. (4.4) . 

. Example 

xample 5.1 (Surface of type LW-surface and HK-

uadratic) . Consider a plane curve given by 

(u ) = { sin (au ) , cos (au ) , 0 } , (5.1)

hus, the center of circle of curvature is 

 (u ) = { (1 − a ) sin (au ) , (1 − a ) cos (au ) , 0 } , (5.2) 

herefore, the equation of the cyclic surface that is generated by

he circle of curvature of a plane curve (5.1) is 

 (u, v ) = c (u ) + { a cos (au + v ) , −a sin 9 au + v ) , 0 } , 
ccording to Theorems 3.2 and 4.1 , this is a cyclic surface satisfy-

ng conditions of LW-surface and HK-quadratic surface. This surface

lotted as in Fig. 1 . 

xample 5.2 (W-surface) . Consider the space curve (helix) given

y 

(u ) = { a sin (u ) , a cos (u ) , au } , (5.3)
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Fig. 1. Cyclic LW-surface and HK-quadratic surface, with τ (u ) = 0 , ρ ′ (u ) = 0 . 

Fig. 2. Cyclic W-surface with ρ ′ (u ) = 0 . 
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Thus, the center of circle of curvature is 

c (u ) = 

{
− sin (u ) √ 

2 

+ a sin (u ) , −cos (u ) √ 

2 

+ a cos (u ) , au 

}
, ρ = 

1 √ 

2 

(5.4)

Therefore, the equation of the cyclic surface that is generated by

the circle of curvature of a space curve (5.3) is 

X (u, v ) = c (u ) + 

{ 

1 

2 

( cos (u ) cos (v ) −
√ 

2 sin (u ) sin (v )) , 

− 1 

2 

cos (v ) sin (u ) − cos (u ) sin (v ) √ 

2 

, 
1 

2 

cos (v ) 
}

, 

According to Theorem 3.7 , this is a cyclic surface of type Wein-

garten surface, which display in Fig. 2 . 
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