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. Introduction 

The gamma function 	 is defined for all real numbers p except

he negative integers and zero. It can be expressed as an improper

ntegral as follows: 

(p) = 

∫ ∞ 

0 

e −t t p−1 dt (1.1)

here p ∈ R . 

From the equality (1.1) we deduce following properties: 

i. If n ∈ N , then we have 	(n + 1) = n ! . 

ii. If n ∈ R − { 0 , −1 , −2 , −3 , . . . } then we have 	(n + 1) = n 	(n ) . 

ii. For particular cases, we have 	(1) = 	(2) = 1 , 	(3) =
2! , 	(4) = 3! , . . . 

For a positive proper fraction ˜ α, Baliarsingh and Dutta ( [1,2] )

also, see [3–8] ) have defined the generalized fractional difference

perator �( ̃ α) as 

( ̃ α) (x k ) = 

∞ ∑ 

i =0 

(−1) i 
	( ̃  α + 1) 

i !	( ̃  α − i + 1) 
x k −i . (1.2)
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hroughout the text, it is assumed that the series defined in (1.2) is

onvergent for x ∈ ω. More specially, it is convenient to express the

ifference operator �( ̃ α) as an triangle i.e., 

(�( ̃ α) ) nk = 

{ 

(−1) n −k 	( ̃ α+1) 
(n −k )!	( ̃ α−n + k +1) 

, (0 � k � n ) , 

0 , ( k > n ) . 

The notion of difference sequence space firstly was introduced

y Kızmaz [9] . After, it was generalized as �m by Et and Çolak

10] . Thereafter, Malkowsky et al. [11] , have introduced the spaces
(m ) 
u . The operator �( ̃ α) generalizes the operator �( m ) introduced

y Malkowsky and Parashar [12] , Polat and Ba ̧s ar [13] , Malkowsky

t al. [12] , if α = m, where m is an integer. Different classes of dif-

erence sequences have been studied by Tripathy and Dutta [14] ,

ripathy et. al [15] and many others. 

The main purpose of this paper is to generalize the difference

equence spaces cs λ
0 
(�) , cs λ(�) and bs λ( �) of nonabsolute type by

ntroducing a generalized � difference operator �(�( ̃ α) ) . Further-

ore, their Schauder basis are constructed and α-, β- and γ -duals

re computed for these spaces. Finally, the matrix mappings from

hese spaces to some other sequence spaces are characterized. 
vier B.V. This is an open access article under the CC BY-NC-ND license. 
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The well known the infinite matrix � = (λnk ) 
∞ 

n,k =0 
is defined by

the matrix 

λnk = 

{ 

λk −λk −1 

λn 
, (0 � k � n ) , 

0 , (k > n ) , 

where λ = (λk ) 
∞ 

k =0 
be a strictly increasing sequence of positive re-

als tending to infinity, that is 

0 < λ0 < λ1 < λ2 < . . . , lim 

k →∞ 

λk = ∞ . 

Combining the � mean matrix and the difference matrix of order

˜ α, we define the product matrix �(�( ̃ α) ) as 

(�(�( ̃ α) )) nk = 

{ ∑ n 
i = k (−1) i −k 	( ̃ α+1) 

(i −k )!	( ̃ α−i + k +1) 
λi −λi −1 

λn 
, (0 � k � n ) , 

0 , (k > n ) . 

Furthermore, �(�( ̃ α) ) can be written as follows: 

�(�( ̃ α) ) 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

1 0 0 0 . . . 
λ0 

λ1 
− ˜ α λ1 −λ0 

λ1 

λ1 −λ0 

λ1 
0 0 . . . 

λ0 

λ2 
− ˜ α λ1 −λ0 

λ2 
+ 

˜ α( ̃ α−1) 
2! 

λ2 −λ1 

λ2 

λ1 −λ0 

λ2 
− ˜ α λ2 −λ1 

λ2 

λ2 −λ1 

λ2 
0 . . . 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. . . 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. 

Now, we give the following results involving the inverse of the

matrices �( ̃ α) and �(�( ̃ α) ) . 

Lemma 1.1. ( [4 , 5 , 6 , 7] ) The inverse of the difference matrix �( ̃ α)

is given by the triangle 

(�(− ˜ α) ) nk = 

{ 

(−1) n −k 	(− ˜ α+1) 
(n −k )!	(− ˜ α−n + k +1) 

, (0 � k � n ) , 

0 , ( k > n ) . 

Lemma 1.2. The inverse of the � mean difference matrix �(�( ̃ α) ) is

given by a triangle ( b nk ), where 

b nk = 

{ ∑ k +1 
j= k (−1) n −k 	(− ˜ α+1) 

(n − j)!	(− ˜ α−n + j+1) 
λk 

λ j −λ j−1 
, (0 � k � n ) , 

0 , (k > n ) . 

Proof. Proof follows from Lemma 1.1 . �

2. New λ difference sequence spaces 

In this section, certain sequence spaces of non-absolute type

cs λ
0 
(�( ̃ α) ) , cs λ(�( ̃ α) ) and bs λ(�( ̃ α) ) are introduced by combining

the mean operator � and the fractional difference operator �( ̃ α) 

and also the some topological properties of these sequence spaces

are examined. 

Let ˜ α be a positive real number. We define certain classes of λ
difference sequence spaces as follows: 

cs λ0 (�
( ̃ α) ) = 

{ 

x = (x k ) ∈ ω : lim 

m →∞ 

m ∑ 

n =0 

(�(�( ̃ α) ) x ) n = 0 

} 

, 

cs λ(�( ̃ α) ) = 

{ 

x = (x k ) ∈ ω : lim 

m →∞ 

m ∑ 

n =0 

(�(�( ̃ α) ) x ) n exists 

} 

, 

bs λ(�( ̃ α) ) = 

{ 

x = (x k ) ∈ ω : sup 

m 

∣∣∣∣∣
m ∑ 

n =0 

(�(�( ̃ α) ) x ) n 

∣∣∣∣∣ < ∞ 

} 

, 
here 

(�(�( ̃ α) ) x ) n = 

1 

λn 

n ∑ 

j=0 

n ∑ 

i = j 
(−1) i − j 	( ̃  α + 1) 

(i − j)!	( ̃  α − i + j + 1) 

×(λi − λi −1 ) x j ; (n ∈ N ) . (2.1)

he spaces cs λ
0 
(�( ̃ α) ) , cs λ(�( ̃ α) ) and bs λ(�( ̃ α) ) can be redefine as

he matrix domains of the triangle �(�( ̃ α) ) in the spaces cs 0 , cs

nd bs by 

cs λ0 (�
( ̃ α) ) = (cs 0 ) �(�( ̃ α) ) ; cs λ(�( ̃ α) ) = (cs ) �(�( ̃ α) ) ;

s λ(�( ̃ α) ) = (bs ) �(�( ̃ α) ) . (2.2)

Keeping the above new sets in mind, we define the sequence

 = (y k ) , which is used as the �(�( ̃ α) ) –transform of a sequence

 = (x k ) ; that is, y = �(�( ̃ α) ) x, and so we have 

y k = 

1 

λk 

k ∑ 

j=0 

k ∑ 

i = j 
(−1) i − j 	( ̃  α + 1) 

(i − j)!	( ̃  α − i + j + 1) 
( λi − λi −1 ) x j , 

(k ∈ N ) . (2.3)

n particular, the above new spaces include the classes defined by

aya and Furkan [16] for ˜ α = 0 , 

Now, we give some interesting results of these spaces concern-

ng their topological structures. We give the proof of only one from

hese three spaces. The proofs of other spaces may be obtained by

sing similar arguments. 

heorem 2.1. For a positive proper fraction ˜ α, the sequence spaces

s λ
0 
(�( ̃ α) ) , cs λ(�( ̃ α) ) and bs λ(�( ̃ α) ) are BK-spaces with the norm

 x ‖ 
cs λ

0 
(�( ̃ α) ) 

= ‖ x ‖ cs λ(�( ̃ α) ) = ‖ x ‖ bs λ(�( ̃ α) ) = ‖ �(�( ̃ α) ) x ‖ bs , that is 

 x ‖ bs λ(�( ̃ α) ) = ‖ �(�( ̃ α) ) x ‖ bs = sup 

m 

∣∣∣∣∣
m ∑ 

n =0 

(�(�( ̃ α) ) x ) n 

∣∣∣∣∣. 
roof. Since (2.2) holds and cs 0 , cs and bs are BK -spaces with the

up-norm given by ‖ x ‖ bs = sup n | ∑ n 
k =0 x k | and the matrix �(�( ̃ α) )

s a triangle, Theorem 4.3.12 of Wilansky [ 17 , page 63] gives the

act that cs λ0 (�
( ̃ α) ) , cs λ(�( ̃ α) ) and bs λ(�( ̃ α) ) are BK -spaces with

he given norms. This completes the proof. �

Now, we may give the following theorem concerning the iso-

orphism between the spaces cs λ
0 
(�( ̃ α) ) , cs λ(�( ̃ α) ) , bs λ(�( ̃ α) )

nd cs 0 , cs , bs , respectively: 

heorem 2.2. For a positive proper fraction ˜ α, the sequence spaces

s λ0 (�
( ̃ α) ) , cs λ(�( ̃ α) ) and bs λ(�( ̃ α) ) are linearly isomorphic to the

lassical spaces cs 0 , cs and bs , respectively. 

roof. We prove the theorem for the space cs λ0 (�
( ̃ α) ) . We show

hat there exists a linear bijection between the spaces cs λ
0 
(�( ̃ α) )

nd cs 0 . Consider the transformation T defined, with the notation

f (2.3) , from cs λ0 (�
( ̃ α) ) to cs 0 by x �→ y . Then, T x = y = �(�( ̃ α) ) x ∈

s 0 for every x ∈ cs λ0 (�
( ̃ α) ) and the linearity of T is clear. If T x =

= (0 , 0 , 0 , . . . ) , then x = θ and hence T is injective. Let y = (y k ) ∈
s 0 and using Lemma 1.2 , define a sequence x = (x k ) via y k as 

x k = 

k ∑ 

i =0 

i +1 ∑ 

j= i 
(−1) k −i 	(− ˜ α + 1) 

(k − j)!	(− ˜ α − k + j + 1) 

λi 

λ j − λ j−1 

y i , 

(k ∈ N ) . (2.4)

hen, we have 

m 

 

n =0 

1 

λn 

n ∑ 

j=0 

n ∑ 

i = j 
(−1) i − j 	( ̃  α + 1) 

(i − j)!	( ̃  α − i + j + 1) 
( λi −λi −1 ) x j = 

m ∑ 

n =0 

y n .

This shows that �(�( ̃ α) ) x = y and since y ∈ cs 0 we con-

lude that �(�( ̃ α) ) x ∈ cs 0 . Thus, we deduce that x ∈ cs λ(�( ̃ α) ) and
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 x = y . Hence, T is surjective. Furthermore, one can easily show

hat T is norm preserving. This completes the proof. �

emma 2.3. [5] T be a triangle and S be its inverse. If ( b n ) is a basis

f the normed sequence space X , then ( S ( b n )) is a basis of X T 

emark 1. [18] The matrix domain X T of a normed sequence space

as a basis if and only if X has a basis. 

The Schauder basis of the sequence spaces cs λ
0 
(�( ̃ α) ) , cs λ(�( ̃ α) )

nd bs λ(�( ̃ α) ) can be derived by using Lemma 2.3 and Remark 1 ,

s follows: 

orollary 2.4. Let ˜ αk = (�(�( ̃ α) ) x ) k for all k ∈ N . Now for fixed k ∈
 define the sequence b (k ) = { b (k ) 

n } n ∈ N by 

 

(k ) 
n = 

{ ∑ k +1 
j= k (−1) n −k 	(− ˜ α+1) 

(n − j)!	(− ˜ α−n + j+1) 
λk 

λ j −λ j−1 
, 0 � k � n, 

0 , k > n, 

or all n , k ∈ N . Then, the following statements hold: 

i. The sequence { b (k ) 
n } n ∈ N is a basis for the spaces cs λ

0 
(�( ̃ α) ) and

cs λ(�( ̃ α) ) and every x ∈ cs λ
0 
(�( ̃ α) ) or cs λ(�( ̃ α) ) has a unique

representation in the form 

x = 

∑ 

k 

˜ αk b 
(k ) . 

ii. bs λ(�( ̃ α) ) has no Schauder basis. 

. The α-, β- and γ-duals of the spaces c s λ
0 
(�( ̃ α) ) , c s λ(�( ̃ α) ) 

nd bs λ(�( ̃ α) ) 

In this section, theorems determining the α-, β- and γ -duals

f the λ difference sequence spaces are formulated and proved.

he generalized difference has been studied by Chandra and Tri-

athy [19] . The collection of all finite subsets of N is denoted by

throughout. For this investigation, some lemmas are needed in

roving the next theorems, due to Stieglitz and Tietz [20] . 

emma 3.1. A = (a nk ) ∈ (cs 0 : � 1 ) if and only if 

sup 

,K∈F 

∣∣∣∣∣∑ 

n ∈ N 

∑ 

k ∈ K 
(a nk − a n,k +1 ) 

∣∣∣∣∣ < ∞ . (3.1) 

emma 3.2. A = (a nk ) ∈ (cs : � 1 ) if and only if 

sup 

,K∈F 

∣∣∣∣∣∑ 

n ∈ N 

∑ 

k ∈ K 
(a nk − a n,k −1 ) 

∣∣∣∣∣ < ∞ . (3.2) 

emma 3.3. A = (a nk ) ∈ (bs : � 1 ) if and only if (3.1) holds and 

im 

k 
a nk = 0 , ∀ n ∈ N . (3.3)

emma 3.4. A = (a nk ) ∈ (cs 0 : c) if and only if 

up 

n 

∑ 

k 

| a nk − a n,k +1 | < ∞ , (3.4)

nd 

im 

n 
(a nk − a n,k +1 ) exists for all k ∈ N . (3.5)

emma 3.5. A = (a nk ) ∈ (cs : c) if and only if (3.4) holds and 

im 

n 
a nk exists for all k ∈ N . (3.6)

emma 3.6. A = (a nk ) ∈ (bs : c) if and only if (3.3) and (3.6) hold

nd 
 

k 

| a nk − a n,k −1 | c on v erges. (3.7)
emma 3.7. A = (a nk ) ∈ (cs 0 : � ∞ 

) if and only if (3.4) holds. 

emma 3.8. A = (a nk ) ∈ (cs : � ∞ 

) if and only if 

up 

n 

∑ 

k 

| a nk − a n,k −1 | < ∞ . (3.8)

emma 3.9. A = (a nk ) ∈ (bs : � ∞ 

) if and only if (3.3) and (3.4) hold. 

Now, we may begin the following result which determines the

-dual of the spaces cs λ0 (�
( ̃ α) ) , cs λ(�( ̃ α) ) and bs λ(�( ̃ α) ) . 

heorem 3.10. Define the sets h ̃ α
1 

and h ̃ α
2 

as follows: 

 

˜ α
1 = 

{ 

a = (a n ) ∈ ω : sup 

N,K∈F 

∣∣∣∣∣∑ 

n ∈ N 

∑ 

k ∈ K 
(b ˜ αnk − b ˜ αn,k +1 ) 

∣∣∣∣∣ < ∞ 

} 

, 

 

˜ α
2 = 

{ 

a = (a n ) ∈ ω : sup 

N,K∈F 

∣∣∣∣∣∑ 

n ∈ N 

∑ 

k ∈ K 
(b ˜ αnk − b ˜ αn,k −1 ) 

∣∣∣∣∣ < ∞ 

} 

;

here the matrix B ̃ α = (b ̃ α
nk 

) is defined via the sequence a = (a n ) ∈ ω
y 

 

˜ α
nk = 

{ ∑ k +1 
j= k (−1) n −k 	(− ˜ α+1) 

(n − j)!	(− ˜ α−n + j+1) 
λk 

λ j −λ j−1 
a n , 0 � k � n, 

0 , k > n, 

or all n , k ∈ N . Then { cs λ0 (�
( ̃ α) ) } α = { bs λ(�( ̃ α) ) } α = h ̃ α

1 
and

 cs λ(�( ̃ α) ) } α = h ̃ α
2 

. 

roof. Let a = (a n ) ∈ ω. Then, by bearing in mind the relation

2.4) , we easily obtain that 

 n x n = 

n ∑ 

k =0 

[ 

k +1 ∑ 

j= k 
(−1) n −k 	(− ˜ α + 1) 

(n − j)!	(− ˜ α − n + j + 1) 

λk 

λ j − λ j−1 

a n 

] 

y k = (B 

˜ αy ) n (3.9) 

olds for all n ∈ N . We, therefore, observe by (3.9) that ax =
(a n x n ) ∈ � 1 whenever x = (x k ) ∈ cs λ

0 
(�( ̃ α) ) or bs λ(�( ̃ α) ) if and only

f B ̃ αy ∈ � 1 whenever y = (y k ) ∈ cs 0 or bs . This means that the se-

uence a = (a n ) ∈ { cs λ0 (�
( ̃ α) ) } α or a = (a n ) ∈ { bs λ(�( ̃ α) ) } α if and

nly if B ̃ α ∈ (cs 0 : � 1 ) or B ̃ α ∈ (bs : � 1 ) . Then, it is clear that the

olumns of the matrix B ̃ α are in the space c 0 , since 

lim 

 →∞ 

b ˜ αnk = 0 

or all n ∈ N . Hence, we obtain by Lemmas 3.1 or 3.3 with B ̃ α in-

tead of A that a = (a n ) ∈ { cs λ0 (�
( ̃ α) ) } α = { bs λ(�( ̃ α) ) } α if and only

f 

sup 

,K∈F 

∣∣∣∣∣∑ 

n ∈ N 

∑ 

k ∈ K 
(b ˜ αnk − b ˜ αn,k +1 ) 

∣∣∣∣∣ < ∞ , (3.10) 

hich leads us to the consequence that { cs λ
0 
(�( ̃ α) ) } α =

 bs λ(�( ̃ α) ) } α = h ̃ α
1 

. 

Similarly, we deduce from Lemma 3.2 with (3.9) that a = (a n ) ∈
 cs λ(�( ̃ α) ) } α if and only if B ̃ α ∈ (cs : � 1 ) . Therefore, we derive from

3.2) that 

sup 

,K∈F 

∣∣∣∣∣∑ 

n ∈ N 

∑ 

k ∈ K 
(b ˜ αnk − b ˜ αn,k −1 ) 

∣∣∣∣∣ < ∞ . (3.11) 

his yields that { cs λ(�( ̃ α) ) } α = h ̃ α
2 

. This completes the proof. �
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Theorem 3.11. Define the sets h ̃ α
3 
, h ̃ α

4 
, h ̃ α

5 
, h ̃ α

6 
, h ̃ α

7 
and h ̃ α

8 
by 

h 

˜ α
3 = 

{ 

a = (a n ) ∈ ω : sup 

n 

n −1 ∑ 

k =0 

| ̃  a k (n ) − ˜ a k +1 (n ) | < ∞ 

} 

, 

h 

˜ α
4 = 

{
a = (a n ) ∈ ω : sup 

n 

∣∣∣∣ λn 

λn − λn −1 

a n 

∣∣∣∣ < ∞ 

}
, 

h 

˜ α
5 = 

{ 

a = (a n ) ∈ ω : lim 

n →∞ 

( ̃  a k (n ) − ˜ a k +1 (n )) exists for each k ∈ N 

} 

, 

h 

˜ α
6 = 

{ 

a = (a n ) ∈ ω : lim 

n →∞ 

˜ a k (n ) exists for each k ∈ N 

} 

, 

h 

˜ α
7 = 

{ 

a = (a n ) ∈ ω : 

∞ ∑ 

k =0 

| ̃  a k (n ) − ˜ a k −1 (n ) | converges 

} 

, 

h 

˜ α
8 = 

{
a = (a n ) ∈ ω : lim 

n →∞ 

∣∣∣∣ λn 

λn − λn −1 

a n 

∣∣∣∣ exists 

}
, 

where 

˜ a k (n ) = 

n ∑ 

i = k 

[ 

k +1 ∑ 

j= k 
(−1) i −k 	(− ˜ α + 1) 

(i − j)!	(− ˜ α − i + j + 1) 

λk 

λ j − λ j−1 

] 

a i ;

(0 � k � n ) . 

Then { cs λ
0 
(�( ̃ α) ) } β = h ̃ α

3 
∩ h ̃ α

4 
∩ h ̃ α

5 
, { cs λ(�( ̃ α) ) } β = h ̃ α

3 
∩ h ̃ α

4 
∩ h ̃ α

6 
and

{ bs λ(�( ̃ α) ) } β = h ̃ α
6 

∩ h ̃ α
7 

∩ h ̃ α
8 

. 

Proof. Consider the equality 

n ∑ 

k =0 

a k x k = 

n ∑ 

k =0 

[ 
k ∑ 

i =0 

i +1 ∑ 

j= i 
(−1) k −i 	(− ˜ α + 1) 

(k − j)!	(− ˜ α − k + j + 1) 

λi 

λ j − λ j−1 

y i 

] 
a k 

= 

n ∑ 

k =0 

[ 
n ∑ 

i = k 

k +1 ∑ 

j= k 
(−1) i −k 	(− ˜ α + 1) 

(i − j)!	(− ˜ α − i + j + 1) 

λk 

λ j − λ j−1 

a i 

] 
y k 

= (T ˜ αy ) n ; (n ∈ N ) , (3.12)

where the matrix T ̃  α = (t ̃  α
nk 

) is defined by 

 

˜ α
nk = 

{ ∑ n 
i = k 

[ ∑ k +1 
j= k (−1) i −k 	(− ˜ α+1) 

(i − j)!	(− ˜ α−i + j+1) 
λk 

λ j −λ j−1 

] 
a i , 0 � k � n

0 , k > n, 

for all k , n ∈ N . Thus, we deduce from (3.12) that ax = (a k x k ) ∈ cs

whenever x = (x k ) ∈ cs λ
0 
(�( ̃ α) ) if and only if T ̃  α ∈ (cs 0 : c) . There-

fore, by using Lemma 3.4 , we derive from (3.4) and (3.5) that 

sup 

n 

n −1 ∑ 

k =0 

| ̃  a k (n ) − ˜ a k +1 (n ) | < ∞ , (3.13)

sup 

n 

∣∣∣∣ λn 

λn − λn −1 

a n 

∣∣∣∣ < ∞ , (3.14)

lim 

n →∞ 

( ̃  a k (n ) − ˜ a k +1 (n )) exists for each k ∈ N , (3.15)

which show that { cs λ
0 
(�( ̃ α) ) } β = h ̃ α

3 
∩ h ̃ α

4 
∩ h ̃ α

5 
. 

Similarly, we deduce from Lemma 3.5 with (3.4) and (3.6) that

a = (a k ) ∈ { cs λ(�( ̃ α) ) } β if and only if T ̃  α ∈ (cs : c) . Therefore, we

derive from (3.4) that (3.13) and (3.14) hold. Further, by using

Lemma 3.5 , we obtain from (3.6) that 

lim 

n →∞ 

˜ a k (n ) exists for each k ∈ N . (3.16)

Hence, we deduce that { cs λ(�( ̃ α) ) } β = h ̃ α
3 

∩ h ̃ α
4 

∩ h ̃ α
6 

. 

Finally, we conclude from Lemma 3.6 with (3.3), (3.6) and

(3.7) that a = (a k ) ∈ { bs λ(�( ̃ α) ) } β if and only if T ̃  α ∈ (bs : c) .

Therefore, it is clear that the columns of the matrix T ̃  α are in the

space c 0 , since 

lim 

k →∞ 

t ˜ αnk = 0 
or all n ∈ N . Also, we derive from (3.6) that (3.16) holds. Further,

e get from (3.7) that 

∞ 

 

k =0 

| ̃  a k (n ) − ˜ a k −1 (n ) | converges (3.17)

nd 

lim 

 →∞ 

∣∣∣∣ λn 

λn − λn −1 

a n 

∣∣∣∣ exists . (3.18)

herefore, we conclude that { bs λ(�( ̃ α) ) } β = h ̃ α
6 

∩ h ̃ α
7 

∩ h ̃ α
8 

. �

heorem 3.12. Define the set h ̃ α
9 

as follow: 

 

˜ α
9 = 

{ 

a = (a n ) ∈ ω : sup 

n 

n ∑ 

k =0 

| ̃  a k (n ) − ˜ a k −1 (n ) | < ∞ 

} 

. 

he γ -dual of the spaces cs λ
0 
(�( ̃ α) ) and bs λ(�( ̃ α) ) is the set h ̃ α

3 
∩ h ̃ α

4 

nd the γ -dual of the space cs λ(�( ̃ α) ) is the set h ̃ α
4 

∩ h ̃ α
9 

. 

roof. The present theorem may be proved by the technique used

n the proof of Theorem 3.11 . �

. Some matrix transformations related to the sequence spaces 

 s λ
0 
(�( ̃ α) ) , c s λ(�( ̃ α) ) and bs λ(�( ̃ α) ) 

In this final section, some matrix mappings on the spaces

s λ0 (�
( ̃ α) ) , cs λ(�( ̃ α) ) and bs λ(�( ̃ α) ) are characterized. Actually,

he necessary and sufficient conditions for matrix transformations

rom these spaces into the spaces � p , c and c 0 are given, where 1

p ≤ ∞ . 

We shall write throughout for brevity that 

˜ 
 nk (m ) = 

m ∑ 

i = k 

[ 

k +1 ∑ 

j= k 
(−1) i −k 	(− ˜ α + 1) 

(i − j)!	(− ˜ α − i + j + 1) 

λk 

λ j − λ j−1 

] 

a ni 

nd 

˜ 
 nk = 

∞ ∑ 

i = k 

[ 

k +1 ∑ 

j= k 
(−1) i −k 	(− ˜ α + 1) 

(i − j)!	(− ˜ α − i + j + 1) 

λk 

λ j − λ j−1 

] 

a ni 

or all n , k , m ∈ N provided the convergence of the series. 

Let us give some Lemmas [20] , which are essential for deriving

he characterization of matrix mappings. 

emma 4.1. A = (a nk ) ∈ (cs 0 : c 0 ) if and only if (3.4) holds and 

im 

n 
(a nk − a n,k +1 ) = 0 (∀ k ∈ N ) . (4.1)

emma 4.2. A = (a nk ) ∈ (cs : c 0 ) if and only if (3.4) holds and 

im 

n 
a nk = 0 (∀ k ∈ N ) . (4.2)

emma 4.3. A = (a nk ) ∈ (bs : c 0 ) if and only if (3.3) holds and 

im 

n 

∑ 

k 

| a nk − a n,k +1 | = 0 . (4.3)

emma 4.4. A = (a nk ) ∈ (cs 0 : � p ) if and only if 

up 

K 

∑ 

n 

∣∣∣∣∣∑ 

k ∈ K 
(a nk − a n,k +1 ) 

∣∣∣∣∣
p 

< ∞ (1 < p < ∞ ) . (4.4)

emma 4.5. A = (a nk ) ∈ (cs : � p ) if and only if 

up 

K 

∑ 

n 

∣∣∣∣∣∑ 

k ∈ K 
(a nk − a n,k −1 ) 

∣∣∣∣∣
p 

< ∞ (1 < p < ∞ ) . (4.5)

emma 4.6. A = (a nk ) ∈ (bs : � p ) if and only if (3.3) and (4.4) hold. 
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Now, we state following theorems via matrix transformations of

he spaces cs λ0 (�
( ̃ α) ) , cs λ(�( ̃ α) ) and bs λ(�( ̃ α) ) for the spaces � p , c

nd c 0 , where 1 ≤ p ≤ ∞ . 

heorem 4.7. i. A = (a nk ) ∈ (cs λ0 (�
( ̃ α) ) : � ∞ 

) if and only if 

up 

m 

m −1 ∑ 

k =0 

| ̃  a nk (m ) − ˜ a n,k +1 (m ) | < ∞ (n ∈ N ) , (4.6)

up 

m 

∣∣∣∣ λm 

λm 

− λm −1 

a nm 

∣∣∣∣ < ∞ , (4.7) 

lim 

 →∞ 

( ̃  a nk (m ) − ˜ a n,k +1 (m )) exists for each n, k ∈ N , (4.8)

up 

n 

∑ 

k 

| ̃  a nk − ˜ a n,k +1 | < ∞ . (4.9)

i. A = (a nk ) ∈ (cs λ(�( ̃ α) ) : � ∞ 

) if and only if (4.6) , (4.7) hold and 

lim 

 →∞ 

˜ a nk (m ) exists for each n, k ∈ N , (4.10)

up 

n 

∑ 

k 

| ̃  a nk − ˜ a n,k −1 | < ∞ . (4.11)

ii. A = (a nk ) ∈ (bs λ(�( ̃ α) ) : � ∞ 

) if and only if (4.9) and (4.10) hold

nd 

∞ 

 

k =0 

| ̃  a nk (m ) − ˜ a n,k +1 (m ) | convergent , (4.12)

lim 

 →∞ 

∣∣∣∣ λm 

λm 

− λm −1 

a nm 

∣∣∣∣ exists (n ∈ N ) , (4.13)

lim 

 →∞ 

˜ a nk = 0 (∀ n ∈ N ) . (4.14)

roof. i. Suppose that the conditions (4.6), (4.7), (4.8) and

4.9) hold and take any x = (x k ) ∈ cs λ
0 
(�( ̃ α) ) . Then, we have by

heorem 3.11 that (a nk ) 
∞ 

k =0 
∈ { cs λ

0 
(�( ̃ α) ) } β for all n ∈ N and this

mplies the existence of the A -transform of x , that is, Ax exists. Fur-

her, it is clear that the associated sequence y = (y k ) is in cs 0 . 

Let us now consider the following equality derived by using the

elation (2.4) from the m 

th partial sum of the series �k a nk x k : 

m 

 

k =0 

a nk x k = 

m ∑ 

k =0 

˜ a nk (m ) y k ; (n, m ∈ N ) . (4.15)

herefore, by using (4.6), (4.7) and (4.8) as m → ∞ we obtain that

 

k 

a nk x k = 

∑ 

k 

˜ a nk y k for all n ∈ N . (4.16)

urther, since the matrix ˜ A = ( ̃  a nk ) is in the class ( cs 0 : � ∞ 

) by

emma 3.7 and (4.9) ; we have ˜ A y ∈ � ∞ 

. Therefore, we deduce from

4.16) that Ax ∈ � ∞ 

and hence A = (a nk ) ∈ (cs λ0 (�
( ̃ α) ) : � ∞ 

) . 

Conversely, suppose that A = (a nk ) ∈ (cs λ0 (�
( ̃ α) ) : � ∞ 

) . Then

(a nk ) 
∞ 

k =0 
∈ { cs λ0 (�

( ̃ α) ) } β for all n ∈ N and this, with Theorem 3.11 ,

mplies (4.6), (4.7) and (4.8) . Further, since Ax ∈ � ∞ 

by the hypoth-

sis; we obtain by (4.16) that ˜ A y ∈ � ∞ 

which shows that ˜ A ∈ (cs 0 :

 ∞ 

) , where ˜ A = ( ̃  a nk ) . Hence, the necessity of (4.9) is immediate

y (3.4) . This concludes the proof of part i . 

Since part ii and iii can be proved similarly, we omit its

roof. �

orollary 4.8. i. A = (a nk ) ∈ (cs λ
0 
(�( ̃ α) ) : c) if and only if (4.6) , (4.7) ,

4.8) and (4.9) hold and 

lim 

 →∞ 

( ̃  a nk − ˜ a n,k +1 ) exists for all k ∈ N . (4.17)
i. A = (a nk ) ∈ (cs λ(�( ̃ α) ) : c) if and only if (4.6) , (4.7) , (4.9) and

4.10) hold and 

lim 

 →∞ 

˜ a nk exists for all k ∈ N . (4.18) 

ii. A = (a nk ) ∈ (bs λ(�( ̃ α) ) : c) if and only if (4.10) , (4.12) , (4.13) ,

4.14) and (4.18) hold and 
 

k 

| ̃  a nk − ˜ a n,k −1 | convergent . (4.19) 

orollary 4.9. i. A = (a nk ) ∈ (cs λ
0 
(�( ̃ α) ) : c 0 ) if and only if (4.6) ,

4.7) , (4.8) and (4.9) hold and 

lim 

 →∞ 

( ̃  a nk − ˜ a n,k +1 ) = 0 (k ∈ N ) . (4.20)

i. A = (a nk ) ∈ (cs λ(�( ̃ α) ) : c 0 ) if and only if (4.6) , (4.7) , (4.9) and

4.10) hold and 

lim 

 →∞ 

˜ a nk = 0 (k ∈ N ) . (4.21)

ii. A = (a nk ) ∈ (bs λ(�( ̃ α) ) : c 0 ) if and only if (4.10) , (4.12) ,

4.13) and (4.14) hold and 

lim 

 →∞ 

∑ 

k 

| ̃  a nk − ˜ a n,k +1 | = 0 . (4.22)

orollary 4.10. i. A = (a nk ) ∈ (cs λ0 (�
( ̃ α) ) : � 1 ) if and only if (4.6) ,

4.7) and (4.8) hold and 

sup 

,K∈F 

∣∣∣∣∣∑ 

n ∈ N 

∑ 

k ∈ K 
( ̃  a nk − ˜ a n,k +1 ) 

∣∣∣∣∣ < ∞ . (4.23) 

i. A = (a nk ) ∈ (cs λ(�( ̃ α) ) : � 1 ) if and only if (4.6) , (4.7) and

4.10) hold and 

sup 

,K∈F 

∣∣∣∣∣∑ 

n ∈ N 

∑ 

k ∈ K 
( ̃  a nk − ˜ a n,k −1 ) 

∣∣∣∣∣ < ∞ . (4.24) 

ii. A = (a nk ) ∈ (bs λ(�( ̃ α) ) : � 1 ) if and only if (4.10) , (4.12) , (4.13) ,

4.14) and (4.23) hold. 

orollary 4.11. i. A = (a nk ) ∈ (cs λ
0 
(�( ̃ α) ) : � p ) if and only if (4.6) ,

4.7) and (4.8) hold and 

up 

K∈F 

∑ 

n 

∣∣∣∣∣∑ 

k ∈ K 
( ̃  a nk − ˜ a n,k +1 ) 

∣∣∣∣∣
p 

< ∞ , (1 < p < ∞ ) . (4.25)

i. A = (a nk ) ∈ (cs λ(�( ̃ α) ) : � p ) if and only if (4.6) , (4.7) and

4.10) hold and 

up 

K∈F 

∑ 

n 

∣∣∣∣∣∑ 

k ∈ K 
( ̃  a nk − ˜ a n,k −1 ) 

∣∣∣∣∣
p 

< ∞ , (1 < p < ∞ ) . (4.26)

ii. A = (a nk ) ∈ (bs λ(�( ̃ α) ) : � p ) if and only if (4.10) , (4.12) , (4.13) ,

4.14) and (4.25) hold. 
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