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1. Introduction

The gamma function I" is defined for all real numbers p except
the negative integers and zero. It can be expressed as an improper
integral as follows:

Nmzﬁxfw4m (11)

where p e R.
From the equality (1.1) we deduce following properties:

. If n e N, then we have I'(n+1) =nl.

ii. fneR-{0,—-1,-2,-3,...} then we have I'(n+ 1) = n["(n).
iii. For particular cases, we have I'(1)=T'(2)=1, I'(3) =
21,T'(4) =31,...

For a positive proper fraction &, Baliarsingh and Dutta ([1,2])
(also, see [3-8] ) have defined the generalized fractional difference
operator A@ as

T@+1)

M@=+ D" (12)

A® () = 3 (1)
i=0
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Throughout the text, it is assumed that the series defined in (1.2) is
convergent for x € w. More specially, it is convenient to express the
difference operator A® as an triangle i.e.,

—k [(@+1)
(=D (—k)'T (@—n+k+1)°

0, (k > n).

_ 0<k<n),
(A(a))nk = ( )

The notion of difference sequence space firstly was introduced
by Kizmaz [9]. After, it was generalized as A™ by Et and Colak
[10]. Thereafter, Malkowsky et al. [11], have introduced the spaces
A{™_ The operator A@ generalizes the operator A(™ introduced
by Malkowsky and Parashar [12], Polat and Basar [13], Malkowsky
et al. [12], if « = m, where m is an integer. Different classes of dif-
ference sequences have been studied by Tripathy and Dutta [14],
Tripathy et. al [15] and many others.

The main purpose of this paper is to generalize the difference
sequence spaces csy(A), cs*(A) and bs*(A) of nonabsolute type by
introducing a generalized A difference operator A (A@®). Further-
more, their Schauder basis are constructed and «-, 8- and y-duals
are computed for these spaces. Finally, the matrix mappings from
these spaces to some other sequence spaces are characterized.
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The well known the infinite matrix A = (Ay,)
the matrix

e osksw,
nk =
0, (k> n),

is defined by

o0
n,k=0

where A = (A4)72, be a strictly increasing sequence of positive re-

als tending to infinity, that is

O<Ag<Ai<Ay<..., klim)»kzoo.
— 00

Combining the A mean matrix and the difference matrix of order
@, we define the product matrix A(A@®) as

n i—k I(@+1) Ai—Aiq
(A(A®)) = YD rmraaren - (0sksn),
nKk—
0, (k> n).
Furthermore, A (A@®) can be written as follows:
A(A@)
1 0 0 0
la _ghite hie 0 0
_ % P )q);)w . &(521!71) ‘M;zx. Al);Au P ‘M;zx. MLM 0

Now, we give the following results involving the inverse of the
matrices A@® and A(A@®),

Lemma 1.1. ([4, 5, 6, 7]) The inverse of the difference matrix A @
is given by the triangle

—k C(-a@+1)
=" R (Ca—ntkqD) O <k<n),

(A(ia))nk = {
0, (k > n).

Lemma 1.2. The inverse of the A mean difference matrix A(A@®) is
given by a triangle (by), where

k+1 —k I(-a@+1) A
b = {Zj:k(_l)n <(n—j)!r(—o?—n+f+1> M—/{H ’ O<k<m,
n

o, (k > n).

Proof. Proof follows from Lemma 1.1. O

2. New A difference sequence spaces

In this section, certain sequence spaces of non-absolute type
csh(A@), cs*(A@) and bs* (A@) are introduced by combining
the mean operator A and the fractional difference operator A(®
and also the some topological properties of these sequence spaces
are examined.

Let & be a positive real number. We define certain classes of A
difference sequence spaces as follows:

m
(A = Ix=(x) ew: Jlim > (AAD)x), = 0},
n=0
~ m ~
sMAD) = Ix=(x) cw: lim D (A(A®)x), exists ¢,
n=0
~ m ~
bs*(A@) = {x=(x) e w :sup | > (A(A@)x),| < o0t
m n=0

where
@y~ L NNy r@+1)
(A0 = 3 2 2 D GG T+ D
X()\.,'—)\,,',1)Xj; (TIEN). (21)

The spaces csf(A@), cs*(A@) and bs* (A@) can be redefine as
the matrix domains of the triangle A(A@®) in the spaces csg, s
and bs by

cs5(A@) = (cs0) aaw); ¢H(AD) = (c5) pa@);
bs*(A@) = (bS) » aie. (2.2)

Keeping the above new sets in mind, we define the sequence
¥ = (), which is used as the A(A@)-transform of a sequence
x = (x); that is, y = A(A@)x, and so we have

1 k k i F(&+1)
e g L L TG e
(k € ). (2.3)

In particular, the above new spaces include the classes defined by
Kaya and Furkan [16] for & =0,

Now, we give some interesting results of these spaces concern-
ing their topological structures. We give the proof of only one from
these three spaces. The proofs of other spaces may be obtained by
using similar arguments.

Theorem 2.1. For a positive proper fraction &, the sequence spaces
csh(A@), cs*(A@) and bs*(A@) are BK-spaces with the norm
1053 @y = ¥l gt sy = WXl acony = 1A (Al that is

m
||X||bsA(A(&>) = [AAD)x]|ps = Szp Z(A(A(“))x)n .

n=0

Proof. Since (2.2) holds and csg, cs and bs are BK-spaces with the
sup-norm given by ||x||ps = sup, | >p_o %,| and the matrix A(A@)
is a triangle, Theorem 4.3.12 of Wilansky [17, page 63] gives the
fact that csj(A@), cs*(A@) and bs*(A@) are BK-spaces with
the given norms. This completes the proof. O

Now, we may give the following theprem concerning the iso-
morphism between the spaces csj(A@), cs*(A@)), bs*(A®)
and csy, cs, bs, respectively:

Theorem 2.2. For a positive proper fraction &, the sequence spaces
csh(A@), cs*(A@) and bs* (A@) are linearly isomorphic to the
classical spaces csq, ¢s and bs, respectively.

Proof. We prove the theorem for the space csy(A@)). We show
that there exists a linear bijection between the spaces csj(A@)
and csg. Consider the transformation T defined, with the notation
of (2.3), from csf (A@) to csg by x—y. Then, Tx =y = A(A@)x e
cso for every x e csh(A@) and the linearity of T is clear. If Tx =
6 =(0,0,0,...), then x =6 and hence T is injective. Let y = (y;) €
csp and using Lemma 1.2, define a sequence x = (x;) via y; as

k i+l

» C(-a@+1) Ai
= —1)k . _ . : i
Xk ,-;.:,Z:;( ) (](—])!F(—Ol—k+]+1))\j—)"j—1yl
(k € N). (2.4)
Then, we have
21 G i r@+1) IRV
grnl:zog(_‘l) (i—j)!F(&—i+j+l)(}\'_)”7])x]_;_oy"‘

This shows that A(A@)x =y and since y € cs; we con-
clude that A(A@)x e cso. Thus, we deduce that x e csj (A@) and
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Tx =y. Hence, T is surjective. Furthermore, one can easily show
that T is norm preserving. This completes the proof. O

Lemma 2.3. [5] T be a triangle and S be its inverse. If (by) is a basis
of the normed sequence space X, then (S(by)) is a basis of Xt

Remark 1. [18] The matrix domain X7 of a normed sequence space
has a basis if and only if X has a basis.

The Schauder basis of the sequence spaces csj(A@), cs* (A@)
and bs* (A@) can be derived by using Lemma 2.3 and Remark 1,
as follows:

Corollary 2.4. Let & = (A(A@)x), for all k € N. Now for fixed k e
N define the sequence b® = {b{},.\ by

0<k<n,

k+1 (71)n—k _La+1) o
b1(1k) _ Jj=k (M—PIT (—a@—n+j+1) Aj—rj°’

0, k > n,
for all n, k € N. Then, the following statements hold:

i. The sequence {b{},cy is a basis for the spaces sy (A@) and
cs*(A@) and every x € csj(A@) or ¢s*(A@) has a unique
representation in the form

x=Y db®.
k

ii. bs*(A@) has no Schauder basis.

3. The -, B- and p-duals of the spaces cs}(A@), cs* (A@)
and bs* (A @)

In this section, theorems determining the «-, 8- and y-duals
of the A difference sequence spaces are formulated and proved.
The generalized difference has been studied by Chandra and Tri-
pathy [19]. The collection of all finite subsets of N is denoted by
F throughout. For this investigation, some lemmas are needed in
proving the next theorems, due to Stieglitz and Tietz [20].

Lemma 3.1. A = (ay) € (cSo : ¢1) if and only if
sup Z Z(ank - an,k+l) < 0. (3.1)
N.KEF | 7o ik

Lemma 3.2. A= (ay) € (cs: ¢7) if and only if

sup | ) (apk — Ape-1)| < oo. (32)

NKeF | neN ke

Lemma 3.3. A= (a) € (bs: ¢y) if and only if (3.1) holds and

lilzn ay =0, VneN. (3.3)

Lemma 34. A = (ay,) € (¢sg : ¢) if and only if

S%pz |@nk — Ap k1] < 00, (3.4)
k

and

lign(ank — Oy ky1) exists for all k e N. (3.5)

Lemma 3.5. A= (a,) € (cs: c) if and only if (3.4) holds and

lign ay,, exists for all k € N. (3.6)

Lemma 3.6. A= (ay,) € (bs:c) if and only if (3.3) and (3.6) hold

and

> | — @ iq| converges. (3.7)

k

Lemma 3.7. A= (a,) € (¢S : £) if and only if (3.4) holds.

Lemma 3.8. A= (a,;) € (¢s: €x) if and only if

sgpz |tk — Ay 1| < oo (3.8)
k

Lemma 3.9. A= (a,) € (bs : ¢) if and only if (3.3) and (3.4) hold.

Now, we may begin the following result which determines the
a-dual of the spaces csf(A@), cs*(A@) and bs* (A@).

Theorem 3.10. Define the sets h% and h§ as follows:
) oo},
< 0 };

where the matrix B¥ = (b‘,fk) is defined via the sequence a = (ap) € w
by

Z Z(bﬁk - bﬁ.kﬂ)

NKeF | neN kek

h¥ = {a:(an)ea): sup

Yoy b b))

h§ = la=(an) ew: sup
neN keK

N.KeF

I§+1 (_] )nfk I'(-a+1) Ak a
X j=k =PI (—G—n+j+1) Aj—A;_ -

0<k<n,

nk =
k > n,

for all n, k € N. Then {csi(A@)}* = {bs*(A@)}* =h¥ and
{csH(A@)}* = hg.

Proof. Let a = (a;) € w. Then, by bearing in mind the relation
(2.4), we easily obtain that

n [k Fed@+1) .
v = D —CL S . a

g[% (= PDIT(=@ —n+j+1) A —Ajq
Ye= B (3.9)

holds for all n € N. We, therefore, observe by (3.9) that ax =
(anXn) € £ Whenever x = (x;) € cs§(A@)) or bs* (A®) if and only
if BYy € ¢ whenever y = (y,) € ¢sp or bs. This means that the se-
quence a = (an) € {CS%(A(&D}“ or a= (ay) € {bs*(A@)}¥ if and
only if BY € (csg:¢1) or BY e (bs: ¢1). Then, it is clear that the
columns of the matrix B? are in the space c,, since

. & _
fim b, =0

for all n e N. Hence, we obtain by Lemmas 3.1 or 3.3 with B in-
stead of A that a = (ay) € {csf(A@)}* = {bs* (A@)} if and only
if

sup
N.KeF

Z Z(bgk - b(r?,kﬂ)

neN keK

< 00,

(3.10)

which leads us to the consequence that {csf(A@®)}* =
{bs* (A@)}e = 2.

Similarly, we deduce from Lemma 3.2 with (3.9) that a = (ap) €
{cs* (A@)} if and only if B¥ e (cs : £1). Therefore, we derive from
(3.2) that

sup
N.KeF

Z Z(bgk - b(r?,kA)

neN kekK

< Q.

(3.11)

This yields that {cs* (A@®)}* = hg. This completes the proof. ]
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Theorem 3.11. Define the sets h§, h§, h¢, h%, h¢ and h by
B n-1
h§ = a=(an)GwiSUPZ|dk(n)—dk+1(”)| <oo¢,

L
An }
<00y,

)\n - )\n—l an

= (ap) € w : sup
n

: nlim (G (n) — dyyq(n)) exists for each keN},

a=(ay) ew: nlim dy(n) exists for each k € N},

k=0

h? = {a =(ap) ew: i | (n) — d,_q(n)| converges},

n .
——FQy| exists ¢,
)\n - )\n—l }

where
n k+1 ~
r-a+1) 'y
a(n) = 1”< _ S s a;
4(n) = 121;|:]2;( ) 1)!F(—a—z+]+1)kj—xj1} !
0<k<n).

Then {csé(A(‘f‘))}ﬁ~ = hg‘ N hg‘ Nh, {cs* (A@)}P =hg nh§ Nh¢ and
{bs* (A@)}B = h& N h N hY.

Proof. Consider the equality

n n k i+1 . l_,( C(+l) )V
— _1\k-i
g“""k N %[2013 R Ty e e e e

n k+1

. i F'-a+1) Ak )
Z[ZZ( R = DIT (=& — l+1+1)?»j—ljlal}yk

k=0 | i=k j=k

— (T%): (neN), (312)

where the matrix T% = (t ) is defined by

k+1 k I (—@+1) A )
- {Zl k I:Z K (= 1)1 ((1 DT (—a@—i+j+1) )Lj—)\kj,l ]an 0<k<n,
nk

tOl
0, k> n,
for all k, n € N. Thus, we deduce from (3.12) that ax = (a,x;) € cs
whenever x = (x;) € csg(A@) if and only if T% e (csp : ¢). There-
fore, by using Lemma 3.4, we derive from (3.4) and (3.5) that

n-1
sup D () = Grgq (n)] < o0, (3.13)
k=0
sup |[————a : 314
Ll ey el (3.14)
nlim (@ (n) — dgyq(n)) exists for each k € N, (3.15)

which show that {cs§(A@)}f = hg nh§ nhg.

Similarly, we deduce from Lemma 3.5 with (3.4) and (3.6) that
a=(ay) € {cs*(A@)}B if and only if T? € (cs : c). Therefore, we
derive from (3.4) that (3.13) and (3.14) hold. Further, by using

Lemma 3.5, we obtain from (3.6) that
nlim d,(n) exists for each k € N. (3.16)
— 00
Hence, we deduce that {cs* (A©@)}f = h§ nh§ nhd.
Finally, we conclude from Lemma 3.6 with (3.3), (3.6) and

(3.7) that a= (ay) € {bs*(A@)}# if and only if T? e (bs: c).
Therefore, it is clear that the columns of the matrix T¢ are in the
space cg, since

11m tffk =0

for all n € N. Also, we derive from (3.6) that (3.16) holds. Further,
we get from (3.7) that

> " d(n) — @1 (n)| converges
k=0

(3.17)

and

lim exists.

k— o0

an (3.18)

An — )»n 1
Therefore, we conclude that {bs* (A@)}f =h& nhd nhd. O

Theorem 3.12. Define the set hg as follow:

n
hg = {a= (@) ew: SLnlpZIﬁk(n) =G (n)| < o0t
k=0

The y-dual of the spaces csl(A@)) and bs* (A@®)) is the set h§ N h§
and the y-dual of the space cs* (A@) is the set h§ N hg.

Proof. The present theorem may be proved by the technique used
in the proof of Theorem 3.11. O

4. Some matrix trgnsformations ~related to the sequence spaces
csh(A@), cs* (A@) and bs* (A@)

In this final section, some matrix mappings on the spaces
csh(A@), cs*(A@) and bs*(A@) are characterized. Actually,
the necessary and sufficient conditions for matrix transformations
from these spaces into the spaces ¢p, ¢ and ¢, are given, where 1
<p < oo

We shall write throughout for brevity that

m k+1 ~

. i r'—a+1) Ak

— _1)i-k ;
(=2, {ij( Y (i—j)!r(—a—i+j+1))\j_x,-_1}”l
and

9] k+1 ~
. i r~a+1) Ak
Ao = —1) — i
nk ;[12;( ) (z—;)!I‘(—oe—z+]+1)Aj—Aj_1]

for all n, k, m € N provided the convergence of the series.
Let us give some Lemmas [20], which are essential for deriving
the characterization of matrix mappings.

Lemma 4.1. A = (ay) € (cSo : o) if and only if (3.4) holds and

li'11n(a,.,,< —aprr1) =0 (VkeN). (41)
Lemma 4.2. A= (ay) € (cs: ¢g) if and only if (3.4) holds and
lirlln au =0 (VkeN). (4.2)
Lemma 4.3. A= (a) € (bs : cp) if and only if (3.3) holds and
llrl;l‘l Xk: |ank - an.k+1| =0 (43)
Lemma 4.4. A = (ay) € (cSp : £p) if and only if
P
Supz Z(ank — k1) <00 (1 <p<o0). (4.4)
L keK
Lemma 4.5. A= (ay) € (¢s : ¢p) if and only if
P
SUPZ Z(ank —pk-1)| <00 (1 <p<o0). (4.5)
Ky keK
Lemma 4.6. A= (ay) € (bs: ¢p) if and only if (3.3) and (4.4) hold.
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Now, we state fpllowing th~eorems via magrix transformations of
the spaces csf(A@), cs* (A@) and bs* (A@) for the spaces ¢, ¢
and cg, where 1 < p < oo.

Theorem 4.7. i. A = (ay) € (cs5(A®) : ¢4) if and only if

m-1
Shlqp Z |dnk(m) - dn,kﬂ (m)l < oo (neN), (4.6)
k=0
qup manm < 00, (4.7)
nllim (G (M) — dp 1 (M)) exists for eachn, k € N, (4.8)
S%pz |G — k1] < o0 (4.9)

k
ii. A= (ay) € (S (AD) : ¢y.) if and only if (4.6), (4.7) hold and

nl]im d,(m) exists for eachn, k € N, (4.10)
— 00

SUP Y |l — 1| < 00 (411)

n
k
iii. A= (ay) € (bs*(AD) : ¢y.) if and only if (4.9) and (4.10) hold
and
> " |@p(m) — g1 (M)| convergent,
k=0

(4.12)

lim

m—oo

exists (n € N), (413)

m
T Unm
)Mm - )\'mfl

lim d,, =0 (Vn eN).
k— o0
Proof. i. Suppose that the conditions (4.6), (4.7), (4.8) and
(4.9) hold and take any x = (x) € csg(A(@). Then, we have by
Theorem 3.11 that (), € {csh(A@)}F for all n € N and this
implies the existence of the A-transform of x, that is, Ax exists. Fur-
ther, it is clear that the associated sequence y = (y;) is in csp.

Let us now consider the following equality derived by using the
relation (2.4) from the mt" partial sum of the series X anXy:

(4.14)

m m
D auXe =Y du(m)y; (n, meN). (4.15)
k=0

k=0
Therefore, by using (4.6), (4.7) and (4.8) as m — oo we obtain that

> X =Y dyyy for alln e N. (4.16)
k

k

Further, since the matrix A = (Gn) is in the class (csg: €oo) by
Lemma 3.7 and (4.9); we have Ay e ¢.. Therefore, we deduce from
(4.16) that Ax € £, and hence A = (ap) € (csh(AD) @ £s).

Conversely, suppose that A= (ay) € (csh(A@): ¢y). Then
()i € {csh(A@)}P for all n e N and this, with Theorem 3.11,
implies (4.6), (4.7) and (4.8). Further, since Ax € ¢, by the hypoth-
esis; we obtain by (4.16) that Ay e ¢,, which shows that A e (cs :
o), where A = (d,;,). Hence, the necessity of (4.9) is immediate
by (3.4). This concludes the proof of part i.

Since part ii and iii can be proved similarly, we omit its
proof. O

Corollary 4.8. i. A = (ay,) € (csj(A@) : ¢) if and only if (4.6), (4.7),
(4.8) and (4.9) hold and

nlim (Gpy — Gy k1) exists for allk € N. (4.17)

ii. A= (ay) € (cs*(AD) :¢) if and only if (4.6), (4.7), (4.9) and
(4.10) hold and

nlim dy exists for allk € N. (4.18)

iii. A= (ay) e (bs*(A@D):¢) if and only if (4.10), (4.12), (4.13),
(4.14) and (4.18) hold and

> @ — G 1| convergent. (419)

k

Corollary 4.9. i. A= (a,) € (csj(AD) 1 ¢o) if and only if (4.6),
(4.7), (4.8) and (4.9) hold and

1M (A — pes1) = 0 (k € N). (4.20)

ii. A= (ay) € (cs*(AD):cy) if and only if (4.6), (4.7), (4.9) and
(4.10) hold and

1im dy =0 (k € N). (4.21)

iii. A= (ay) e (bs"(AD):cy) if and only if (4.10), (4.12),
(4.13) and (4.14) hold and

r!l—glo Xk: [ an,k+1| =0. (4.22)

Corollary 4.10. i. A = (ay,) € (csj(A@) :¢1) if and only if (4.6),
(4.7) and (4.8) hold and

Z Z(dnk - an,kﬂ)

neN keK

sup
N.KeF

< 0. (4.23)

ii. A= (ay) e (csM(AD):¢q) if and only if (4.6), (4.7) and
(4.10) hold and

Z Z(dnk - dn.k—l)

neN keK

iii. A= (ay) € (bs*(AD):¢y) if and only if (4.10), (4.12), (4.13),
(4.14) and (4.23) hold.

Corollary 4.11. i. A= (ay) € (csj(A@) :¢p) if and only if (4.6),
(4.7) and (4.8) hold and

sup
N.KeF

(4.24)

< Q.

p
sup 3 (3 @k — Gnerr)

KeF keK

<00, (1 <p<o). (4.25)

iil. A= (ay) e (cs*(A@):¢p) if and only if (4.6), (4.7) and
(4.10) hold and

sup Z Z(ank - an.k—l)

Ker ™y keK

iii. A= (ay) € (bs*(AD):¢p) if and only if (4.10), (4.12), (4.13),
(4.14) and (4.25) hold.

p

<00, (1 <p<o0). (4.26)
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