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1. Introduction

Difference equations, although their forms look very simple, it
is extremely difficult to understand thoroughly the periodic char-
acter, the boundedness character and the global behaviors of their
solutions. The study of non-linear rational difference equations of
higher order is of paramount importance, since we still know so
little about such equations. It is worthwhile to point out that al-
though several approaches have been developed for finding the
global character of difference equations, relatively a large number
of difference equations has not been thoroughly understood yet [1-
21].

In recent years non-linear difference equations have attracted
the interest of many researchers, for example:

Kalabusic et al. [12] investigated the periodic nature, the bound-
edness character, and the global asymptotic stability of solutions of
the difference equation

Xn—
n-1 n=0,1,,..,

Xny1 = Pn + )
Xn-2

where the sequence p, is periodic with period k, = {2, 3} with
positive terms and the initial conditions are positive.

E-mail address: dessokym@mans.edu.eg

http://dx.doi.org/10.1016/j.joems.2016.06.010

Raafat [15] studied the global attractivity, periodic nature, oscil-
lation and the boundedness of all admissible solutions of the dif-
ference equations

A— Bx,_q
+C + Dx,_» ’
where A, B are non-negative real numbers, C, D are positive real
numbers +C + Dx,,_, # 0 and for all n > 0.

Alaa [16] investigated the global stability, the permanence, and
the oscillation character of the recursive sequence

Xn—1

Xnj1 =@+ ==,
n

n=0,1,...,

Xnt1 =

n=0,1, ...,

where « is a negative number and the initial conditions x_; and
Xp are negative numbers.

Obaid et al. [17] investigated the global stability character,
boundedness and the periodicity of solutions of the recursive se-
quence

bxn_1 + cxp_p + dx,_3

OXp_1+ BXn_2 + VXn_3~

where the parameters a, b, ¢, d, @, B and y are positive real num-
bers and the initial conditions x_3,x_5,X_1 and xg are positive real
numbers.

In [18] Zayed studied the global stability and the asymp-
totic properties of the non-negative solutions of the non-linear

Xn4+1 = 0Xp +
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difference equation

Xn + X
Xoot = Axn +Bxy + Dot Xk 01,

q-+Xn_k
where the parameters A, B, p, ¢ and the initial conditions
X_g,...,X_1,Xg are arbitrary positive real numbers, while k is a

positive integer number.
El-Moneam [19] got the periodicity, the boundedness and the
global stability of the positive solutions of the non-linear difference

equation

bx K
Xni1 = AXn + Bxy_ +Cxp_j + Dxp_g + ——— |
n+1 n n—k n—I n—-o an,k “ex,

n=0,1,...,

where the coefficients A, B, C, D, b, d, e € (0, oo0), while
k, | and o are positive integers. The initial conditions
X_oy oony X_py - ., X_1, Xp are arbitrary positive real
numbers such that k < | < o.

Our aim in this paper is to study some qualitative behavior of
the positive solutions of the difference equation

DYn i+ €Yns
AYn_i + BYn-s’
where the initial conditions Xx_g, x_s,q ..., X_1 and xq are positive

real numbers where § = max{t, I, k, s} and the coefficients q, b, c,
d, e, « and B are positive real numbers.

X ks e

Y1 = Yn +bynt + ¥y + n=0,1,...., (1)

2. Some basic definition

Let I be some interval of real numbers and let
F:P+1 >,

be a continuously differentiable function. Then for every set of ini-
tial conditions x_g, X_s,1,...,Xp €I, the difference equation

yn+1:F(ynaJ’n—la~~-vYn76), n:0,1,..., (2)
has a unique solution {y 2 s

Definition 1 (Equilibrium Point). A point y € I is called an equilib-
rium point of the difference Eq. (2) if

y=F@.y, ... 9.

That is, y, =y for n > 0,is a solution of the difference Eq. (2), or
equivalently, y is a fixed point of F.

Definition 2 (Stability). Let ¥ € (0, co) be an equilibrium point of
the difference Eq. (2). Then, we have

(i) The equilibrium point y of the difference Eq. (2) is called lo-
cally stable if for every € > 0, there exists § > 0 such that

forall y_g,...,y_1,¥y0 € I with

Vs =Y+ .. +1y-1 =Y+ yo -yl <6,
we have

lyn—y| <€ forall n>-46.

(ii) The equilibrium point y of the difference Eq. (2) is called lo-
cally asymptotically stable if yis locally stable solution of
Eq. (2) and there exists y > 0, such that for ally_g, ..., y_1,
Yo € [ with

Vs =¥+ ..+ ya =Y+ yvo-¥l<v.
we have
lim y, =Y.
n—oo
(iii) The equilibrium point y of the difference Eq. (2) is called
global attractor if for all y_g, ..., y_1, yo € I, we have

lim y, =Y.

n—oo

(iv) The equilibrium point y of the difference Eq. (2) is called
globally asymptotically stable if y is locally stable, and y is
also a global attractor of the difference Eq. (2).

(v) The equilibrium point y of the difference Eq. (2) is called un-
stable if ¥ is not locally stable.

Definition 3 (Periodicity). A sequence {yn}>°  is said to be peri-
odic with period p if xn4p = Xn for all n > —4. A sequence {yn}>®
is said to be periodic with prime period p if p is the smallest pos-
itive integer having this property.

Definition 4. Eq. (2) is called permanent and bounded if there ex-
ists numbers m and M with 0 < m < M < oo such that for any
initial conditions y_s, ..., y_1, Yo € (0, oo) there exists a positive
integer N which depends on these initial conditions such that

m<y, <M foralln>N.

Definition 5. The linearized equation of the difference
Eq. (2) about the equilibrium yis the linear difference equa-
tion
$ _ _
oFy.y, ...,
. 0.y ¥

3yn_i Xn—i~ (3)

i=0

Now, assume that the characteristic equation associated with
(3)is

P(A) = poA? + p1A*! + .+ ps1h+ps =0, (4)
where

FF.Y. ...

a ayn—i '

Theorem 1 [3]. Assume that p;eR, i=1,2,..., 8 and$ is non-
negative integer. Then

H)
dolml <1,
i=1
is a sufficient condition for the asymptotic stability of the difference
equation
Xnis + P1Xnys_1+...+PsXxn=0, n=0,1,....

Theorem 2 [4]. Let g: [n, £]°t" — [n, €], be a continuous function,
where § is a positive integer, and where [n, &] is an interval of real
numbers. Consider the difference equation

yﬂ‘#]:g(.ynaynf]""syn—a)a n:0v17"" (5)

Suppose that g satisfies the following conditions.

(1) For each integer i with 1<i<d§+1; the function
g(z1,25, ..., Zs,1) is weakly monotonic in z that
is if z>% then g(z1.,22,....21.21,2i41, ... Z541) >
8(z1.22, . Zi 1. 2 2 - 254

(2) If m, M is a solution of the system
m=g(my, my,....Ms 1), M=g(Mi,Ma,...,Msq),

then m = M, where for eachi=1,2,...,8 +1, we set
m, if g is non-decreasing in z;
m; =
: M, if g is non-increasing in z;
and
u M, if g is non-decreasing in z;
N if g is non-increasing in z;.

Then there exists exactly one equilibrium point ¥ of Eq. (5), and
every solution of Eq. (5) converges to y.
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3. Local stability

In this section, we study the local stability character of the
equilibrium point of Eq. (1).
Eq. (1) has equilibrium point and is given by

. _ dy+ey _ d+e

=ay+by+cy+ —=———, or(l—a—-b-c)y=

y=ay+by+ o+ By ( )y «t B

if a4+ b+ c < 1, then the unique equilibrium point is
d+e

y= A-a-b-o(a+ph)

Let f: (0, 00)> — (0, o0) be a continuous function defined by

dvs + evy

Vo, V1, Va, V3, Vg) = aVg + bvy +cvp + ———.
f(vo, v1, V3, V3, Ug) 0 1 2+ oyt Ba

(6)

Therefore, it follows that
3f (o, v1. V2, V3, V4) _

If (o, V1. V3, V3, Va) _

81}0 ’ 81}] ’
df (o, V1, V3, U3, Va) _ c
81/2 ’
0f(Vo, V1, V2, V3, Va) _ (dB —ae)vy O f(Vo, V1, V2, V3, Va)
dvs (s + Bra)” vy
_ (xe—dB)v;

5
(av3 + Brg)
Then, we see that

0fy.5.5.5.5) 0f(3.¥. 9. 5. 9)
3—1,0:‘12171’ B—m:b:pz’
If @, }z;uf V.Y _ o,
0f0.y.y.y.y) _(dB-ce\((1-a-b-c)(a+p)
s B (og+ﬂ)2 d+e
_ (@B-ae)(1-a-b-c)

T @tPpdre P
0f0.y.¥.y.y) _(ae—dB \((A-a-b—c)(x+p)
va N+ p)’ d+e

_ (@e—dB)(1-a-b-0o)
- (@ +B)d+e) =Pps )

The linearized equation of Eq. (1) about y, is
Yne1 = P1Yn+ P2 ¥Yn—t + D3 Yn-i + P4 Yn—k + P5 Yn-s-
Theorem 3. Assume that df # ae, 1 > a+b+c and
2|(dB —ae)| < (@ +p)(d+e) (8)
then the equilibrium point y of Eq. (1) is locally asymptotically stable.
Proof. From (7) and (8) we deduce that
[P1l+ P2l + P3| + [Pal + [ps5] < 1

lal + [b] + [c] + (dB —ae)y(1—a—-b—c)

(a+p)(d+e)
(ee—dB)(1—a—-b-c) 1
@+rpydre |~

2(1—-a-b-0)

(¢ +pB)d+e)

If 1-a—b—-c>0, then

2|(dB —ae)| < (¢ +pB)(d+e).
The proof is complete. O

|(dB —ae)]<1—a-b-c

4. Global stability
In this section we study the global stability of the positive so-
lutions of Eq. (1).

Theorem 4. The equilibrium point y is a global attractor of Eq. (1) if
one of the following conditions holds:

(i)dB—ae>0,a+b+c<1.
(i) ae—dB >0,a+b+c<1.

Proof. Let r and s be non-negative real numbers and assume that
g:[r,s]° — [r, s] be a function defined by

g(vg, V1, V3, U3, Vg) = avg + bvy + c1p + M.
avs + fuy
Then
9g(Wo, V1, V3, V3, Va) _ - 38(Vo, V1. V2, U3, V) _ o
an ’ 81}1 ’
9g(Wo, V1, V2, V3, Va) _
31}2 ’
0g(Vo, V1, Vo, U3, Vg) _ (dB —ae)vs  0g(Vo, V1, V2, U3, Va)
v  (avs + Bug)” v
_ (xe—dB)v;

5
(ovs + Bra)

We consider two cases:

Case 1: Let df —ae >0, a+b+c<1, and e—d #0 is true,
then we can easily see that the function g(vg,vq,Vy,V3,V4) is in-
creasing in vg, vq, Vo, v3 and decreasing inv,. Suppose that (m, M) is
a solution of the system
M=hM M, M,M, m) and m=h(m, m, m, m, M).

Then from Eq. (1), we see that

M:aM+bM+cM+M and m = am+ bm + cm
aM+ fm
dm+eM
am+ M

then

a(l—-a—-b—c)M?>+B(1 —a—-b—c)mM = dM +em,
a(l—a-b-—cym*> +B(1—a—b—c)Mm = dm +eM.
Subtracting this two equations, we obtain
M-m)e(l—a-b—c)(M+m) + (e—d)]=0,

under the condition a+b+c# 1 and e # d we see that M = m. It
follows from Theorem 2 that y is a global attractor of Eq. (1).
Case 2: let ae—dB>0,a+b+c<1, and (x-p)
(1-a—b-c)#d—e is true, then we can easily see that the
function g(vg, vq, Vo, V3,V4) is increasing in vg, vy, Vs, V4 and decreas-
ing invs. Suppose that (m, M) is a solution of the system
M=hM, M, M, m, M) and m=h(m, m, m, M, m).

Then from Eq. (1), we see that

M:aM+bM+cM+M and m = am + bm +cm
am+ M
N dM +em
aM+ fm

then

a(l—a—-b—c)Mm+B(1—a—b—c)M? = dm+eM,
a(l—a—-b-—cymM+ B(1 —a—b—c)ym? = dM + em.
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Subtracting this two equations, we obtain
M-m)[B(1-a-b-c)(M+m)+(d—-e)]=0,

under the condition a+b+c# 1 and e # d we see that M =m. It
follows from Theorem 2 that y is a global attractor of Eq. (1). This
completes the proof. O

5. Boundedness of solutions

In this section we investigate the boundedness nature of the
solutions of Eq. (1).

Theorem 5. Every solution of Eq. (1) is bounded if a+b+c < 1.
Proof. Let {yn}- 5 be a solution of Eq. (1). It follows from
Eq. (1) that
dYn_k + €Yn_s
oaYn_ i+ ﬂyn—s’
d.Vn—k
oYn g+ :BYH—S
dYn—k €Yn—s

<ayn+bync+cyp + ——+ 7,
Yn Vn—t + CYn_i Onr | BYnss

Yne1 = Wn+byne + Y +

€Yn_s
aYn_k+ BYn-s’

= ayn+byn_—t +cyn 1+

d e
< @Yn+byn_t +cyn + o + B
We have yy,1 <2y.1, Where z,1 = azq +bzp_¢ +cz,_; + 4 + £
linear non-homogenous equation. It is easy to see that the solu-
tion of this equation is locally asymptotically stable and converges
to the equilibrium point z = % if a+b+4c<1. By us-
ing the inequality theorem we have that the solution of Eq. (1) is
bounded. O

Theorem 6. Every solution of Eq. (1) is unbounded ifa > 1 or b > 1
orc> 1

Proof. Let {yn},. s be a solution of Eq. (1). Then from Eq. (1) we
see that

oY+ BYn-s
We see that the right hand side can be written as follows

Yns1 = aYn +bynt + cyu + >ay, forall n>1.

Zn41 = azy.
then
Zn = a"zp.

and this equation is unstable because a > 1, and nlim zn = oo.Then
— 00

by using ratio test {yn}p-_s is unbounded from above. Using the
same technique, we can prove the other cases. O

6. Periodic solutions

Here we study the existence of periodic solutions of Eq. (1).

Theorem 7. If t, I, k, are an even ands is an odd then Eq. (1)has a
prime period two solutions if and only if

(e—d)(a—-B)a+b+c+1)—4(ex(a+b+c)+dB)>0. (9)

Proof. First suppose that there exists a prime period two solution

..p.q,p.q,...,
of Eq. (1). If t, | and k are even and s is an odd then y, =y, =
Yn_1 =Yn_r and Y1 = yn_s. It follows from Eq. (1) that

dq+ep dp+eq

=aq+bqg+cq+ and q=ap+bp+cp+ ——.
quqaq+ﬂp qpppapﬂgq

Therefore,
Bp® +apg=a(@+b+c)g* +B@+b+c)pg+dq+ep,  (10)
and
Bq* +apg=a(a+b+c)p* +Ba+b+c)pg+dp+eq. (1)
By subtracting (11) from (10), we deduce
e—d

PHI= g a@rbr o (12

Again, adding (10) and (11), we have
pq_((e—d)(ea(a+b+c)+d,8)>< 1 )
- (B+a(a+b+c))? (¢ —B)a+b+c+1)/)
(13)

where e > d and o > f.
Let p and q are the two positive distinct real roots of the
quadratic equation

> —(p+q)t+pg=0,

2 — L t
B+a(a+b+c)
+< (e—d)(eax(a+b+c)+dp) ):0
(B+a(@a+b+co)’(@—-B)a+b+c+1)

(14)

Thus, we deduce

)2_4<(ed)(ea(a+b+c)+dﬂ)>
(B+a@a+b+c))?

e—d
B+a(@a+b+c)

>(<(0f—,3)(t1}rb+c+1)) >0,

or
(e—d)(@—-B)a+b+c+1)—-4(ex(a+b+c)+dpB) > 0.

Therefor Inequality (9) holds.

Second suppose that Inequality (9) is true. We will show that
Eq. (1) has a prime period two solution.

Suppose that

_(e-d)+¢
2B +aA)

(e-d)-¢

andq=5gaa)

Where§=\/(€—d)2—%andfxza+b+c.

Therefore p and g are distinct real numbers.
Set

Xt=4q, X1 =q, X py=¢q, X s=0D,..
X_1 =D, X =4

., X.3=D, X 2=(q,

We would like to show that
X1=X_1=p and x; =Xy =q.

It follows from Eq. (1) that

dq + ep (stzse) + e(5i7vem)
+a. +a.
X1 =aq+bq+cq+ g+ Bp =Aq+ (e—d)—¢ (e-d)+Z\"
a(Z(ﬂ+aA)) + ﬁ(z(ﬁwA))
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Dividing the denominator and numerator by 2(8 + «¢A) we get
d((e—d)-¢)+e(e-d)+%)
a((e—d)-¢)+p(e—d)+¢)

(e+dye—d)+ (e—d)¢
(a+pB)e—d)+(B-a)
Multiplying the denominator and numerator of the right side by

(@+pB)e—d)—(B-a)
(e—d)(e+d)+]l(x+p)e—d) - (B —a)]

:Aq+

:Aq+

X1 = Aq+

[(@+B)e—d)+ (B -a)]l(a+p)e—d) - (B-a)]

even then
dq+eq
=aq+bq+cq+ , 15
p q+bq+cq aq+ Bq (15)
d
q=ap+bp+cp+7p+ep (16)

ap+pBp
Subtracting (16) from (15) gives

s (efd)[(e+d>(a+ﬂ>(efd>+2(aefﬂd>§ (B —)¢?]
(@+B)*(e—d)* - (B—)’¢? ’
_pas (e—d)[(e—i—d)(ot+,3)(e—d)+2(ae—,3d)§ ﬂ—a)((e—d)z—%‘wn,
(@ +p)'(e—d)* — (B —a)’((e—d)* — HELEELP)
~ (e—d)[2(e—d)(oee+,3d)+2(oze—,3d)§ (Ae=tealidh)) ]
- 40[,3(6 d) +(4((x ﬁ)(iAf{()eaA-#dﬂ)) ’
_Ag+ 2(e—d)[(xe+ Pd)(A+1) — 2(eaA+dﬂ)]+2(A+1)(ae—ﬂd)§
= daBe—dyA+1) +4(x— B)(eaA+dp)
_a (e—d)-¢ +(e—d)(oze—,Bd)(l—A)+(A+l)(ote—,3d)§
~ "\ 2B +ah) 2(aA+ B)(eat — dp) ’
_(e-DA-AL+(-D)A-A+A+ 1L _ (e—d)+¢ _
2(¢A+ B) T 2(A+B)

Similarly as before, it is easy to show that
X2 =q.
Then by induction we get
Xon=¢q and for all

Xon1 =P n=-4.

Thus Eq. (1) has the prime period two solution
D4, D, Qs ...,
where p and g are the distinct roots of the quadratic Eq. (14) and
the proof is complete. O
The following Theorem can be proved similarly.
Theorem 8. Eq. (1) has a prime period two solutions if and only if
(Md-e)(B—a)1+a+b+c)>4(dB(a+b+c)+ae),
t, I, s—even and k — odd.
(i(e—d) (@ - B)A+a+c—b)>4(ex(a+c)+dB(1-b)),
I, k—even and t, s — odd.
(iii) (d—-e)(B—a)(1+a+c—b)>4(dB(a+c)+ex(l-Db)),
I, s—even and t, k — odd.
(iv) (e—d)(ax—B)(14+a+b—c)>4(ex(a+b)+dB(1-c)),
t, k—evenand I, s — odd.
W) d-e)(B-—a)(1+a+b—-c)>4(ea(1—c)+dB(a+b)),
I, k—odd and t, s — even.
i) (d—e)(B—a)(1+a—-b—-c)>4(dBa+ex(1—b-c)),
t, 1, k—odd and s — even.
b—c)>4(exa+dB(1-b-0)),
t, I, s—odd and k — even.

viy(e—d)(a — B)(1 +a—

Theorem 9. If t, I, k, and s are an even and a+b+c+ d+e #1,
then Eq. (1) has no prime period two solutions.

Proof. Suppose that there exists a prime period two solution ..., p,
q p q, .. of Eq. (1). We see from Eq. (1) when ¢, I, k and s are an

<1—a—b—c di;)w qQ =

Sincea+b+c+ O‘f%g # 1, then p = q. This is a contradiction. Thus,
the proof is completed. O

Theorem 10. Eq. (1) has no prime period two solutions if one of the
following statements holds

d+e

@ 1+a#b+c+ «+ B I, k, s, t—odd.
d+e
(@i 1+a+b+c# «i B’ I, t —even and k, s — odd.
(i) 1 +a+ d+;;éb+c k, s—even and t, | — odd.
d+e
(iv) 1+a+c+ ,3 # b, I, k, s—evenand t —odd.
d e
) 1+a+b+ +,B7£C’ t, k, s—even and | — odd.
d+e
i) 1+a+b#c+ a+ B’ t—evenandl, k, s—odd.
(Uii)1+a+c;éb+§i;, I —evenand t, k, s—odd.

Proof. As the proof of the previous Theorem. O
7. Numerical examples

In this section we present some numerical examples in order
to confirm the results of the previous sections and to support our
theoretical discussions. These examples represent different types of
qualitative behavior of solutions of Eq. (1)

Example 1. Fig. 1 shows that the solution of the difference
Eq. (1) is local stability if t =5, =4, k=2, s=3, a=0.15, b=
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plot of y(n+1)= a y(n)+b y(n-t)+c y(n-I)+((d y(n—-k)+ e y(n-s))/(alpha y(n—k)+ bata y(n-s)))
3.5 T T

2.5 I

0.5 ,

0 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

n

Fig. 1. Draw the behavior of the solution of Eq. (1).

x 108plot of y(n+1)=a y(n)+b y(n-t)+c y(n-I)+((d y(n-k)+ e y(n-s))/(alpha y(n-k)+ bata y(n-s)))
7 T T

O L L L L Il L
0 10 20 30 40 50 60 70 80 90 100
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Fig. 2. Sketch the behavior of the solution of Eq. (1).

01,c=02,d=2,e=0.5, o =06, B=1.6 and the initial condi- x_3=0.5,x_5=2.1, x_1 =1.1 and Xy = 0.4, the solution is unsta-
tions x_5=02,x%x_ 4=0.7,x_3=05x_5=21, x_1=11and xy = ble.

0.4.
Example 3. The solution of the difference Eq. (1) is globally

asymptotically stable if t =5, =4, k=2,s=3, a=0.4, b=0.03,
Example 2. See Fig. (2) when we take the difference Eq. (1) with c=02,d=3,e=04, «a =06, 8 =26 and the initial conditions
t=51=4k=2,5s=3,a=09,b=02,c=03,d=2, e=0.5, X 5=02,x4=07 x3=05 x,=21, x_1=1.1 and xg =04
o =0.6, =1.6 and the initial conditions x_5 = 0.2, x_4 = 0.7, (See Fig. 3).
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plot of y(n+1)= a y(n)+b y(n-t)+c y(n-1)+((d y(n-k)+ e y(n-s))/(alpha y(n-k)+ bata y(n-s)))
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Fig. 3. Sketch the behavior of the solution of Eq. (1) is global stable when df > we.

plot of y(n+1)= a y(n)+b y(n-t)+c y(n-1)+((d y(n-k)+ e y(n-s))/(alpha y(n-k)+ bata y(n-s)))
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Fig. 4. Plot the behavior of the solution of Eq. (1) is global stable when «ae > dp.
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plot of y(n+1)= a y(n)+b y(n-t)+c y(n-I)+((
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Fig. 5. Plot the periodicity of the solution of Eq. (1).

plot of y(n+1)= a y(n)+b y(n-t)+c y(n-I)+((d y(n-k)+ e y(n-s))/(alpha y(n-k)+ bata y(n-s)))

1.1 T T

y(n)
o
(o))
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Fig. 6. Draw of the solution of Eq. (1) has no periodic.

Example 4. Fig. 4 shows that the solution of the difference
Eq. (1) is globally asymptotically stable if t =5, =4, k=2,
s=3, a=04, b=0.01,c=01,d=1,e=09, =18, =06
and the initial conditions x_5=0.2, x_4=0.7, x_3=05x_5 =
2.1, x_;y=1.1 and x5 =0.4.

Example 5. Fig. 5 shows the solution of Eq. (1) has a prime pe-
riod two solution t ==k =4, s=5, a=0.03, b=0.04, c=0.02,

d=0.01,e=0.5 = 0.6, 8 =2 and the initial conditions x_s = p,
X 4=¢,X3=p, X 3=(, X_1=pandxy=q.

Example 6. Fig. 6 shows the solution of Eq. (1) has no prime pe-
riod two solution t ==k =4, s=2, a=0.03, b=0.04, c=0.02,
d=0.01, e=0.5 ¢ =006, 8 =2 and the initial conditions x_4 =
0.2,x 3=07,x =05, x_;1=1.1and xog = 0.4.
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